
Artificial Intelligence 135 (2002) 199–234

Consistency restoration and explanations in
dynamic CSPs—Application to configuration

Jérôme Amilhastre a, Hélène Fargier b,∗, Pierre Marquis c

a Access Commerce, BP 555, 31674 Labege Cedex, France
b Institut de Recherche en Informatique de Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex, France

c Centre de Recherche en Informatique de Lens, Rue de l’Université, 62300 Lens, France

Received 17 February 2001

Abstract

Most of the algorithms developed within the Constraint Satisfaction Problem (CSP) framework
cannot be used as such to solve interactive decision support problems, like product configuration.
Indeed, in such problems, the user is in charge of assigning values to variables. Global consistency
maintaining is only one among several functionalities that should be offered by a CSP-based platform
in order to help the user in her task; other important functionalities include providing explanations
for some user’s choices and ways to restore consistency.

This paper presents an extension of the CSP framework in this direction. The key idea consists in
considering and handling the user’s choices as assumptions. From a theoretical point of view, the
complexity issues of various computational tasks involved in interactive decision support problems
are investigated. The results cohere with what is known when Boolean constraints are considered
and show all the tasks intractable in the worst case. Since interactivity requires short response
times, intractability must be circumvented some way. To this end, we present a new method for
compiling configuration problems, that can be generalized to valued CSPs. Specifically, an automaton
representing the set of solutions of the CSP is first computed off-line, then this data structure is
exploited so as to ensure both consistency maintenance and computation of maximal consistent
subsets of user’s choices in an efficient way. 2001 Published by Elsevier Science B.V.

Keywords:CSPs; Assumptions; Explanations; Restorations; Interactive configuration; Compilation

* Corresponding author.
E-mail address:fargier@irit.fr (H. Fargier).

0004-3702/01/$ – see front matter 2001 Published by Elsevier Science B.V.
PII: S0004-3702(01)0 01 62 -X

200 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

1. Introduction

Constraint programming techniques are widely used to model and solve decision
problems. Many algorithms developed in this area aim at solving automatically some
families of CSPs. Accordingly, they do not help solving decision support problems that
are interactive in essence. For such problems, the user herself is in charge of the choice
of values for variables and the role of the system is not to solve a CSP, but to help the
user in this task. Product configuration [34,40] is a typical example of such problems:
a configurable product is defined by a finite set of components, options, or more generally
by a set of attributes, the values of which have to be chosen by the user. These values must
satisfy a finite set of configuration constraints that encode the feasibility of the product, the
compatibility between components, their availability, etc. At a first glance, 1 a configurable
product can be represented by means of a CSP, the solutions of which represents the
catalog, i.e., all the variants of the product that are feasible.

When configuring a product, the user specifies her requirements by interactively giving
values to variables or more generally by stating some unary constraints that restrict the
possible values of the decision variables. An important feature of interactive configuration
is that such constraints do not have the same status than initial configuration constraints
but can be removed during the configuration process because they lead to a solution
that is judged not acceptable by the user. Furthermore, all the user’s choices do not
necessarily have the same importance, but may be subject to preferences (for instance,
when configuring a car, requirements dealing with the type of engine can be more important
than those concerning the color of the car). Now each time a new choice is made, the
domains of the variables must be pruned so as to ensure that the values available for the
further variables can lead to a feasible product (i.e., a product satisfying all the initial
configuration constraints). Finally, if the current set of choices becomes inconsistent with
the constraints, or if the user is not happy with some derived consequences of these choices,
she has to backtrack and relax some of them. To sum up, a decision support system should
be able to fulfill the following requirements:

• Maintain consistency: The system has to ensure at each time that the current set of
user’s choices is consistent with the CSP modeling the configurable product, ideally
globally consistent, or at least to detect inconsistency as soon as possible. It has also
to compute the consequences of the user’s choices by deleting (respectively restoring)
all the values that are incompatible (respectively compatible) with the current set of
choices: in other words, the current domains should obey the property of “global
consistency” or at least a property of local consistency like arc-consistency, restricted
path consistency, etc.

• Guide relaxation on user’s requirements by providing restorations: The system has to
help the user backtracking by answering questions like: “Which choices should I relax

1 This is obviously an approximation: a configurable product is often structured into sub-components, the
existence of which depends on the values given to some of the variables of the upper component. In this context,
the set of variables of the problem cannot be defined a priori. Several authors have proposed to extend the classical
CSP framework in order to handle such structural characteristics [22,27,32,35,39]. However, these works do not
address interactivity in the configuration task since they assume that the whole set of user’s requirements is given
at start.

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 201

in order to recover consistency?” or “Which choices should I relax in order to render
such a value available for such a variable?”. The problem here is to identify consistent
subsets of the current choices, possibly maximal consistent subsets or consistent
subsets minimizing a cost function.

• Provide the user with explanations of the conflicts: The system has to answer
questions like “From which subsets of current choices did inconsistency follow?”
or “Why is this value not available any longer for this variable?”. The problem here is
to identify (minimal) inconsistent subsets of the current set of choices.

Classical filtering algorithms, and specifically their dynamical versions (cf. [4,5,19])
may address the first functionality. Nevertheless, these algorithms cannot guarantee global
consistency nor help in the computation of restorations. In order to fill this gap, this
paper presents a new approach to interactive constraint solving that addresses both
functionalities. From a formal point of view, this approach leads to an extension of the
CSP framework to assumptions, that is presented in Section 2. This new framework can
also be viewed as a generalization of the ATMS one [17] to general constraints. It enables
various functionalities required by interactive constraint solving (as discussed above) to
be formally specified. A complexity analysis of these computational tasks is reported. Not
surprisingly, all of them are intractable in the worst case. This hardly contrasts with the
practical requirements imposed by interactivity: to be viable, the response time of the
algorithms must not exceed a few seconds.

In order to circumvent intractability from the practical side, our approach relies on
a compilation of the original problem into a data structure from which much better
performances can be obtained. We actually follow [41] and use an automaton that
represents the set of solutions of the CSP. We show that the set of computational tasks
that can be tractably achieved from such an automaton is not limited to consistency
checking (as well as validity and equivalence as shown in [41]) but also includes more
sophisticated tasks. Accordingly, the principles of Vempaty’s compilations are briefly
recalled in Section 3. In Section 4, we explain how the automaton can be exploited to
achieve in an efficient way other computational tasks considered in this paper. Some
experimental results on a real, large scale, application are provided in Section 5. Section 6
concludes the paper. Proofs are reported in Appendix A.

2. Assumption-based CSPs

This section presents an extension of the standard CSP framework to the handling of a
distinguished set of dynamic constraints. For the sake of generality, we do not restrict our
framework to configuration problems and give in the following more generic definitions
than strictly needed for this purpose. For instance, we will not assume that dynamic
constraints are always unary ones.

2.1. Preliminary definitions and notations

A CSP is classically defined by a triplet 〈X ,D,C〉 where X = {X1,X2, . . . ,Xn} is a
finite set of variables, each Xi taking its values in a finite domain DXi , and a finite set

202 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

of constraints C . We note D = {DX1,DX2 , . . . ,DXn}. A constraint C in C is defined on
a set of variables V (C) ⊆ X and restricts the combinations of values that can be taken
by the variables of V (C). Thus, a relation R(C) on V (C) can be associated with each
C: it is the set of tuples that satisfy the constraint. In the following, ¬C will denote the
constraint on V (C) that is satisfied by any tuple that violates C and violated by any tuple
that satisfies C. An assignment s is an element of the cartesian product of domains, noted
Dn; it is a solution of the CSP if it satisfies all the constraints, i.e., if for any constraint C,
the projection of s on V (C) is an element of R(C) (otherwise, s is said to falsify C). If
such a solution exists, the CSP is said to be consistent, otherwise it is inconsistent.

Let us now distinguish a set of dynamic constraints, defining thus “Assumption-based
CSPs” (A-CSPs):

Definition 1. An A-CSPΠ is a 4-uple 〈X ,D,C,H〉 where 〈X ,D,C〉 is a CSP and H a
finite set of constraints on variables of X .

In configuration problems, 〈X ,D,C〉 represents a configurable product and H is the
current set of user’s choices (we also call them user’s restrictions).
Π ′ = 〈X ,D,C ∪ H〉 is the (classical) CSP associated with Π .

Definition 2. An assignment s is a solution of an A-CSP Π = 〈X ,D,C,H〉 iff s is a
solution of Π ′ = 〈X ,D,C ∪H〉.
S(Π) denotes the set of all solutions of Π . Π is consistent (respectively inconsistent)

iff S(Π) �= ∅ (respectively = ∅).

At any time, the solutions of Π ′ correspond to the feasible products that obey the user’s
requirements. For each Xi , PXi denotes the projection of S(Π) on Xi : it is the set of all
values of Xi the choice of which allows the definition of a feasible product that satisfies
the requirements H.

2.2. Conflicts and consistent environments

In the following, we refer to subsets E ⊆ H of user’s choices as environments, whether
or not they are consistent:

Definition 3. Let Π = 〈X ,D,C,H〉 be an A-CSP.
A subset E ⊆ H is called an environment.
E is consistent(respectively inconsistent) given Π iff 〈X ,D,C ∪ E〉 is a consistent

(respectively inconsistent) CSP.

When no ambiguity is possible, slightly abusing words, we simply say that E is
consistent (respectively inconsistent) whenever it is consistent (respectively inconsistent)
given Π .

Any inconsistent environment is called a conflictfor Π (or a conflict on H for C). When
〈X ,D,C〉 is consistent, a conflict can be understood as a cause of the inconsistency of
the CSP 〈X ,D,C ∪ H〉 (i.e., of the incompatibility between the user’s choices and the

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 203

Fig. 1. Constraint graph of our toy example.

configuration constraints). Any consistent environment induces a subset of H that can be
relaxed so as to recover consistency: if E is a consistent environment, relaxing H \ E is
sufficient to recover consistency.

For instance, if 〈X ,D,C〉 is consistent and 〈X ,D,C ∪ H〉 is inconsistent, H is a trivial
conflict, ∅ a consistent environment and a dummy solution is obtained by relaxing all the
constraints of H. As this example shows, all the environments are not equally interesting
in practice. More formally, in lack of additional information, consistent (respectively
inconsistent) environments which are maximal (respectively minimal) with respect to set-
theoretic inclusion are preferred:

Definition 4. A nogood for C on H (or nogood of Π) is a minimal inconsistent
environment, i.e., a conflict E for Π such that no conflict E′ for Π is such that E′ � E.

An interpretationof Π is an environment which is maximal consistent for Π , i.e., a
consistent environment E for Π s.t. no consistent environment E′ for Π is such that
E � E′.

Example 1.
• Initial CSP: X = {bumpers, top,wheels,body,hood,doors} with all the variable

sharing the same initial domain: {white,pink, red,black} (see Fig. 1). The constraints
of C are the following:

V (C1) = {body,doors}, V (C2) = {hood,doors},
V (C3) = {body,hood}, V (C4) = {bumpers,body},
V (C5) = {top,body}, V (C6) = {wheels,body},
R(C1) = R(C2) = R(C3) = {

(white,white), (pink,pink), (red, red),

(black,black)
}
,

R(C4) = R(C5) = R(C6) = {
(white,pink), (white, red), (white,black),

(pink, red), (pink,black), (red,black)
}
.

• Set of assumptions: H = {Hbumper,Htop,Hwheels,Hbody,Hhood,Hdoors} with:

R(Hbumpers) = R(Htop) = {white,pink}, R(Hwheels) = {red},
R(Hbody) = {pink, red}, R(Hdoors) = {red,black},
R(Hhood) = {pink,black}.

204 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

• Conflicts: {Hbody,Hdoors,Hhood,Hwheels}, {Hbody,Hwheels,Htop}, {Hbody,Hdoors,
Hhood}, {Hbody, Hwheels}, etc.

• Nogoods: {Hbody,Hdoors,Hhood} and {Hbody,Hwheels}.
• Consistent environments: {Hbumpers,Htop,Hwheels,Hhood}, {Hbumpers,Htop,Hwheels,
Hhood,Hdoors}, {Hbumpers,Htop,Hbody}, {Hbumpers,Htop,Hbody,Hdoors}, {Hbumpers,
Htop,Hbody,Hhood}, etc.

