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Abstract

Most of the algorithms developed within the Constraint Satisfaction Problem (CSP) framework
cannot be used as such to solve interactive decision support problems, like product configuration.
Indeed, in such problems, the user isin charge of assigning values to variables. Global consistency
maintaining isonly one among several functionalitiesthat should be offered by a CSP-based platform
in order to help the user in her task; other important functionalities include providing explanations
for some user’s choices and ways to restore consistency.

This paper presents an extension of the CSP framework in this direction. The key idea consistsin
considering and handling the user’s choices as assumptions. From a theoretical point of view, the
complexity issues of various computational tasks involved in interactive decision support problems
are investigated. The results cohere with what is known when Boolean constraints are considered
and show al the tasks intractable in the worst case. Since interactivity requires short response
times, intractability must be circumvented some way. To this end, we present a new method for
compiling configuration problems, that can be generalized to valued CSPs. Specifically, an automaton
representing the set of solutions of the CSP is first computed off-line, then this data structure is
exploited so as to ensure both consistency maintenance and computation of maximal consistent
subsets of user’s choices in an efficient way. 0O 2001 Published by Elsevier Science B.V.
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1. Introduction

Constraint programming techniques are widely used to model and solve decision
problems. Many algorithms developed in this area aim at solving automatically some
families of CSPs. Accordingly, they do not help solving decision support problems that
are interactive in essence. For such problems, the user herself is in charge of the choice
of values for variables and the role of the system is not to solve a CSP, but to help the
userin this task. Product configuration [34,40] is a typical example of such problems:
a configurable product is defined by afinite set of components, options, or more generally
by aset of attributes, the values of which have to be chosen by the user. These values must
satisfy afinite set of configuration constraintsthat encode the feasibility of the product, the
compatibility between components, their availability, etc. At afirst glance, 1 aconfigurable
product can be represented by means of a CSP, the solutions of which represents the
catalog, i.e., dl the variants of the product that are feasible.

When configuring a product, the user specifies her requirements by interactively giving
values to variables or more generally by stating some unary constraints that restrict the
possible values of the decision variables. An important feature of interactive configuration
is that such constraints do not have the same status than initia configuration constraints
but can be removed during the configuration process because they lead to a solution
that is judged not acceptable by the user. Furthermore, all the user’s choices do not
necessarily have the same importance, but may be subject to preferences (for instance,
when configuring acar, requirementsdealing with the type of engine can be moreimportant
than those concerning the color of the car). Now each time a new choice is made, the
domains of the variables must be pruned so as to ensure that the values available for the
further variables can lead to a feasible product (i.e., a product satisfying al the initial
configuration constraints). Finaly, if the current set of choices becomes inconsistent with
the constraints, or if the user is not happy with some derived consequences of these choices,
she has to backtrack and relax some of them. To sum up, adecision support system should
be able to fulfill the following requirements:

e Maintain consistencyThe system has to ensure at each time that the current set of
user’s choices is consistent with the CSP modeling the configurable product, ideally
globally consistent, or at least to detect inconsistency as soon as possible. It has also
to compute the consequences of the user’s choices by deleting (respectively restoring)
all the values that are incompatible (respectively compatible) with the current set of
choices. in other words, the current domains should obey the property of “global
consistency” or at least a property of local consistency like arc-consistency, restricted
path consistency, etc.

e Guide relaxation on user’s requirements by providing restoratiding system hasto
help the user backtracking by answering questionslike: “Which choices should | relax

1 This is obvi ously an approximation: a configurable product is often structured into sub-components, the
existence of which depends on the values given to some of the variables of the upper component. In this context,
the set of variables of the problem cannot be defined a priori. Several authors have proposed to extend the classical
CSP framework in order to handle such structural characteristics [22,27,32,35,39]. However, these works do not
address interactivity in the configuration task since they assume that the whole set of user’s requirements is given
at start.
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in order to recover consistency?’ or “Which choices should | relax in order to render
such avalue availablefor such avariable?’. The problem hereisto identify consistent
subsets of the current choices, possibly maximal consistent subsets or consistent
subsets minimizing a cost function.

e Provide the user with explanations of the confticthe system has to answer
questions like “From which subsets of current choices did inconsistency follow?’
or “Why isthis value not available any longer for thisvariable?’. The problem hereis
to identify (minimal) inconsistent subsets of the current set of choices.