• Interpretations: {Hbumpers,Htop,Hwheels,Hhood,Hdoors}, {Hbumpers,Htop, Hbody,
Hdoors}, {Hbumpers,Htop,Hbody,Hhood}.

As in propositional logic, nogoods can be generated from interpretations through the
computation of hitting sets, and the converse also holds:

Proposition 1. LetN (respectivelyI) be the set of the nogoods(respectively interpreta-
tions) of an A-CSPΠ = 〈X ,D,C,H〉:

• E is a consistent environment ofΠ ⇔ ∀Ei ∈ N , (H \E)∩ Ei �= ∅.
• E is a conflict ofΠ ⇔ ∀Ei ∈ I,E ∩ (H \ Ei) �= ∅.

Corollary 1.
• E is an interpretation ofΠ ⇔ H \ E is a hitting set ofN minimal w.r.t.⊆.
• E is a nogood ofΠ ⇔ E is a hitting set ofĪ = {H \ I | I ∈ I} minimal w.r.t.⊆.

2.3. Explanations and restorations

Even if the current set of user’s restrictions is not inconsistent given the CSP, these
restrictions can lead to reject some values for other variables that the user would prefer as
feasible. The system must thus provide the user with an explanation of these prohibitions.
Let us generally define the notion of explanation as follows:

Definition 5. Let Π = 〈X ,D,C,H〉 be an A-CSP and L a constraint on some variables
of X .

An explanationof L on Π is an environment E such that 〈X ,D,C ∪ E〉 is a consistent
CSP and 〈X ,D,C ∪ E ∪ {¬L}〉 is an inconsistent one.

An explanation E of L on Π is minimal iff there exists no explanation E′ of L on Π

such that E′ � E.

Note that if 〈X ,D, {L}〉 is inconsistent, then no explanation of L on Π exists. However,
this situation is not very relevant since self-contradictory constraints are typically not
considered.

In configuration problems, explanations of unaryconstraints are computed: determining
why a set of values V is not available any longer for a given variable Xi amounts to
compute the explanations of the constraint L = “Xi ∈ Di \ V ”.

Now, the user not only needs to understand why some values are forbidden for a variable,
but also which previous choices should be kept and which previous choices should be
relaxed in order to make these values available again. This is formalized thanks to the
notion of restoration:

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 205

Definition 6. Let Π = 〈X ,D,C,H〉 be an A-CSP and L a constraint on some variables
of X .

A restorationof L on Π is an environmentE such that 〈X ,D,C∪E∪{L}〉 is a consistent
CSP.

A restoration E of L on Π is maximal iff there is no restoration E′ of L on Π such that
E � E′.

A restoration of L is thus a maximal subset of constraints of H that can be kept if one
wishes to be consistent with L: L will be restored as soon as the constraints of H \ E are
relaxed from the A-CSP.

Example 1 (Continued). Consider the CSP given in Example 1 with the following set of
assumptions: H = {Hbumpers,Htop,Hwheels,Hdoors,HHood} with:

R(Hbumpers) = R(Htop) = {white,pink}, R(Hwheels) = {red},
R(Hdoors) = {white, red,black}, R(Hhood) = {pink,black}.

• The constraint L1 such that V (L1) = {body} and R(L1) = {red,white,black}
meaning “The body of the car cannot be pink” has two minimal explanations:
{Hwheels} and {Hdoors}.

• The constraint L2 such that V (L2) = {body} and R(L2) = {black} (“The body of the
car must be black”) has two minimal explanations: {Hwheels} and {Hhood,Hdoors}.

• To restore the value pink, one must at least relax both Hwheels and Hdoors:
{Hbumpers,Htop,Hhood} and obviously {Hbumpers} and {Htop} are restorations of L3 =
¬L1 such that V (L3) = {body} and R(L3) = {pink}, {Hbumpers,Htop,Hhood} is
maximal.

Restorations, explanations, interpretations and nogoods are related in the following way:

Proposition 2. LetΠ = 〈X ,D,C,H〉 be an A-CSP.
• When 〈X ,D,C ∪ H〉 is consistent,E is an explanation(respectively minimal

explanation) of L on Π iff E is a conflict (respectively nogood) of 〈X ,D,C ∪
{¬L},H〉.

• E is a restoration(respectively maximal restoration) of L onΠ iff E is a consistent
environment(respectively an interpretation) of 〈X ,D,C ∪ {L},H〉.

Accordingly, when C ∪ H is a consistent set of contraints, the restorations of L can be
computed from the explanations of ¬L and the converse also holds.

Proposition 3. Let E¬L be the set of all minimal explanations of the constraint¬L on
Π = 〈X ,D,C,H〉 and let RL be the set of all maximal restorations ofL on Π . If
〈X ,D,C ∪H〉 is consistent, then:

• E is a restoration ofL onΠ ⇔ ∀Ei ∈ E¬L, (H \E)∩ Ei �= ∅.
• E is an explanation of¬L onΠ ⇔ ∀Ei ∈ RL,E ∩ (H \Ei) �= ∅.

206 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

Corollary 2.
E is a restoration ofL onΠ ⇔ H \ E is a hitting set ofE¬L minimal w.r.t.⊆.
E is an explanation of¬L onΠ ⇔ E is hitting set ofR̄L = {H \ I | I ∈ RL} minimal

w.r.t. ⊆.

2.4. Preferences between assumptions

In many real applications, all the user’s choices do not have the same importance but are
subject to preferences. For instance, a requirement dealing with the type of engine can be
more important than a requirement concerning the color of the body of the car. To allow
the handling of such preferences, the framework of Valued CSP (VCSP) [36] associates
with each constraint H ∈ H a degree of importance, or “valuation” φ(H), belonging to a
totally ordered scale, e.g., in N+ ∪ {+∞}: the higher the valuation, the more important the
constraint.

In the following, we suppose that every constraint has a positive importance (otherwise,
it can be a priori discarded from H). In this situation, the best consistent environments as
well as the best restorations are those that relax as less important constraints as possible,
i.e., that minimize the sum of valuations associated with the constraints they relax. In
particular, when φ is the constant function 1, the best consistent environments are those
that relax the lowest number of constraints. More formally:

Definition 7. Let Π = 〈X ,D,C,H〉 be an A-CSP, φ a valuation of the assumptions, i.e.,
a positive application from H to N+ and for any E ∈ H, let φ(E) = ∑

H∈H\E φ(H).

A V -interpretation 2 of Π is an environment consistent given Π such that there is no
environment E′ consistent given Π satisfying φ(E′) < φ(E).

A V -restorationof L on Π is a restoration E of L on Π such that there is no restoration
E′ of L on Π satisfying φ(E′) < φ(E).

Clearly enough, the A-CSP framework enriched with such valuation functions is a
natural framework for cost-based abduction [11,23] (and for probabilistic abduction [30]—
through a log transformation and under some independence assumptions).

In some applications, it could be interesting to use other valuation functions as in
the general VCSP model. In this model, any valuation structure 〈L,�,⊕〉 where L is
a set totally ordered by �, with a minimal (respectively maximal) element noted ⊥
(respectively �) and ⊕ is a commutative, associative, closed binary operation that satisfies
the properties of monotonicity and identity (i.e., a T -conorm) is acceptable. For simplicity,
we restrict ourselves to the structure 〈N ∪ {+∞},>,+〉 with φ giving valuations different
from � = +∞ and ⊥ = 0. This choice allows the representation of several policies for
characterizing preferred environments, such as those based on cardinality or lexicographic
ordering. It ensures that the valuation of each environment can be computed in polynomial
time.

2 When the elements of H are unary constraints and φ is the constant function 1, we recover here the notion of
“minimal revision” first proposed by Dechter and Dechter [15].

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 207

Example 1 (Continued). Let us step back to Example 1 and suppose the following
valuations of assumptions:

φ(Hwheels) = φ(Hbumper) = φ(Htop) = φ(Hhood) = 1,

φ(Hbody) = 2, φ(Hdoors) = 2.

We thus get for each interpretation:

φ({Hbumpers,Htop,Hwheels,Hhood,Hdoors}) = 2,

φ({Hbumpers,Htop, Hbody,Hdoors}) = 2,

φ({Hbumpers,Htop,Hbody,Hhood}) = 3.

This yields two V -interpretations:

{Hbumpers,Htop,Hwheels,Hhood,Hdoors} and {Hbumpers,Htop,Hbody,Hdoors}.

Since φ assigns valuations different from 0 and +∞ to assumptions, the pre-ordering
it induces on environments is consistent with (and refines) the pre-ordering based on set
inclusion:

Proposition 4. Let Π = 〈X ,D,C,H〉 be an A-CSP. AnyV -interpretation ofΠ (respec-
tivelyV -restoration ofL onΠ) is an interpretation(respectively a maximal restoration).

As a consequence of Propositions 3 and 4, it is possible to compute the V -interpretations
ofΠ from its nogoods and, when 〈X ,D,C∪H〉 is consistent, to compute the V -restorations
of L on Π from its explanations through the computation of hitting sets (minimizing the
sum of the valuations of the constraints kept in the hitting set rather that minimizing the
set with respect to ⊆). 3 But this will be of a poor help, since as we will see in Section 2.6,
computing the nogoods of Π is not cheaper than computing its V -interpretations.

As suggested by Lobjois and Verfaillie [25], a more tractable approach to consistency
restoration, and more generally, to constraint restoration, would be to use the machinery
provided by VCSP, thanks to the following property:

Proposition 5. Let Π = 〈X ,D,C,H〉 be an A-CSP andφ be a valuation function of its
assumptions, i.e., a positive application fromH to N+. Letφ′ be an application fromC∪H
to N∪{+∞} defined by: ∀C ∈ H, φ′(C) = φ(C) and∀C ∈ C, φ′(C) = +∞. The following
statements are equivalent:

• E is aV -interpretation ofΠ .
• 〈X ,D,C ∪ E〉 is minimal relaxation of the valued CSP(X ,D,C ∪ H, 〈N ∪ {+∞},

>,+〉, φ′) and its valuation differs from+∞.

Thus, the computation of V -interpretations (and, thanks to Proposition 2, of V -
restorations) can be achieved as a VCSP optimization problem: it leads to the computation
of all the solutions of a VCSP.

3 However, every nogood of Π cannot be computed from its V -interpretations, only: it is not sufficient to cover
every V -interpretation to cover all the interpretations.

208 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

Another way of computing V -interpretations is provided by Dechter and Dechter [14,
15]. This approach is restricted to tree-structured CSPs (it relies on the hypothesis that
〈X ,D,C ∪ H〉 is a hypertree of constraints) and proceeds by a forward propagation of the
valuations followed by a top-down (and backtrack free) search of the best interpretations.

2.5. Application to configuration

In the context of a constraint-based interactive approach to product configuration, an
A-CSP Π can be used to represent both the feasible products (as the solutions of the CSP
〈X ,D,C〉) and the current user’s choices as a set H of dynamic constraints/assumptions.
This A-CSP has the following noticeable properties:

• Since each solution of 〈X ,D,C〉 corresponds to a feasible product, we can reasonably
suppose that 〈X ,D,C〉 is consistent.

• Since the user’s elementary choices typically consist in assigning one value to one
variable, each element of H is a unary constraint.

• The user’s choices are not self-contradictory, i.e., 〈X ,D,H〉 is a consistent CSP.
Obviously, this does not mean that the user’s choices always lead to a feasible product
(C is not taken into account here).

• The preferences of the user are expressed by means of a valuation function, i.e., an
application φ from H to N+. Accordingly, every dynamic constraint has a positive
importance (otherwise, it can be a priori discarded from the set of constraints) and
none of the dynamic constraints is mandatory.

• It is always possible to realize any kind of pre-computing or compilation on 〈X ,D,C〉,
off-line, i.e., before the configuration phase.

In order to help the user in his configuration task, our aim is to develop a system that
achieves the following functionalities:

• Detection of inconsistency: at any time, the system must tell whether there is a feasible
product that satisfies all the user’s requirements, i.e., it must be able to check whether
Π = 〈X ,D,C,H〉 is consistent or not.

• Maintenance of global consistency: at any time, the system must discard from the
domains of available values those that cannot lead to a feasible product, i.e., it must
be able to compute PXi for any i .

• In case of inconsistency, computation of nogoods and, more importantly, of interpre-
tations and V -interpretations must be offered.

• When some interesting values become forbidden for a variable, computation of
minimal explanations and, more importantly, computation of V -restorations of these
values must be possible.

2.6. Complexity issues

Two factors influence the computational complexity of searching for nogoods, interpre-
tations, explanations and restorations in assumption-based CSPs:

• The number of objects, i.e., the size of the result. The number of nogoods,
explanations, interpretations and restorations is exponential in the size of H in the
worst case.

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 209

Table 1
Complexity results (Π as input stands for 〈X ,D,C,H〉)

Input Question Complexity

Π , E is E a conflict? coNP-complete

Π , E is E a nogood? BH2-complete

Π does there exist a conflict? coNP-complete
(respectively a nogood)

Π , E is E a consistent environment? NP-complete

Π , E is E an interpretation? BH2-complete

Π does there exist a consistent environment? NP-complete
(respectively an interpretation)

Π , E, L is E an explanation of L? BH2-complete

Π , E, L is E a minimal explanation of L? BH2-complete

Π , L does there exist an explanation of ¬L? �
p
2 -complete

(respectively a minimal explanation of ¬L)

Π , E, L is E a restoration of L? NP-complete

Π , E, L is E a maximal restoration of L? BH2-complete

Π , L does there exist an a restoration of L? NP-complete
(respectively a maximal restoration of L)

• The complexity of recognizing these objects (e.g., testing whether a given environ-
ment E is a nogood for a given A-CSP) or of testing their existence (e.g., does there
exist a nogood for a given A-CSP?).

Table 1 presents some results related to this second source of complexity (see the proofs
in Appendix A). These results slightly generalize corresponding results obtained so far in
the ATMS framework (some of them are close to results given in [20]). These results argue
in favor of hard search problems in the worst case; this is not surprising since one of the
key issues (consistency) is already intractable. Note that the complexity results that are
reported are concerned with the general case, i.e., no specific assumption related to the
configuration issue is made.

One should notice that the computation of interpretations is in the worst case no more
expensive than the computation of nogoods. This means that computing interpretations
from nogoods through hitting sets is not a good approach, unless nogoods can be obtained
at cheap cost.

In the restricted situation where the A-CSP framework is applied to interactive
configuration, some additional assumptions can be made (see Section 2.5): C is known to be
consistent, the constraints of H are unary, as well as the constraints that must be explained.
In this case, all the complexity proofs remain valid, except those concerning existence
problems which become trivial. Indeed, since the consistency restoration feature as well as
the explanation of inconsistency cannot be invoked unless inconsistency has been detected,

210 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

there always is a consistent environment (∅) and a conflict (H). Similarly, searching for
explanations of a unary constraint ¬L or for restorations of L cannot be invoked when ¬L

is not a consequence of the current set of choices: H is a trivial explanation of ¬L and ∅
is a trivial restoration of L. However, this does not decrease the difficulty of the problem
of searching for good or optimal environments, nor the theoretical complexity of the other
decision problems, except the one concerning the test of E as an explanation of a given L.
This problem becomes “only” coNP-complete: since C ∪ H is known to be consistent, so
is also C ∪E, whatever E ⊆ H.

Finally, while the existence of preferences modeled by a valuation function φ restricts
in practice the number of preferred assumptions (cf. Proposition 4), this number remains
exponential in the input size in the worst case. Besides, its exploitation does not make the
tasks tractable: as a consequence of Proposition 5, the corresponding problems are at least
as difficult as decision problems associated to the optimisation of valued CSPs, i.e., they
are NP-hard (in the sense of Cook reduction).

3. Compilation of an A-CSP

According to the complexity results given in the previous section, the computational
tasks an A-CSP must achieve are highly combinatorial even under the simplifying
assumptions associated to configuration problems. On the other hand, interactivity impose
some contraints over the response time, which must not exceed a few seconds. That is
why we suggest to push the computational effort required by the handling of the on-line
requests into an off-line compilation phase.

The compilation of propositional knowledge bases has already been intensively
investigated (see [8] for a survey) and many compilation functions have been proposed
so far (see, e.g., [6,13,18,26,31,37,38]). Compilation has already been applied to CSPs as
well [16,28,41,42]. Following these works, we propose to compile the set of solutions of
the CSP under a form from which the computational tasks can be achieved more quickly
than from the original formulation.

The data structure used here is the one proposed by Vempaty [41], namely a finite-state
automaton that represents the set of solutions of 〈X ,D,C〉. This concise representation
of the solutions can be logically understood as a compact, structured Disjunctive Normal
Form of the CSP. Vempaty [41] shows how consistency, validity and equivalence of CSPs
can be tested efficiently when represented as automata. For our purpose, the main interest
of this compiled form is that both interpretations and restorations can be generated from
the compiled form in time linear in its size. Notice that this compilation is done only
once, although several successive requests will be typically addressed in an interactive
configuration situation, and that the system can be used in several configuration situations
without requiring any re-compilation.

This approach relies on a few hypotheses that are satisfied in practice by configuration
problems. First, the persistence of 〈X ,D,C〉 and the possibility of performing off-line
any computation on it, before the introduction of dynamic constraints; then, the restriction
of the dynamic part of the problem, H, to unary constraints; finally, the structure of the
set of solutions of 〈X ,D,C〉 that allows its practical representation under the form of an

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 211

automaton—its size, exponential in the worst case, can be reasonable in practice. In the
case of configurable products, the satisfaction of this last requirement is due to two facts:
the interchangeability of many values and the structure of the product into subproducts that
are more or less independent from each other.

3.1. Compilation of a CSP in the form of an automaton

Let us recall the keys points of the method introduced by Vempaty [41] to represent the
set of solutions of a CSP as an automaton.

Automata. We consider here the state diagramsof automata: a finite-state automaton
(FA) A on an alphabet Σ is a oriented digraph the edges of which are labeled by elements
of Σ (the transitionsof the FA). The finite set of its nodes (or statesof the FA) is denoted
Q. It has one initial state denoted Iand at least one final stateF and is such that any
transition and any state belongs to a least one path for the initial state to a final state.
A word m = a1a2a3 . . . an is recognized by the automaton if there exists a path from the

initial state I to a final state F with the label m: I
a1−→ q1

a2−→ q2
a3−→ · · · an−→ F . The

language recognized by A is the set L(A) of the words it recognizes. A FA is deterministic
(DFA) iff all the transitions coming from the same state have different labels.

Associating FA with CSP.Let Π = 〈X ,D,C〉 be a CSP. Given a permutation O =
[X1,X2, . . . ,Xn] of X , any solution of Πdefines a word of length n over the alphabet
D. Hence, the set of solutions of Π defines a language over D. This language, called the
solution language of Π w.r.t. O and denoted SO(Π), is a rational language. It is thus
possible to represent SO(Π) by a FA A. This automaton has only one final state (noted F)
and is such that the length of any path from I to F is n.

For any path p = (I = q1
a1−→ q2

a2−→ q3
a3−→ · · · an−→ F = qn+1) from I to F , for any

state qi in p, we write var(qi) = i (as soon as qi is any state but F , var(qi) is the index of
a variable in X). For any transition a of p, in(a) is its initial node and out(a) is its terminal
node; var(a) is the variable Xvar(in(a)) and val(a) the label of a. Using these notations,
(val(a1),val(a2), . . . ,val(an)) is thus an assignment of (var(a1),var(a2), . . . ,var(an))
and a solution of Π .

Definition 8. Let Π be a CSP, and A an automaton representing its set of solutions.
A transition a of A is said to supportthe value d for Xi (i.e., the assignment Xi := d)

iff var(a) = Xi and val(a)= d .
A transition a of A is said to support a unary constraint L on Xi iff it supports at least

one of the values belonging to R(L).
A path of A supports a value for a variable (respectively a unary constraint) iff it contains

a transition supporting this value (respectively this unary constraint).

Computing the automaton associated with a CSP.According to [41], the automaton
can be generated by using standard operators on automata: either by any CSP algorithm
that enumerates the set of solutions and adds them successively to the automaton, or by
composition operators on (small) automata representing the configuration constraints. The

212 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

Fig. 2. DFA A1 and FA A1 associated with Π for O = [X1,X2,X3] are concise representations of the set of
solutions.

Fig. 3. An automaton associated with the CSP of Fig. 1.

first method is typically not tractable when configuration problems are considered, because
of the huge number of configurable products (about 1012 in the application presented in
Section 5). That is why the second method has been preferred here.

The complexity of the computation of the automaton obviously depends on its size
(which is, in the worst case, exponential in the size of the original CSP). This size is mainly
influenced by (i) the order with which the variables of the CSP are taken into account and
(ii) the algorithm used to built it. Vempaty proposed to build a DFA that minimizes the
number of states (MDFA). It is also possible to consider other minimization algorithms
generating smaller automata (e.g., non-deterministic ones).

3.2. A-CSP with valuations and weighted automata

In configuration problems, H represents the user’s choices. Each element of H is a
unary constraint HXi on a variable Xi and its importance is given by φ(HXi); taking
this constraint into account leads to remove some assignments of Xi , and thus some
of the transitions of the automaton, namely any transition a such that var(a) = Xi and
val(a) /∈ R(HXi). The principle of our approach is to associate a cost to each transition:
φ(a)= φ(HXi) if a corresponds to an assignment forbidden by a restriction HXi , φ(a) = 0
otherwise. We can thus define the cost of a path as follows:

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 213

Definition 9.
• cost(p) = ∑

a∈p φ(a) is the global cost of path p;
• cost(a) is the cost of a best (i.e., minimal cost) path from I to F through transition a;
• cost(q) is the cost of a best path from I to F through state q .

Now, since every constraint of H has a positive valuation, any path from I to F of
cost zero does not violate any of the constraints of H and thus defines a feasible product
satisfying all user’s requirements. Conversely, any path of positive cost corresponds to a
product that violates at least one of the restrictions of H. Knowing the set of paths with
a zero cost is thus equivalent to knowing the set of solutions of 〈X ,D,C ∪ H〉. More
formally:

Proposition 6. LetΠ = 〈X ,D,C,H〉 be an A-CSP,φ a (positive) valuation function,A a
weighted automaton representingΠ andL a unary constraint. It holds that:

(a) Any pathp from I to F corresponds to a consistent environmentE such that
φ(E) = cost(p).

(b) If E is a consistent environment, then there exists a pathp from I to F such that
cost(p) � φ(E).

(c) Any pathp from I to F that supportsL corresponds to a restorationE of L on
Πsuch thatφ(E) = cost(p).

(d) If E is a restoration ofL onΠ , then there exists a pathp from I to F that supports
L such that cost(p)� φ(E).

Proposition 6 gives a formulation in terms of optimal paths for most of the requests
identified in Section 2.5. It shows that:

Proposition 7.
(a) Every minimal path fromI to F represents aV -optimal interpretation ofΠand

conversely, to anyV -optimal interpretation corresponds at least one minimal path.
(b) H is a conflict forΠ ⇔ there is no path of cost zero fromI to F .
(c) LetPXi denote the projection of the solutions setS(Π) on variableXi : d ∈ PXi ⇔

there is a transitiona such that var(a) = Xi , val(a) = d anda belongs to a path of
cost zero fromI to F .

(d) Let L be a unary constraint onXi ∈ X , AL the set of transitions that support it
andA∗

L the cheapest of them(A∗
L = {a ∈ AL | cost(a) = Mina′∈AL

cost(a′)}). Each
transition inA∗

L corresponds to aV -restoration ofL onΠand to anyV -restoration
of L onΠ corresponds at least one transition inA∗

L.

Example 1 (Continued). Let us step back to Example 1:
• Initial CSP: X = {bumpers, top,wheels,body,hood,doors} with all the variable

sharing the same initial domain: {white,pink, red,black}. The constraints of C are
the following:

V (C1) = {body,doors}, V (C2) = {hood,doors}, V (C3) = {body,hood},
V (C4) = {bumpers,body}, V (C5) = {top,body}, V (C6) = {wheels,body},

214 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

Fig. 4. A weighted automaton associated with the CSP of Fig. 1.