Classical filtering algorithms, and specifically their dynamical versions (cf. [4,5,19])
may address the first functionality. Neverthel ess, these a gorithms cannot guarantee global
consistency nor help in the computation of restorations. In order to fill this gap, this
paper presents a hew approach to interactive constraint solving that addresses both
functionalities. From a formal point of view, this approach leads to an extension of the
CSP framework to assumptions, that is presented in Section 2. This new framework can
also be viewed as a generalization of the ATMS one [17] to general constraints. It enables
various functionalities required by interactive constraint solving (as discussed above) to
be formally specified. A complexity analysis of these computational tasksis reported. Not
surprisingly, all of them are intractable in the worst case. This hardly contrasts with the
practical requirements imposed by interactivity: to be viable, the response time of the
a gorithms must not exceed afew seconds.

In order to circumvent intractability from the practical side, our approach relies on
a compilation of the original problem into a data structure from which much better
performances can be obtained. We actually follow [41] and use an automaton that
represents the set of solutions of the CSP. We show that the set of computational tasks
that can be tractably achieved from such an automaton is not limited to consistency
checking (as well as validity and equivalence as shown in [41]) but also includes more
sophisticated tasks. Accordingly, the principles of Vempaty’'s compilations are briefly
recalled in Section 3. In Section 4, we explain how the automaton can be exploited to
achieve in an efficient way other computational tasks considered in this paper. Some
experimental resultson areal, large scale, application are provided in Section 5. Section 6
concludesthe paper. Proofs are reported in Appendix A.

2. Assumption-based CSPs

This section presents an extension of the standard CSP framework to the handling of a
distinguished set of dynamic constraints. For the sake of generality, we do not restrict our
framework to configuration problems and give in the following more generic definitions
than strictly needed for this purpose. For instance, we will not assume that dynamic
constraints are always unary ones.

2.1. Preliminary definitions and notations

A CSP is classically defined by atriplet (X, D,C) where X = {X1, X2,..., X,} isa
finite set of variables, each X; taking its values in a finite domain Dy,, and a finite set
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of constraints C. We note D = {Dy,, Dx,, ..., Dx,}. A constraint C in C is defined on
a set of variables V(C) € X and restricts the combinations of values that can be taken
by the variables of V(C). Thus, arelation R(C) on V(C) can be associated with each
C: it isthe set of tuples that satisfy the constraint. In the following, —C will denote the
constraint on V (C) that is satisfied by any tuple that violates C and violated by any tuple
that satisfies C. An assignment s is an element of the cartesian product of domains, noted
D"; itisasolution of the CSP if it satisfies al the constraints, i.e., if for any constraint C,
the projection of s on V(C) is an element of R(C) (otherwise, s is said to fasify C). If
such a solution exists, the CSP is said to be consistent, otherwise it isinconsistent.

Let us now distinguish a set of dynamic constraints, defining thus “Assumption-based
CSPs’ (A-CSPs):

Definition 1. An A-CSPIT isa4-uple (X, D, C, H) where (X, D,C) isaCSP and H a
finite set of constraints on variablesof X'.

In configuration problems, (X, D, C) represents a configurable product and H is the
current set of user’s choices (we also call them user’s restrictions).
' =(X,D,CUH) isthe(classical) CSP associated with I7.

Definition 2. An assignment s is a solution of an A-CSP IT = (X, D,C, H) iff s isa
solution of IT' = (X, D,C UH).

S(IT) denotes the set of all solutions of I7. IT is consistent (respectively inconsistent)
iff S(IT) # @ (respectively = 7).

At any time, the solutions of 17’ correspond to the feasible productsthat obey the user’s
requirements. For each X;, Py, denotes the projection of S(IT) on X;: it is the set of all
values of X; the choice of which allows the definition of a feasible product that satisfies
the requirements H.

2.2. Conflicts and consistent environments

In the following, we refer to subsets E € H of user’s choices as environments, whether
or not they are consistent:

Definition 3. Let [T = (X, D, C, H) bean A-CSP.

A subset E C ‘H is called an environment

E is consistent(respectively inconsistent given I7 iff (X', D,C U E) is a consistent
(respectively inconsistent) CSP.

When no ambiguity is possible, dlightly abusing words, we simply say that E is
consistent (respectively inconsistent) whenever it is consistent (respectively inconsistent)
given I1.

Any inconsistent environment is called a conflictfor 17 (or aconflict on H for C). When
(X, D,C) is consistent, a conflict can be understood as a cause of the inconsistency of
the CSP (X, D,C U H) (i.e., of the incompatibility between the user’'s choices and the



J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199-234 203

bumpers doors

— lighter
—— same color

Fig. 1. Constraint graph of our toy example.

configuration constraints). Any consistent environment induces a subset of H that can be
relaxed so as to recover consistency: if E is a consistent environment, relaxing H \ E is
sufficient to recover consistency.

For instance, if (X, D, C) isconsistent and (X, D, C U H) isinconsistent, 7 isatrivial
conflict, ¥ a consistent environment and a dummy solution is obtained by relaxing all the
constraints of H. As this example shows, all the environments are not equally interesting
in practice. More formally, in lack of additional information, consistent (respectively
inconsistent) environmentswhich are maximal (respectively minimal) with respect to set-
theoretic inclusion are preferred:

Definition 4. A nogoodfor C on H (or nogood of IT) is a minima inconsistent
environment, i.e., aconflict E for IT such that no conflict E’ for IT issuchthat E’ C E.

An interpretationof I7 is an environment which is maximal consistent for 17, i.e.,, a
consistent environment E for I7 st. no consistent environment E’ for I7 is such that
ECE.

Example 1.

e Initidl CSP. X = {bumperstop, wheelsbody, hood doorg with al the variable
sharing the sameinitial domain: {white, pink, red, black} (see Fig. 1). The constraints
of C arethefollowing:

V(C1) = {body doorg, V(C2)={hooddoorg,

V(C3) = {body hood, V(C4)={bumpersbody},

V(Cs) = {top, body}, V (Cs) = {wheelsbody},

R(C1) = R(C2) =R(C3) = {(white white), (pink, pink), (red, red),
(black black},

R(C4) = R(Cs) = R(Cs) = {(white pink), (white, red), (white black),
(pink, red), (pink, black), (red, black)}.

o Set of assumptions: H = { Houmpes Htop, Hwheels Hbody Hhood, Hdoors With:
R(Hpumperd = R(Hiop) = {white pink},  R(Hwheeld = {red},
R(Hpody) = {pink; red}, R(Hdoor9 = {red, black,
R(Hnood) = {pink, black}.
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e Conflicts: { Hhody, Hdoors: Hhood Hwheeld {Hbody Hwheels Htop}, {Hbody Hdoors
Hhood}, {Hbody Hwheeld, EtC.

o Nogoods: { Hyody Hdoors Hhood! @nd { Hhody Hwheeld -

o Consistent environments: { Houmpers Htop, Hwheels Hhood}, { Houmpers Hiop, Hwheels
Hhood Hdoors}, {Hbumpers Htop, Hbody}» {Hbumpers Htop» Hbody, Hyoors}, {Hbumpers
Hiop, Hpody Hhood}, EtC.

e Interpretations: { Hhumpers Htop, Hwheels Hhood: Hdoors} {Houmpers Htop, Hbodys
Hyoors s {Hbumpers Htop, Hbody, Hhood}-

As in propositional logic, nogoods can be generated from interpretations through the
computation of hitting sets, and the converse also holds:

Proposition 1. Let A/ (respectivelyZ) be the set of the nogoodi®spectively interpreta-
tiong) of an A-CSPIT = (X, D, C, H):

e E is aconsistent envirnmentof & VE; e N, (H\ E) N E; # .

e Eisaconflictofll & VE; €eZ, EN(H\ E;) #0.

Corollary 1.
e Eis aninterpretation of7 < H \ E is a hitting set of\" minimal w.r.t.C.
e Eisanogoodofl < E is a hitting set off = {H \ 7 | I € Z} minimal w.r.t.C.

2.3. Explanations and restorations

Even if the current set of user’s restrictions is not inconsistent given the CSP, these
restrictions can lead to reject some values for other variables that the user would prefer as
feasible. The system must thus provide the user with an explanation of these prohibitions.
Let us generally define the notion of explanation as follows:

Definition 5. Let IT = (X, D, C, H) be an A-CSP and L a constraint on some variables
of X.

An explanatiornof L on IT isan environment E such that (X, D,C U E) isaconsistent
CSPand (X, D,CU E U {—=L}) isaninconsistent one.

An explanation E of L on IT is minimaliff there exists no explanation E’ of L on IT
suchthat E' C E.

Notethat if (X, D, {L}) isinconsistent, then no explanation of L on IT exists. However,
this situation is not very relevant since self-contradictory constraints are typicaly not
considered.

In configuration problems, explanations of unaryconstraints are computed: determining
why a set of values V is not available any longer for a given variable X; amounts to
compute the explanations of the constraint L =“X; € D; \ V".