R(C1) = R(C2) = R(C3) = {(white,white)},
R(C4) = R(C5) = R(C6) = {

(white,pink), (white, red), (white,black),

(pink, red), (pink,black), (red,black)
}
.

• Set of assumptions: H = {Hbumper,Htop,Hwheels,Hbody,Hhood,Hdoors} with:

R(Hbumpers) = R(Htop) = {white,pink}, R(Hwheels) = {red},
R(Hbody) = {pink, red}, R(Hdoors) = {red,black},
R(Hhood) = {pink,black},

with the following valuations:

φ(Hhood) = 2, φ(Hbody) = 3,

φ(Hbumpers) = φ(Htop) = φ(Hwheels) = φ(Hdoors) = 1.

The weighted automaton encoding the set of solutions of the initial CSP and the set of
dynamical constraints H is depicted Fig. 4.

The path p with cost(p) = 3 corresponds to the assignment (bumpers= pink, body=
red, top= pink, wheels= pink, doors= red, hood= red). It represents the interpretation
E = {Hbumpers,Htop,Hbody,Hdoor} (φ(E) = 3) where Hwheelsand Hhood are relaxed.

The path p′ is minimal. It corresponds to the assignment (bumpers= white, body=
pink, top = white, wheels= white, doors= pink, hood= pink) that has a cost of 2. It
represents the interpretation E′ = {Hbumpers,Htop,Hbody,Hhood} (φ(E′) = 2) where Hdoors

and Hwheelsare relaxed.
Eight paths represent the preferred restorations of the value red for the variable

body. They share the same cost (3) and each of them corresponds to the restoration
E′′ = {Hbumpers,Htop,Hbody,Hdoors} (φ(E′′) = 3).

4. Algorithms

Let us now explain how we can take advantage of such an automaton to achieve in an
efficient way the various computational tasks we are interested in. As a consequence of

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 215

Fig. 5. Left and right costs associated to the nodes of the automaton.

the previous propositions, these tasks amount to the search of some minimal paths in the
automaton. In order to allow an efficient computation of these minimal paths, we attach to
any state q of the automaton a left cost cl(q) and a right cost cr(q) defined as follows (see
also Fig. 5):

Definition 10.
• Let a = (q ′, q). cl(q) = Mina,out(a)=qcl(q

′) + φ(a) is the minimal cost of the paths
from I to q;

• Let a = (q, q ′). cr(q) = Mina,in(a)=qcr (q
′) + φ(a) is the minimal cost of the paths

from q to F ;
• cl(I) = cr(F) = 0.

The cost cost(q) of a minimal path from I to F through q, and the cost cost(a) of a
minimal path from I to F through a can be directly deduced from these two scores:

Proposition 8.
• cost(q) = cl(q)+ cr(q);
• cost(a) = cl(in(a))+ φ(a)+ cr (out(a)).

Finally, in order to ensure an efficient computation of the sets PXi , we maintain a counter
cnt(Xi, d) for any pair variable-value (Xi, d). cnt(Xi, d) is the number of transitions that
(i) support the assignment and (ii) belong to a path of cost 0 from I to F :

Definition 11.

cnt(Xi, d) = Card({a | var(a)= Xi and val(a)= d and cost(a)= 0}).

4.1. Adding and deleting restrictions

Suppose that the user adds to H a unary constraint Hi on Xi with the valuation
φ(Hi). Some of the transitions may become penalized, namely the transitions a such
that var(a) = Xi and val(a) /∈ R(Hi). It is thus necessary to update the costs of these
transitions: for instance, when no other constraint of H restricts Xi , the cost of these
transitions must rise from 0 to φ(Hi). Conversely, if the user relaxes Hi and deletes it
from H, some of the penalized transitions become fully allowed, namely the transitions

216 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

a such that var(a) = Xi and val(a) /∈ R(Hi). Especially, when no other constraint of H
restricts Xi , their costs come down to 0. In both cases, the modification of the cost of a
transition a has to be propagated back (to update cr()) and forward (to update cl()). This
can be done in three steps:

(1) Determination of the transitions such that var(a) = Xi and labeled by a value val(a)
that does not belong to R(Hi).

(2) Backward propagation from the right state of each of these transitions to the initial
state: this is done through a breadth-first search strategy, so as to update the right
costs cr() of the traversed states knowing the right costs of their successors.

(3) Forward propagation from the left states of these transitions to the final state: it is
also done with a breadth-first search strategy, so as to update the left costs cl() of
the traversed states knowing the left costs of their successors.

The cnt() counters are maintained at steps (2) and (3): for any transition a encountered,
cnt(var(a),val(a)) is incremented if cost(a) rises from 0 to a positive value (a is no more
one of the transition of cost 0 that supports the assignment var(a)= val(a)) and conversely,
it is decremented if cost(a) comes down to 0.

This algorithm runs in time polynomial in the size of the automaton. Linear implemen-
tations can be achieved, relying on a judicious choice of the data structure that encodes the
automaton. The practical efficiency of this kind of algorithm can obviously be enhanced,
for instance by propagating the modifications only (in practice, the propagation has seldom
to reach the extremities of the automaton).

4.2. Detection of inconsistency

Maintaining the costs in the automaton allows us to determine at any time whether the
current set of assumptions (i.e., the current user’s choices) is consistent with the initial
CSP. Indeed:

Proposition 9.
(a) cr(I) = cl(F) is the cost of a minimal path fromI to F .
(b) H is a conflict iffcr (I) > 0 (iff cl(F) > 0).

4.3. Maintenance of global consistency

According to Proposition 7(c), PXi can be derived from the automaton. It can actually
be computed in linear time (linear in the size of DXi) using the counters cnt():

Proposition 10. PXi = {d | cnt(Xi, d) �= 0}.

4.4. ComputingV -interpretations

Whenever an inconsistency occurs, the system must provide the user with V -
interpretations: they correspond to the minimal paths from I to F (cf. Proposition 7(a)).
These optimal paths are easily obtained, going from I to F through “optimal” states, thanks
to the following property:

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 217

Proposition 11.
(a) A pathp from q to F is of minimal cost among the paths fromq to F iff for any

transitiona in p, cr(in(a))= φ(a)+ cr (out(a)).
(b) A pathp from I to q is of minimal cost among the paths fromI to q iff for any

transitiona in p, cl(out(a))= φ(a)+ cl(in(a)).

Corollary 3. A pathp from I to F is of minimal cost iff, for any transitiona in p,
cr(in(a))= φ(a)+ cr(out(a)) andcl(out(a)) = φ(a)+ cl(in(a)).

Computing a uniqueV -optimal interpretation can be done in polynomial time: since it
amounts to following an optimal path from I to F according to the marks cr (), it is bounded
by the number of variables of the original CSP and the maximal number of successors
of a state, i.e., the size of the domains. The search for all V -interpretations is more or
less equivalent to the enumeration of all minimal paths of the automaton, the difficulty
being that a given interpretation can be represented by more than one path. Two different
methods can be proposed for the enumeration of the V -interpretations. The first one is an
adaptation of the DPI algorithm [9] that develops the tree of the V -interpretations without
any backtrack due to a failure. Indeed, the costs of the states are used to determine whether
a branch is optimal or not. The sketch of algorithm that follows is a simplified version that
assumes that at most one constraint of H restricts a given variable Xi .

// In(a) (respectively Out(a)) is the initial node (respec-
tively the terminal node) of transition a.
function optimal(a)

return (cr (In(a)) == φ(a) + cr (Out(a)))

procedure Develop(i, list, E)
if (list = ∅)

return false
else if i > n

memorize E (it is a V-optimal interpretation)
return false (1)

else
QKeepHi ←− {}
QRelaxHi ←− {}
forall state s in list

forall transition a ∈ Out(s) such as optimal(a) do
if φ(a) > 0

add Out(a) to QRelaxHi
else

add Out(a) to QKeepHi
// Search for the interpretations that do not relax Hi

if Develop(i + 1, QKeepHi, E ∪ {Hi}) (2)
return true

else
// Search for the interpretations that relax Hi

return Develop(i + 1, QRelaxHi, E) (3)

218 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

The search for all interpretations is invoked by Develop(1, (I), ∅). Several steps of the
algorithm deserve some comments. At line (1), the search can be halted as soon as some
criteria are fulfilled, for instance when a given number of V -interpretations have been
reached: it is enough to return the value “true” instead of “false”. At lines (2) and (3), the
two branches of the search tree are developed. A more interactive solution should be to ask
the user whether the branch “Relax Hi” should be developed or not. The important point
is that a branch is entered (or proposed to the user) iff it is guaranteed that it leads to a
V -interpretation.

The other possible method is breadth searching the automaton, from I to F through
the optimal paths. The principle is to label every state met with the sets of elements of H
which must be relaxed to reach the state: we thus get on F the complementary sets (to H)
of the V -interpretations. The most expensive operation here is updating the sets attached
to states, since unioning sets is necessary at each update operation.

Anyway, for both methods, our representation by an automaton allows a computation of
all V -interpretations that is polynomial in the size of the result.

4.5. ComputingV -restorations

The automaton also provides a way to efficiently compute the V -optimal restorations of
a unary constraint L: such restorations correspond to the cheapest paths among those that
go from I to F and that support L. If the user is interested in a uniquerestoration of a
set of values for a variable it is sufficient to find, among those supporting these values, a
transition a = (q, q ′) that minimizes cost(). The corresponding V -optimal restoration is
obtained going backward from q to I and then forward from q ′ to F through an optimal
path, thanks to the following corollary of Proposition 11:

Corollary 4. A pathp from I to F that contains transitiona is of minimal cost among the
paths fromI to F that contains this transition iff

• for anya′ in p such that var(a′)� var(a),

cl(out(a′)) = cl(in(a
′))+ φ(a′);

• for anya′ in p such that var(a)� var(a′),

cr (in(a)) = cr(out(a′))+ φ(a′).

Computing a unique V -optimal restoration can thus be done in polynomial time.
Again, a judicious choice of the encoding of the automaton can lead to a more efficient
implementation (with a running time linearly bounded by the number of transitions that
support the unary constraint plus the product of the number of variables of the CSP by the
maximal number of successors of a state, i.e., the size of the domains).

Now, in order to compute the set of all V -optimal restorations of the unary constraint L,
we can re-use the principles presented in the previous section. The idea is to mark, among
those supporting L, all the transitions a that minimize cost(). The optimal paths can be
marked using Corollary 4. It is then possible to take advantage of any of the methods
given in Section 4.4, running it not on the whole automaton but on the set of marked

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 219

paths only. The worst computational cost for the generation of all V -restorations is again
polynomially bounded in the size of the result.

5. An empirical evaluation

The algorithms given in the present paper have been implemented and tested on a quite
huge benchmark coming from a real application in car configuration. All experiments have
been done on a Sun Sparc5 with 128 Mb of RAM using C++.

5.1. The test problem

The test problem has been provided by Renault DVI, a french car manufactoring
company, and it deals with the configuration of a specific family of cars, called Renault
Megane. In this problem, decision variables represent the type of engine, the country,
options like air cooling, etc. The full characteristics of the problem are the following
ones: 4

• There are 101 variables. The sizes of their domains vary from 2 to 43 (there are
actually 5 Boolean variables, 32 variables with a domain size between 3 and 5 and
13 variables with a domain size greater than 5).

• Expressed in a brute form, the CSP involves 858 constraints. Some of them can be
merged and a more compact set of 113 constraints is obtained.

• When the 113 constraints of the CSP are expressed by extensive relations (sets of
tuples), the file that describes the problem needs 6.6 Mb.

• The number of solutions of this CSP is 1 418 701 950 016.

5.2. The automaton

Our strategy to generate the automaton mainly follows the principles described by
Vempaty by combination of (small) automata representing the constraints. The automaton
has been computed in 2h01mn, which is actually acceptable since compilation is an off-
line process. As a variable ordering heuristic, the first variables are those constrained by
the most restrictive constraints. The size of the resulting automaton is also very satisfying:
236 160 states and 306 809 transitions, which can be described in a file of 3.4 Mb.
Interestingly, this size is lower than the 6.6 Mb needed to store the original CSP (i.e.,
the 113 extensive relations).

As a matter of comparison, the same test problem has been compiled under the form
of an OBDD starting from a Boolean constraints representation. Bryant’s package [1,2]
has been used with the same variable heuristic as previously. The resulting OBDD is
significantly larger than the automaton: it contains 4 104 576 states and thus 8 209 148
transitions (which represents a file of 29.5 Mb).

4 This problem is available at ftp://ftp.irit.fr/pub/IRIT/RPDMP/Configuration/.

220 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

5.3. The experimental protocol

In order to test the efficiency of the algorithms proposed in Section 4, we have
“simulated” the behaviour of a user configuring a car. This simulation proceeds in several
steps:

• A value is assigned to each variable following a random ordering of the variables.
In any case, the valuation associated to the new user’s restriction is φ = 1. Global
consistency is maintained after each assignment (see Sections 4.1 and 4.3) and the
CPU time used to this updating of the automaton is measured. Notice that the value
assigned to a variable is always (randomly) chosen among the values that are not ruled
out by the propagation process. When only one value is available, the automaton does
not need to be updated and no measurement is made.

• Once the car has been fully specified, we test the computation of the V -optimal
restorations (i.e., the restorations of minimal cardinality, since φ = 1): for each
variable, for each of the values ruled out by propagation, the system is asked for
all the optimal restorations and the CPU time is measured.

• Finally, the global consistency maintenance is tested upon the unassignment of
variables: the constraints previously posted are deleted backward according to another
(random) ordering of the variables and the CPU time used for updating the automaton
is measured at each deletion. When the variable is not constrained, the automaton
does not need to be updated and no measurement is made.

The results presented in the next section have been obtained from a set of 20,000 sim-
ulations, i.e., 1,051,950 calls to the global consistency maintaining algorithm (525,975
calls by assignment + 525,975 calls by deletion) and 5,021,098 computations of restora-
tion.

5.4. Experimental results

Concerning the maintainance of global consistency, updating the weights of the
automaton needed an average CPU time of 0.13 sec (standard deviation 0.163 sec, median
0.05 sec). Interestingly, the worst case observed only needed 0.68 sec. The cumulative
distribution function of the time needed to update the automaton is given in Table 2. Notice
that the performance does not depend on the event that calls the updating (i.e., assignment
or unassignment of variables).

The computation of restorations also revealed itself as really efficient: the call for the
computation of the set of optimal restorations needed an average CPU time of 0.015 sec
(standard deviation 0.023 sec, median 0.01 sec). The worst case observed took 1.05 sec
only. The cumulative distribution function of the time needed to compute the sets of
restoration is given in Table 3.

Another question that may be addressed is the size of output, i.e., the size of the
restorations provided at each call and above all, the number of restorations provided (recall
that this number may be theoretically exponential). On our sample set, the average number
of optimal restorations is 1.31 (standard deviation 0.7, median 1) and the maximal number
of restorations provided is 32 (the minimum is obviously 1). The restorations provided have
an average cardinality of 3 constraints (standard deviation 2.35, median 2, minimum 1,

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 221

Table 2
Cumulative distribution function of the time
needed to update the automaton

X (sec) % (CPU time � X)

0.01 31%

0.02 38%

0.03 43%

0.04 47%

0.05 50%

0.2 76%

0.3 84%

0.4 88%

0.5 95%

0.68 100%

Table 3
Cumulative distribution function of the time
needed to compute a restoration set

X (sec) % (CPU time � X)

0.01 90%

0.02 94%

0.1 99%

1.05 100%

Table 4
Cumulative distribution function of the full
size of the restoration set

X (# of constraints) % (size(S) � X)

1 30%

2 51%

3 62%

4 71%

5 76%

10 92%

15 96%

192 100%

maximum 21). To summarize, let us define the full size of a set S of restorations as the
sum of the cardinality of the restorations it contains (Size(S) = ∑

R∈S Card(R)). On our
experiment set, the average size of the sets S is 4.31 constraints (standard deviation 5.39,
median 2). The bigger S involved 192 constraints (the cumulative distribution function of
the size of the restoration set is given in Table 4).

6. Conclusion

Several authors [22,27,32,39] have proposed to extend the CSP framework so as to
handle configuration problems—the extension dealing mainly with the difficulties that
are inherent to the structure of configuration problems. The handling of another salient

222 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

feature of configuration problems, namely their interactivity, has prevailed on us to extend
the framework in another direction and to define “Assumption-based CSPs”. This led to
a direct extension to non Boolean domains of definitions and properties that are well-
known in the ATMS framework [17], e.g., nogoods, interpretations, explanations, etc. Of
course, a Boolean encoding of (finite domains) CSPs can be easily achieved in polynomial
time. However reducing a CSP to a CSP with Boolean constraints is definitely a bad
strategy in the general case. On the one hand, it is not viable from a computational
point of view. On the other hand, the Boolean encoding is difficult to understand and to
maintain by the user—a drawback that is prehibitory when user-driven processes, like the
interactive solving of a CSP, are considered. Moreover, the performances obtained on a
real configuration problem shows it practically useful, especially when compared with the
performances achieved via a Boolean encoding.

The requests considered in interactive configuration obviously correspond to problems
that are highly combinatorial. From a practical point of view, our approach consists in
pushing this cost into an off-line pre-computation step: the system works on a compilation
of the CSP under the form of an automaton (the size of which may be theoretically
exponential) but uses algorithms that are really efficient on this data structure (the worst
case complexity is linear in the size of the automaton). This approach takes advantage
of the fact that, in configuration problems, only a small set of constraints is subject to
dynamicity, and that these constraints are unary. It finds a justification in the fact that real
configurable products can actually be described concisely by automata. This is mainly due
to two factors: the frequent interchangeability of values and the fact that complex products
are typically structured into sub-components that are more or less independent from each
other.

The idea of compiling CSPs is not new. For instance, tree clustering [16] can be viewed
as an early proposal for CSP compilation. More recent works include Vempaty’s automata
[41], Moller’s arrays [28] and Weigel and Falting’s synthesis trees [42]. The data structures
and the requests offered in these approaches are different but in any case, the key idea is to
compile the set of solutions of a CSP and to run algorithms that require time polynomial in
the size of the compiled form. Our contribution here is not a new compilation technique for
CSPs since we used Vempaty’s automata in our work. What is new is the way in which we
then used the compiled form. Especially, we have shown that the set of computational tasks
that can be achieved in a tractable way from such automata is not limited to consistency
checking but includes more sophisticated tasks, like some of those supported by ATMSs.

The way we use Vempaty’s automaton [41] is actually close to the use of OBDD-like
structures in the handling of prime implicant/implicate and interpretations of a formula
(see [12] for seminal work, and [7,10] for some approaches close to ours). The principles
pertaining to the generation of a good (small) automaton are out of the scope of this
paper (see [41] for more details) but it should be noticed that this problem is close to
the generation of small OBDD-like structures. For instance, determining an ordering of the
variables that minimizes the size of the automaton is an NP-hard problem.

The algorithms given in the present paper have been implemented and tested on a quite
huge benchmark coming from a real application in car configuration. Concerning the off-
line phase, the time consumed by the compilation process (a few hours) is reasonable,
as well as the size of the resulting automaton (a few Mb). More importantly, concerning

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 223

the on-line step, the algorithms described in this paper have been successfully tested:
maintaining global consistency as well as computing restorations is immediate (less than
0.2 sec in more than 75% of the cases, less than 1.05 sec in any case). Accordingly,
these empirical results show the practical value of a compilation-based approach to
configuration. They also cohere with the experimental results reported in [6,37] showing
that compilation can prove helpful in practice for many instances of a class of problems,
even if this is not the case for the class of problems itself (i.e., in the worst case situation).

Further work will follow three main directions:
Empirical evaluation: Our approach successfully addresses our application to car

configuration, but it is quite difficult to draw general conclusions from a few instances.
An important issue lies in the design of a protocol for the empirical evaluation of our
algorithm, that (even less close to real problems) could enlighten the limits of the approach.
Such a protocol involves the definition of a generator of instances that satisfies our work
hypothesis (structuration and interchangeability) or more ideally that takes a degree of
structuration and a degree of interchangeability as input. Such a statistical tool would also
be useful for comparing the main forms of CSP compilation (automata, tree clustering,
synthesis trees).

Compilation of strongly structured CSPs: Our approach finds a justification in the fact
that real configurable products can be described concisely by an automaton. This is due
to two main factors: the frequent interchangeability of values and the fact that complex
products are structured into sub-components that are more or less independent from each
other. A more complete exploitation of the structural features of configurable products
should include the combination of the representation by automata with composite CSPs.
The second direction of research for the compilation of strongly structured CSPs consists
in mixing Vempaty’s automata with compilation procedures that are more oriented toward
the structure of the constraint graph, namely tree clustering and synthesis trees. The
next step in the compilation of CSP is undoubtedly the cross fertilization of existing
approaches.

Computation of explanations: In this paper, we did not present algorithms for computing
explanations and nogoods since this kind of information is generally less attractive than
restorations/interpretations in the context of a configuration task, 5 unless the number of
explanations is small and the number of restorations is large: in this case, it would be
interesting for the user to generate the restoration by herself through the selection of
one constraint per explanation. Anyway, the computation of nogoods and explanations
can be attractive for other applications, e.g., the design of configuration knowledge bases
[21,35] or constraint-based diagnosis [33]. If we accept to relax the requirements of
minimality and of completeness, an efficient approach can be based on the information
gathered by consistency enforcing algorithms, e.g., a trace of a filtering algorithm as in [24]
or the justifications maintained by dynamic filtering algorithms like DN-AC4, DN-AC6
[4,19].

5 Their main interest is generally . . . the generation of restorations/interpretations through the computation of
hitting sets, whereas the direct generation is generally cheaper as explained in Section 2.6.

224 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments.
They are also grateful to S. Coste-Marquis, B. Pargamin and M. Veron for their help. The
third author has been partly supported by the Région Nord/Pas de Calais, the IUT de Lens,
and the European Communities.

Appendix A

A.1. Proofs of Propositions 1–11

Proof of Proposition 1.
(i) ⇒ Let E be a consistent environment of C . Suppose that there exists a nogood Ei

such that E does not relax any constraint of Ei (i.e., (H \ E) ∩ Ei = ∅): all
the constraints of Ei are in E. Since Ei is inconsistent with C, so is also E:
contradiction. So, E being a consistent environment of C implies that E relaxes
at least one constraint per nogood.

(i) ⇐ Suppose that for every Ei ∈ N , (H \ E)∩ Ei �= ∅ and that E is not a consistent
environment: E is a conflict and thus a nogood is included in E. This is
not possible since E relaxes at least one constraint per nogood. Thus E is a
consistent environment.

(ii) ⇒ Let E be a conflict of C . Suppose that there exists an interpretation Ei such that
E does not include any constraint of H \ Ei (i.e., E ∩ (H \ Ei) = ∅): E ⊆ Ei .
Since Ei is a consistent environment, so is each of its subsets, and so is E.
This contradicts the hypothesis “E is a conflict”. So, for any interpretation Ei ,
E ∩ (H \ Ei) �= ∅.

(ii) ⇐ Suppose that for every Ei ∈ I,E ∩ (H \ Ei) �= ∅ and that E is not a conflict:
E is a consistent environment and is thus a subset of an interpretation Ei . Since
E∩ (H\Ei) �= ∅, we get E∩ (H\E) �= ∅. From this contradiction, we conclude
that E is a conflict. ✷

Proof of Proposition 2. Let Π = 〈X ,D,C,H〉 be an A-CSP.
• E is an explanation of L on 〈X ,D,C,H 〉 ⇒ 〈X ,D, (C ∪ {¬L})∪E〉 is inconsistent

and 〈X ,D,C ∪ E〉 is consistent ⇒ E is a conflict of 〈X ,D,C ∪ {¬L},H〉.
• E is a conflict of 〈X ,D,C ∪ {¬L},H〉 and 〈X ,D,C ∪H〉 is consistent ⇒ 〈X ,D,C ∪

{¬L} ∪ E〉 is inconsistent and 〈X ,D,C ∪ E〉 is consistent ⇒ E is an explanation of
L on 〈X ,D,C,H〉.

• E is a minimal explanation of L on 〈X ,D,C,H〉 ⇒ 〈X ,D, (C ∪ {¬L}) ∪ E〉 is
inconsistent and no E′ ⊂ E is an explanation of L ⇒ E is a conflict of 〈X ,D,C ∪
{¬L},H〉 and (∀E′ ⊂ E, 〈X ,D,C ∪ {¬L} ∪ E′〉 is consistent or 〈X ,D,C ∪ E′〉 is
inconsistent) ⇒ E is a conflict for 〈X ,D,C ∪ {¬L},H〉 and ∀E′ ⊂ E, 〈X ,D, (C ∪
{¬L}) ∪ E′〉 is consistent ⇒ E is a conflict for 〈X ,D,C ∪ {¬L},H〉 and ∀E′ ⊂ E,
E′ is not a conflict for 〈X ,D,C ∪ {¬L}〉 ⇒ E is a nogood for 〈X ,D,C ∪ {¬L}〉.

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 225

• E is a nogood 〈X ,D,C ∪{¬L} and 〈X ,D,C ∪H〉 is consistent ⇒ 〈X ,D,C ∪{¬L}∪
E〉 is inconsistent and there is no E′ ⊂ E such as 〈X ,D,C∪{¬L}∪E′〉 is inconsistent
and 〈X ,D,C ∪ E〉 is consistent ⇒ E is a minimal explanation of L.

• E is a restoration of L on 〈X ,D,C,H〉 ⇒ 〈X ,D, (C ∪ {L}) ∪ E〉 is consistent ⇔ E

is a consistent environment of 〈X ,D,C ∪ {L},H〉.
• E is a minimal restoration of L on 〈X ,D,C,H〉 ⇒ 〈X ,D, (C∪{L})∪E〉 is consistent

and ∀E′ ⊃ E 〈X ,D, (C ∪ {L}) ∪ E′〉 is inconsistent ⇒ E is an interpretation of
〈X ,D,C ∪ {L},H〉. ✷

Proof of Proposition 3. Easy consequence of Propositions 2 and 1. ✷
Proof of Proposition 4. Easy from the fact that E′ � E ⇒ φ(E′) > φ(E) when (i)
φ(A) = ∑

H∈H\A φ(H) and (ii) φ differs from 0 and from +∞ (since φ(H) is a non-
null integer for every assumption H of H). ✷
Proof of Proposition 5. Easy from the three following remarks:

• ∀E, φ(E) = ∑
H∈H\E φ(H) = φ′(〈X ,D,C ∪E〉).

• E is a consistent environment of Π iff 〈X ,D,C ∪ E〉 is consistent iff 〈X ,D,C ∪ E〉
is a relaxation of the valued CSP (X ,D,C ∪ H, 〈N ∪ {+∞},>,+〉, φ′).

• φ′(〈X ,D,C ∪E〉) �= +∞ since it relaxes only constraints on H, i.e., constraints such
that φ′ �= +∞. ✷

Proof of Proposition 6.
(a) A path p from I to F defines a assignment s of X that is a solution of 〈X ,D,C〉.

Let us denote E the subset of H satisfied by s. Since s satisfies E and C , E is a
consistent environment. Now, since the cost of p is equal to sum of the valuations of
the subset of constraints in H that are violated by s, i.e., of the constraints of H \E,
it holds that φ(E) = cost(p).

(b) Conversely, if E is a consistent environment, then there is a solution s of 〈X ,D,C〉
that satisfies at least all the constraints in E. Since all the solutions of 〈X ,D,C〉
are represented by the automaton, to s corresponds a path p. Let us denote F

the subset of constraints of H violated by s. It holds that (i) F ⊆ H \ E and (ii)
cost(p) = ∑

H∈F φ(H). Since F ⊆ H \ E,
∑

H∈F φ(H) �
∑

H∈H\E φ(H), i.e.,
cost(p) � φ(E).

(c) A path p from I to F that supports L defines a complete assignment of X , that is a
solution s of 〈X ,D,C〉 that satisfies L. Let F be the set of constraints in H that are
violated by s. Since s satisfies C and H \F , E = H \ F is a restoration of L on Π .
Since cost(p)

∑
H∈F φ(H), cost(p) = φ(E).

(d) If E is a restoration of L, then there is a solution s of 〈X ,D,C〉 that satisfies L

and all the constraints in E. Since all the solutions of 〈X ,D,C〉 are represented
by the automaton, to s corresponds a path p which supports L. Let us denote F

the subset of constraints of H violated by s. It holds that (i) F ⊆ H \ E and (ii)
cost(p) = ∑

H∈F φ(H). Since F ⊆ H \ E,
∑

H∈F φ(H) �
∑

H∈H\E φ(H), i.e.,
cost(p) � V (E). ✷

226 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

Proof of Proposition 7.
(a) ⇒ Let p be a minimal path from I to F : for any path p ′, cost(p)� cost(p′). From

Proposition 6, there exists a consistent environment E such that cost(p) = φ(E).
Let us prove that E is V -optimal. Consider any consistent environment E′. From
Proposition 6, there exists a path p ′ from I to F with cost(p′) � φ(E′). Thus
φ(E) = cost(p) � cost(p′) � φ(E′): for any E′, φ(E) � φ(E′), i.e., E is a V -
interpretation.
⇐ Let E be a V -consistent environment. From Proposition 6, there exists a path
p from I to F with cost cost(p) � φ(E). Let us prove that it is minimal: suppose
that there is another path p ′ such that cost(p′) < cost(p). From Proposition 6, this
means that there is a consistent environment E′ such that cost(p′) = φ(E′), i.e.,
φ(E′) = cost(p′) < cost(p) � φ(E); hence, E is not V -optimal. Hence, such a
path p ′ does not exist: p is minimal.

(b) Comes from Proposition 6: if there is a path from I to F with cost 0, then there
exists a consistent environment E such that φ(E) = 0, i.e.,

∑
H\E φ(H) = 0.

Since it is assumed that no constraint has a null valuation, it holds that E = H,
i.e., H is not a conflict. Conversely, if H is not a conflict, then it is a consistent
environment. Thus, from Proposition 6, there exists a path p from I to F such that
cost(p)�

∑
H\H φ(H) = 0: cost(p) = 0.

(c) If the assignment d of Xi is supported by an edge involved in a path of cost zero,
then this assignment is involved in a solution of 〈X ,D,C〉 that satisfies all the
constraints of H (assuming that no constraint has a null valuation), i.e., d ∈ PXi .
Conversely, the automaton represents all the solutions of 〈X ,D,C〉. Hence, if
every path that supports the assignment has a positive cost, then every solution
of 〈X ,D,C〉 violates at least one constraint of H, i.e., d does not belong to PXi .

(d) Similar to the proof of item (a) (based on items (c) and (d) of Proposition 6 rather
than of items (a) and (b)). ✷

Proof of Proposition 8.
• cost(q) is the cost of the minimal path from I to F through q. It is thus equal to the

cost of the minimal path from I to q plus the cost of the minimal path from q to F ,
i.e., to cl(q)+ cr (q);

• cost(a) is the cost of the minimal path from I to F through a. It is thus equal to the
cost of the minimal path from I to the origin of a plus the cost of the minimal path
from the extremity of a plus φ(a), i.e. to cl(in(a))+ φ(a)+ cr(out(a)). ✷

Proof of Proposition 9.
(a) Direct from Definition 10, since cl(F) is the minimal cost of the paths from I to F ,

and cr (I) is the minimal cost of the paths from I to F .
(b) Easy from (a) and Proposition 7(b). ✷

Proof of Proposition 10. cnt[Xi , d] is the number of edges that (i) support the assignment
Xi := d and (ii) belong to a path of cost 0 from I to F . So there is a path of cost 0 that
support d for Xi iff cnt(Xi, d) > 0.

Since d ∈ PXi iff there is an edge a that supports d for Xi and a belongs to a path of
cost zero from I to F (Proposition 7(c)), we have d ∈ PXi iff cnt(Xi, d) > 0. ✷

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 227

Proof of Proposition 11. We prove only (a) (the proof of (b) is similar). Since
cr(F) = 0 by definition, the proposition holds when the path reduces only to one edge
a: cr (q) = Mina,in(a)=q(cr (F) + φ(a)) = Mina,in(a)=q(φ(a)). Thus cr(q) = φ(a) iff
φ(a)= cost((q,F)) is minimal.

Suppose now that proposition (a) holds for the paths of k edges. Consider a path p of
k + 1 edges for a q to F , let a1 be the first of these edges and p ′ be the subpath from
out(a1) to F .

⇒ If p is of minimal cost among the paths from q to F , Mina′,in(a′)=q(cr(out(a′)) +
φ(a′) = cr (out(a1)) + φ(a1), thus cr (in(a1)) = φ(a1) + cr (out(a1)). Since p ′ is minimal
among the paths from out(a) to F , the property cr(in(a)) = φ(a) + cr (out(a)) holds by
induction.

⇐ Suppose that, for each edge a of p, cr(in(a)) = φ(a) + cr (out(a)). From cr(q) =
Mina,in(a)=q(cr (out(a)) + φ(a)) = cr(out(a1)) + φ(a1) we deduce that the minimal path
from q to F begins by edge a1. Now, by induction, we know that p ′ is of minimal cost
among the paths from out(a1) to F . So p is minimal among the paths from q to F . ✷
A.2. Complexity proofs

A.2.1. Background
We assume familiarity with basic notions of computational complexity theory (see, e.g.,

[29] for a survey).
The class of all languages (encoding decision problems) that can be recognized in

polynomial time by a nondeterministic Turing machine is denoted by NP. Among all
the problems in NP, the hardest ones are those from which every problem in NP can be
polynomially many-one reduced: such problems are referred to as NP-complete. If any of
them has a polynomial algorithm, then P = NP holds. Accordingly, it is believed that
it is impossible to solve NP-complete problems in polynomial time. SAT, the problem
in determining whether a propositional formula is satisfiable, is the prototypical NP-
complete problem. Its complementary problem UNSAT (consisting of determining whether
a propositional formula is unsatisfiable) is not necessarily in NP (in contrast to P, NP is not
known to be closed under complementation). It is assigned to the class coNP that contains
the complementary problems to problems of NP.

To go further into the classification of non-efficiently solvable problems, an important
tool is the notion of Turing machine (deterministic or nondeterministic) with oracle. Let X
be a class of decision problems. PX (respectively NPX) is the class of all decision problems
that can be solved in polynomial time using a deterministic (respectively nondeterministic)
Turing machine that can use an oracle for deciding a problem Q ∈ X for “free” (i.e., within
a constant, unit time).

On this ground, the complexity class �
p

2 is defined by �
p

2 = NPNP. The hardest
problems of this class are referred to as �p

2 -complete problems. Among them is the validity
problem 2-QBF∃ that consists in determining whether a given quantified boolean formula
of the form ∃A ∀B Σ is valid (where Σ is any formula from PROPPS or even a formula in
disjunctive normal form—DNF—and {A,B} is a partition of Var(Σ)).

In order to discriminate further among the problems from)
p

2 = PNP, one can focus
on the number of calls to an NP oracle that are used. Thus, the complexity class BH2 is

228 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

defined by BH2 = {L1 ∩ L̄2 | L1 ∈ NP, L2 ∈ NP}. The membership to any language of
BH2 can be determined using only two calls to an NP oracle. The hardest problems of this
class are referred to as BH2-complete problems. Among them is the SAT-UNSAT problem
that consists in determining, given a pair 〈Φ,Ψ 〉 of propositional formulas in conjunctive
normal form (CNF), whether Φ is satisfiable and Ψ is unsatisfiable.

A.2.2. How the proofs work
The membership proofs only assume that checking whether a given assignment s is a

solution of a given CSP can be done in time polynomial in the input size (this is the unique
restriction that we put on the finite set of constraints C over X).

The hardness proofs rely on two principles:
• First, the transformation of a k-CNF Σ into a binary CSP CSP(Σ) = 〈X,D,C〉 [3]:

the idea is to associate to each clause ci of Σ a variable xi such that the domain Di

of xi is the set of literals of ci . A constraint Ci,j between two variables xi and xj
associated to two clauses ci and cj is created if the clause ci contains a literal and
cj is complement. The relation R(Ci,j) is defined by the cartesian product Di × Dj

minus the tuples (li, lj) such that li is the negation of lj . Bennaceur [3] has shown that
this transformation is polynomial and that Σ is satisfiable iff CSP(Σ) is consistent.

• Secondly, the definition of an A-CSP from a CNF Σ and a set of literals Θ =
{l1, . . . , lm}. Σ is the static part of the A-CSP and Θ its dynamic part. First, we
generate a trivial CNF Λ from the literals of Θ: for each of li of Θ , the clause ¬li ∨ li
is considered in Λ. Obviously, Σ is equivalent to Σ ∪ Λ. Then, define the A-CSP
Acsp(Σ,Θ) = 〈X ,D,C,H〉 as follows: 〈X ,D,C〉 = CSP(Σ ∪ Λ) is Bennaceur’s
encoding and H is a set {H(l1), . . . ,H (lm)} of unary constraints such that, for each
literal li of Θ , V (H(li)) is the variable encoding the clause ¬li ∨ li of Λ and
R(H(li)) = {li}. Let {l1, . . . , lk} be any subset of Θ . It holds that: Σ ∧ l1 ∧ · · · ∧ lk
is satisfiable (respectively unsatisfiable) iff E = {H(l1), . . . ,H (lk)} is a consistent
environment (respectively a conflict) for Acsp(Σ,Θ).

Notice also that:
• 〈X ,D,H〉 involves unary constraints only.
• 〈X ,D,H〉 is consistent.
• Since Σ ∪ Λ is equivalent to Σ , 〈X ,D,C〉 is consistent iff Σ is satisfiable.

As a consequence, each of the following proofs remain valid under the first two
assumptions related to configuration problems: 〈X ,D,H〉 is consistent and H contains
only unary contraints. All of them are valid when the constraints L to restore or to explain
are unary. Most of them also remain valid when 〈X ,D,C〉 is assumed to be consistent
(except (6)).

A.2.3. Complexity proofs: Conflicts
(1) Given Π = 〈X ,D,C,H 〉 and E ⊆ H , is E a conflict for Π?

– Membership to coNP: We consider the complementary problem. E is not a
conflict for P iff 〈X,D,C ∪ E〉 is consistent. This can be easily checked in
nondeterministic polynomial time (it is sufficient to guess an assignment over
X and to check in polynomial time that it is a solution).

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 229

– Hardness: Reduction from UNSAT. Let Φ be a CNF formula. We define the
formula M = (new∨ Φ) where new is a new variable (not belonging to
Var(Φ)). M is satisfiable and it can be polynomially transformed into an
equivalent CNF M ′. It can be checked that Φ is unsatisfiable iff ¬new∧ M ′ is
unsatisfiable. Consider the A-CSP Acsp(M ′, {¬new}): ¬new∧M ′ is unsatisfiable
iff {H(¬new)} is a conflict for Acsp(M ′, {¬new}). Since M ′ is satisfiable, the
proof also holds under the restriction of a consistent set of constraints C .

(2) Given Π = 〈X,D,C,H 〉 and E ⊆ H , is E a nogood for Π?
– Membership to BH2: We check that 〈X,D,C ∪ E〉 is inconsistent (one incon-

sistency check) and independently, we check that 〈X,D,C ∪ (E \ {e})〉 is con-
sistent for every e ∈ E. All these consistency checks can be encoded in polyno-
mial time into a single consistency check. Indeed, C ∪ (E \ {e}) is consistent for
every e ∈ E iff the constraint

∧
e∈E rename(C ∪ (E \ {e})) is inconsistent (here,

each rename(C ∪ (E \ {e})) is a uniform renaming of the variables occurring in
C ∪ (E \ {e}) into new variables). Hence, one inconsistency check plus one con-
sistency check are sufficient to test whether E is a nogood for Π , which shows
the membership to BH2.

– Hardness: Reduction from SAT-UNSAT. Let Φ , Ψ be two CNF formulas. We de-
fine the formula M = (¬new1 ∨ Φ) ∧ (¬new1 ∨ ¬new2 ∨ rename(Ψ)) where
new1 and new2 are new variables (not belonging to Var(Φ) ∪ Var(rename(Ψ))),
and rename(Ψ) is a uniform renaming of the variables of Ψ (into new variables,
not occurring in Var(Φ)). M is satisfiable and it can be polynomially transformed
into an equivalent CNF M ′. It can be checked that new2 ∧M ′ is satisfiable. More-
over, Φ is satisfiable and Ψ is unsatisfiable iff new1 ∧ new2 ∧ M ′ is unsatisfi-
able and new1 ∧ M ′ is satisfiable. Consider the A-CSP Acsp(M ′, {new1,new2}).
It holds that new1 ∧ new2 ∧ M ′ is unsatisfiable and new1 ∧ M ′ is satisfiable iff
{H(new1),H(new2)} is a nogood for Acsp(M ′, {new1,new2}). Since M ′ is satis-
fiable, the proof holds under the restriction of a consistent set of constraints C .

(3) Given Π = 〈X,D,C,H 〉, is there a conflict for Π?
– Membership to coNP: We consider the complementary problem. There is no

conflict for Π iff 〈X,D,C ∪ H 〉 is consistent, which can be checked easily in
nondeterministic polynomial time.

– Hardness: Reduction from UNSAT. Let Φ be a CNF formula. We define the
formula M = (new∨Φ) where newis a new variable (not belonging to Var(Φ)).
M is satisfiable and it can be polynomially transformed into an equivalent CNF
M ′. It can be checked that Φ is unsatisfiable iff ¬new∧ M ′ is unsatisfiable.
Consider the A-CSP Acsp(M ′, {¬new}): since M ′ is satisfiable, the static part
of the A-CSP is consistent; thus {¬new} is the only potential conflict. Hence
¬new∧ M ′ is unsatisfiable iff there is a conflict for Acsp(M ′, {¬new}). Since
M ′ is satisfiable, the proof also holds under the restriction of a consistent set of
constraints C .

230 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

A.2.4. Complexity proofs: Consistent environments
(4) Given Π = 〈X,D,C,H 〉 and E ⊆ H , is E a consistent environment for Π?

– Membership to NP: Trivial consequence of the fact that testing whether E is a
restoration of L on Π is in NP since E is a consistent environment for Π iff E is
a restoration of true (the constraint always satisfied) on Π .

– Hardness: Direct consequence of the fact that E is a consistent environment for
Π iff E is not a conflict for Π and the coNP-hardness proof above (1).

(5) Given Π = 〈X,D,C,H 〉 and E ⊆ H , is E an interpretation of Π?
– Membership to BH2: It is sufficient to check that E is consistent for Π (one

consistency check), and independently to check that 〈X,D,C ∪ E ∪ {h}〉 is
inconsistent for every h ∈ H \ E. All these inconsistency checks can be encoded
in polynomial time into a single inconsistency check. Indeed, C ∪ E ∪ {h}〉 is
inconsistent for every h ∈ H \E iff the constraint

∨
h∈H\E rename(C ∪E ∪ {h})

is inconsistent (here, each rename(C ∪ E ∪ {h}) is a uniform renaming of the
variables occurring in C ∪ E ∪ {h} into new variables). Hence, one consistency
check plus one inconsistency check are sufficient to test whether E is a maximal
consistent environment of Π , which shows the membership to BH2.

– Hardness: Reduction from SAT-UNSAT. Let Φ , Ψ be two CNF formulas. We
define the formula M = (¬new1 ∨ Φ) ∧ (¬new2 ∨ rename(Ψ)) where new1
and new2 are new variables (not belonging to Var(Φ) ∪ Var(rename(Ψ))),
and rename(Ψ) is a uniform renaming of the variables of Ψ (into new
variables, not occurring in Var(Φ)). M is satisfiable and it can be polynomially
transformed into an equivalent CNF M ′. It can be checked that Φ is satisfiable
and Ψ is unsatisfiable iff new1 ∧ M ′ is satisfiable and new1 ∧ new2 ∧ M ′
is unsatisfiable. Consider the A-CSP Acsp(M ′, {new1,new2}); new1 ∧ M ′ is
satisfiable and new1 ∧new2 ∧M ′ is unsatisfiable iff {H(new1)} is an interpretation
of Acsp(M ′, {new1,new2}). Since M ′ is satisfiable, the proof also holds under the
restriction of a consistent set of constraints C .

(6) Given Π = 〈X,D,C,H 〉, is there a consistent environment for Π?
– The problem is trivial if C is assumed to be consistent (in this case, ∅ is a trivial

consistent environment). It is NP-complete otherwise:
– Membership to NP: A consistent environment for Π exists iff 〈X,D,C〉 is

consistent, which can be easily checked in nondeterministic polynomial time.
– Hardness: Reduction from SAT. Let Σ be a CNF. Σ is a satisfiable CNF iff the en-

coding of Σ by a CSP is consistent iff Acsp(Σ, {}) has a consistent environment.

A.2.5. Complexity proofs: Explanations
(7) Given Π = 〈X,D,C,H 〉, E ⊆ H , and L, is E an explanation of L on Π (general

case)?
– Membership to BH2: E is an explanation of L on Π iff 〈X,D,C ∪ E〉 is

consistent and 〈X,D,C ∪ E ∪ {¬L}〉 is inconsistent. Hence, one inconsistency
check plus one consistency check are sufficient to test whether E is an
explanation of L on Π , which shows the membership to BH2.

– Hardness: Reduction from SAT-UNSAT. Let Φ , Ψ be two CNF formulas.
We define the formula M = (¬new1 ∨ Φ) ∧ (¬new1 ∨ ¬new2 ∨ rename(Ψ))

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 231

where new1 and new2 are two new variables (not belonging to Var(Φ) ∪
Var(rename(Ψ))), and rename(Ψ) is a uniform renaming of the variables of
Ψ (into new variables, not occurring in Var(Φ)). M is satisfiable and it can
be polynomially transformed into an equivalent CNF M ′. It can be checked
that Φ is satisfiable and Ψ is unsatisfiable iff new1 ∧ M is satisfiable and
new1 ∧ M ∧ new2 is unsatisfiable. Consider the A-CSP Acsp(M ′, {new1}), and
a variable Xi of this CSP such that ¬new2 is a value of its domain. new1 ∧ M

is satisfiable and new1 ∧ M ∧ new2 is not iff H(new1) is an explanation of the
unary constraint “Xi = ¬new2”.

(7b) Given C , E ⊆ H , and L, is E an explanation of L on Π?
This problem is “only” coNP-complete when 〈X,D,C ∪ H 〉 is known as
consistent.
– Membership to coNP: We consider the complementary problem. E is not an

explanation of L on Π iff C ∪ E is inconsistent or C ∪ E ∪ {¬L} is consistent.
Since C ∪ H is assumed consistent, it is also the case that C ∪ E is consistent
since E ⊆ H . Accordingly, E is not an explanation of L on Π iff C ∪E ∪ {¬L}
is consistent, which can be easily checked in nondeterministic polynomial time
(just guess an assignment and check that it is a solution of C ∪ E ∪ {¬L}).

– Hardness: Reduction from UNSAT. Let Φ be a CNF formula. We define the
formula M = (new∨Φ) where newis a new variable (not belonging to Var(Φ)).
M is satisfiable and it can be polynomially transformed into an equivalent CNF
M ′. It can be checked that Φ is unsatisfiable iff ¬new∧ M ′ is unsatisfiable.
Consider the A-CSP C = Acsp(M ′, {}). Since M ′ is satisfiable, 〈X,D,C ∪ H 〉
is consistent. Consider a variable Xi of this CSP such that new is a value of
its domain. ¬new∧ M ′ is unsatisfiable iff {} is an explanation of the constraint
“Xi = ¬new”.

(8) Given Π = 〈X,D,C,H 〉, E ⊆ H , and L, is E a minimal explanation of L on Π?
– Membership to BH2: E a minimal explanation of L on Π iff C∪E is consistent,
C ∪ E ∪ {¬L} is inconsistent and for every e ∈ E, C ∪ (E \ {e}) ∪ {¬L} is
consistent. In order to check whether C ∪ E is consistent and for every e ∈ E,
C ∪ (E \ {e}) ∪ {¬L} is consistent, it is sufficient to check the consistency
of the constraint C ∧ E ∧ ∧

e∈E rename(C ∪ (E \ {e}) ∪ {¬L}) (here, each
rename(C ∪ (E \ {e})∪ {¬L}) is a uniform renaming of the variables occurring
in C∪ (E \{e})∪{¬L} into new variables). Hence, one inconsistency check plus
one consistency check are sufficient to test whether E is a minimal explanation
of L on Π , which shows the membership to BH2.

– Hardness: The hardness proof given above (7) still holds here since ∅ is an
explanation of L on Π iff it is a minimal explanation of L on Π .

(9) Given Π = 〈X,D,C,H 〉 and L, is there an explanation of L on Π?
– Membership to �

p

2 : Here is a polynomial time nondeterministic algorithm using
an NP oracle that is sufficient to determine whether an explanation of L on Π

exists. Guess a subset E of H , and check that E is an explanation of L on Π .
As shown above (7), this can be achieved using only two calls to an NP oracle
(one consistency check plus one inconsistency check).

232 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

– Hardness: Reduction from 2-QBF∃. Let ∃A ∀B Σ be a quantified boolean
formula s.t. {A,B} is a partition of Var(Σ) and Σ is a DNF formula.
Let ∆ = {a1,¬a1, . . . , an,¬an} be the set of all the literals built up on A.
∃A ∀B Σ holds iff ∃∆′ ⊂ ∆ such that ∆′ ∧ ¬Σ is unsatisfiable and ∆′ is
satisfiable. Now, let M = new∨ ¬Σ where newis a new variable (not belonging
to Var(Σ)). M is satisfiable. Since Σ is a DNF and thus ¬Σ a CNF, M can be
polynomially transformed into an equivalent CNF M ′. It holds that ∆′ ∧ ¬Σ is
unsatisfiable and ∆′ is satisfiable iff ∆′ ∧M ∧ ¬newis unsatisfiable and ∆′ ∧M

is satisfiable. Consider the A-CSP Acsp(M ′,∆), and a variable Xi of this CSP
such that newis a value of its domain.∆′ ∧M∧¬newis unsatisfiable and ∆′ ∧M

satisfiable iff there is an explanation of the unary constraint “Xi = new”. Thus
Φ is satisfiable and Ψ is unsatisfiable iff there is an explanation of the unary
constraint “Xi = new”.

A.2.6. Complexity proofs: Restorations
(10) Given Π = 〈X,D,C,H 〉, E ⊆ H , and L, is E a restoration of L on Π?

– Membership to NP: Here is a polynomial time nondeterministic algorithm for
checking whether E is a restoration of L on Π . Guess an assignment over X
and check in polynomial time that it is a solution of C ∪E ∪ {L}.

– Hardness: Direct consequence of the NP-hardness of the restricted case of
checking whether E is a consistent environment for Π (item (4)).

(11) Given Π = 〈X,D,C,H 〉, E ⊆ H , and L, is E a maximal restoration of L on Π?
– Membership to BH2: It is sufficient to check that E is a restoration of L on
Π (one consistency check), and independently to check that 〈X,D,C ∪ E ∪
{L} ∪ {h}〉 is inconsistent for every h ∈ H \ E. All these inconsistency checks
can be encoded in polynomial time into a single inconsistency check. Indeed,
C ∪ E ∪ {L} ∪ {h}〉 is inconsistent for every h ∈ H \ E iff the constraint∨

h∈H\E rename(C ∪E ∪ {L} ∪ {h}) is inconsistent (here, each rename(C ∪E ∪
{L} ∪ {h}) is a uniform renaming of the variables occurring in C ∪E ∪ {L} ∪ {h}
into new variables). Hence, one consistency check plus one inconsistency check
are sufficient to test whether E is a maximal restoration of L on Π , which shows
the membership to BH2.

– Hardness: Direct consequence of the BH2-hardness of the restricted case of
checking whether E is an an interpretation for Π (item (5)).

(12) Given Π = 〈X,D,C,H 〉 and L, is there a restoration of L on Π?
– The problem is trivial when 〈X,D,C ∪ {L}〉 is assumed to be consistent (∅ is a

restoration of L). It is NP-complete otherwise:
– Membership to NP: A restoration of L on Π exists iff 〈X,D,C ∪ {L}〉 is

consistent, which can be easily checked in nondeterministic polynomial time.
– Hardness: Reduction from SAT. Let Φ be a CNF formula. We define the formula
M = (new∨ Φ) where new is a new variable (not belonging to Var(Φ)). M is
satisfiable and it can be polynomially transformed into an equivalent CNF M ′.
It can be checked that Φ is satisfiable iff ¬new∧ M ′ is satisfiable. Consider the
A-CSP Acsp(M ′, {}), and a variable Xi of this CSP such that newis a value of

J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234 233

its domain. ¬new∧ M ′ is satisfiable iff there is a restoration of the constraint
“Xi �= new”.

References

[1] K.S. Brace, R.L. Rudell, R.E. Bryant, Efficient implementation of a BDD package, in: Proc. 27th
ACM/IEEE Design Automation Conference, Orlando, FL, 1990, pp. 40–45.

[2] R.E. Bryant, Graph based algorithms for boolean function manipulation, IEEE Trans. Comput. 35 (8) (1986)
677–692.

[3] H. Bennaceur, The satisfiability problem regarded as a constraint satisfaction problem, in: Proc. ECAI-96,
Budapest, Hungary, 1996, pp. 155–159.

[4] C. Bessière, Arc-consistency for dynamic constraint satisfaction problems, in: Proc. AAAI-91, Anaheim,
CA, 1991, pp. 221–227.

[5] C. Bessière, Arc-consistency for non-binary dynamic CSPs, in: Proc. ECAI-92, Vienna, Austria, 1992,
pp. 23–27.

[6] Y. Boufkhad, E. Grégoire, P. Marquis, B. Mazure, L. Saïs, Tractable cover compilations, in: Proc. IJCAI-97,
Nagoya, Japan, 1997, pp. 122–127.

[7] F. Bouquet, P. Jégou, Solving over-constrained CSP using weighted OBDDs, in: Proc. Over-Constrained
Systems, Lecture Notes in Computer Science, Vol. 1106, Springer, Berlin, 1996, pp. 293–308.

[8] M. Cadoli, F.M. Donini, A survey on knowledge compilation, AI Comm. 10 (1997) 137–150.
[9] T. Castell, Computation of prime implicates and prime implicants by a variant of the Davis and Putnam

procedure, in: Proc. ICTAI-96, Toulouse, France, 1996, pp. 428–429.
[10] C. Cayrol, M.C. Lagasquie-Schiex, T. Schiex, Nonmonotonic reasoning: From complexity to algorithms,

Ann. Math. Artificial Intelligence 22 (3–4) (1998) 207–236.
[11] E. Charniak, S.E. Shimony, Probabilistic semantics for cost-based abduction, in: Proc. AAAI-90, Boston,

MA, 1990, pp. 106–111.
[12] O. Coudert, J.-C. Madre, A logically complete reasoning maintenance system based on a logical constraint

solver, in: Proc. IJCAI-91, Sydney, Australia, 1991, pp. 294–299.
[13] A. Darwiche, Compiling devices into decomposable negation normal form, in: Proc. IJCAI-99, Stockholm,

Sweden, 1999, pp. 284–289.
[14] R. Dechter, A. Dechter, Belief maintenance in dynamic constraint networks, in: Proc. AAAI-88, St. Paul,

MN, 1988, pp. 37–42.
[15] R. Dechter, A. Dechter, Structure-driven algorithms for truth maintenance, Artificial Intelligence 82 (1996)

1–20.
[16] R. Dechter, J. Pearl, Tree clustering schemes for constraint-processing, Artificial Intelligence 38 (3) (1989)

353–366.
[17] J. de Kleer, An assumption-based TMS, Artificial Intelligence 28 (1986) 127–167.
[18] A. del Val, Tractable databases: How to make propositional unit resolution complete through compilation,

in: Proc. KR-94, Bonn, Germany, 1994, pp. 551–561.
[19] R. Debruyne, Arc-consistency in dynamic CSPs is no more prohibitive, in: Proc. ICTAI-96, Toulouse,

France, 1996, pp. 299–306.
[20] T. Eiter, G. Gottlob, The complexity of logic-based abduction, J. ACM 42 (1995) 3–42.
[21] A. Falfernig, G. Friedrich, D. Jannach, M. Stumptner, Consistency-based diagnosis of configuration

knowledge bases, in: Proc. ECAI-2000, Berlin, 2000, pp. 146–150.
[22] E. Gelle, R. Weigel, Interactive configuration using constraint satisfaction techniques, in: Proc. Artificial

Intelligence and Manufacturing Research Planning Workshop, AAAI Technical Report FS-96-03, 1996,
pp. 37–44.

[23] J.R. Hobbs, M.E. Stickel, D.E. Appelt, P. Martin, Interpretation as abduction, Artificial Intelligence 63
(1993) 69–142.

[24] N. Jussien, O. Lhomme, Dynamic domain splitting for numeric CSP, in: Proc. ECAI-98, Brighton, UK,
1998, pp. 224–228.

234 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199–234

[25] L. Lobjois, G. Verfaillie, Problèmes incohérents: Expliquer l’incohérence, restaurer la cohérence, in: Actes
de JNPC-99, 1999, pp. 111–120.

[26] P. Marquis, Knowledge compilation using theory prime implicates, in: Proc. IJCAI-95, Montreal, Quebec,
1995, pp. 837–843.

[27] S. Mittal, F. Frayman, Dynamic constraint satisfaction problems, in: Proc. AAAI-90, Boston, MA, 1990,
pp. 25–32.

[28] G. Moller, On the technology of array based logic, Ph.D. Dissertation, Technical University of Denmark,
1995.

[29] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[30] D. Poole, Probabilistic Horn abduction and Bayesian networks, Artificial Intelligence 64 (1993) 81–129.
[31] R. Reiter, J. de Kleer, Foundations of assumption-based truth maintenance systems: Preliminary report, in:

Proc. AAAI-87, Seattle, WA, 1987, pp. 183–188.
[32] D. Sabin, E.C. Freuder, Configuration as composite constraint satisfaction, in: Proc. Artificial Intelligence

and Manufacturing Research Planning Workshop, AAAI Technical Report FS-96-03, 1996, pp. 28–36.
[33] D. Sabin, M. Sabin, R.D. Russell, E.C. Freuder, A constraint-based approach to diagnosing software

problems in computer networks, in: Proc. CP-95, Lecture Notes in Computer Science, Vol. 976, 1995,
pp. 463–480.

[34] D. Sabin, R. Weigel, Product configuration frameworks—A survey, IEEE Intelligent Systems Appl. 13 (4)
(1998) 42–49.

[35] M. Sabin, E.C. Freuder, Detecting and resolving inconsistency in conditional constraint satisfaction
problems, in: Proc. AAAI-99 Workshop on Configuration, Orlando, FL, 1999, pp. 90–94.

[36] T. Schiex, H. Fargier, G. Verfaillie, Valuated constraint satisfaction problems: Hard and easy problems, in:
Proc. IJCAI-95, Montreal, Quebec, 1995, pp. 631–637.

[37] R. Schrag, Compilation for critically constrained knowledge bases, in: Proc. AAAI-96, Portland, OR, 1996,
pp. 510–515.

[38] B. Selman, H.A. Kautz, Knowledge compilation and theory approximation, J. ACM 43 (1996) 193–224.
[39] T. Soininen, E. Gelle, Dynamic constraint satisfaction in configuration, in: Proc. AAAI-99 Workshop on

Configuration, Orlando, FL, 1999, pp. 95–100.
[40] M. Stumptner, An overview of knowledge-based configuration, AI Comm. 10 (1997) 111–125.
[41] N.R. Vempaty, Solving constraint satisfaction problems using finite state automata, in: Proc. AAAI-92, San

Jose, CA, 1992, pp. 453–458.
[42] R. Weigel, Compiling constraint satisfaction problems, Artificial Intelligence 115 (1999) 257–287.