Now, the user not only needsto understand why somevaluesareforbidden for avariable,
but also which previous choices should be kept and which previous choices should be
relaxed in order to make these values available again. This is formalized thanks to the
notion of restoration:
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Definition 6. Let IT = (X, D,C,H) bean A-CSP and L a constraint on some variables
of X.

A restorationof L on ITisan environment E suchthat (X', D, CU E U{L}) isaconsistent
CSkP

A restoration E of L on IT ismaximal iff thereisno restoration E’ of L on IT such that
ECE'.

A restoration of L isthus a maximal subset of constraints of H that can be kept if one
wishes to be consistent with L: L will be restored as soon as the constraints of H \ E are
relaxed from the A-CSP.

Example 1 (Continued. Consider the CSP given in Example 1 with the following set of
assumptions: H = { Hhumpers Htop, Hwheels Hdoors HHood} With:

R(Hpumperd = R(Hiop) = {white, pink},  R(Hwheeld = {red},
R(Hdoors9 = {white red, black}, R(Hhood) = {pink, black}.

e The constraint L1 such that V(Li) = {body} and R(L1) = {red, white, black}
meaning “The body of the car cannot be pink” has two minimal explanations:
{Hwheeld and { Hgoors}-

e Theconstraint Lo such that V (L2) = {body} and R(L2) = {black} (“The body of the
car must be black”) has two minimal explanations: { Hwheelg and { Hhood, Hdoors} -

e To restore the value pink, one must at least relax both Hyneels ad Hyoors
{ Houmpers Htop, Hhood! @and obviously { Hhumperd and { Hyop} are restorationsof Lz =
=Ly such that V(L3) = {body and R(L3) = {pink}, {Hpumpers Hiop, Hhood} 1S
maximal.

Restorations, explanations, interpretations and nogoods are related in the following way:

Proposition 2. LetIT = (X,D,C,H) be an A-CSP.

e When (X,D,C U H) is consistent,E is an explanation(respectively minimal
explanation of L on [T iff E is a conflict (respectively nogogdof (X,D,C U
{=L}, H).

e E is a restoration(respectively maximal restoratipof L on I7 iff E is a consistent
environmenfrespectively an interpretatigrof (X', D, C U {L}, H).

Accordingly, when C U H is a consistent set of contraints, the restorations of L can be
computed from the explanations of —L and the converse also holds.

Proposition 3. Let &, be the set of all minimal explanations of the constraitit on
T =(X,D,C,H) and let R; be the set of all maximal restorations &f on I7. If
(X, D,CUH) is consistent, then

e EisarestorationofL onlT1 < VE; €eé_, (H\E)NE; £ 0.

e EisanexplanationofL onll < VE; e Ry, EN(H\ E;) # 0.
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Corollary 2.

E is arestoration oflL on IT < H \ E is a hitting set o€, minimal w.r.t.C.

E is an explanation of-L on IT < E is hitting set ofR; = {H \ 7 | I € R} minimal
W.It. C.

2.4. Preferences between assumptions

In many real applications, all the user’s choices do not have the same importance but are
subject to preferences. For instance, a requirement dealing with the type of engine can be
more important than a requirement concerning the color of the body of the car. To alow
the handling of such preferences, the framework of Valued CSP (VCSP) [36] associates
with each constraint H € H a degree of importance, or “valuation” ¢ (H), belonging to a
totally ordered scale, e.g., in N* U {4+o0}: the higher the valuation, the more important the
constraint.

In the following, we suppose that every constraint has a positive importance (otherwise,
it can be a priori discarded from H). In this situation, the best consistent environments as
well as the best restorations are those that relax as less important constraints as possible,
i.e., that minimize the sum of valuations associated with the constraints they relax. In
particular, when ¢ is the constant function 1, the best consistent environments are those
that relax the lowest number of constraints. More formally:

Definition 7. Let IT = (X, D, C, H) be an A-CSP, ¢ avaluation of the assumptions, i.e.,
apositive application from  to N* and for any E € H, let ¢ (E) = 3" ey g 9 (H).

A V-interpretation? of IT is an environment consistent given I7 such that there is no
environment E’ consistent given IT satisfying ¢ (E’) < ¢(E).

A V-restorationof L on IT isarestoration E of L on IT such that thereis no restoration
E’ of L on IT satisfying ¢ (E") < ¢(E).

Clearly enough, the A-CSP framework enriched with such valuation functions is a
natural framework for cost-based abduction [11,23] (and for probabilistic abduction [30]—
through alog transformation and under some independence assumptions).

In some applications, it could be interesting to use other valuation functions as in
the general VCSP model. In this model, any valuation structure (£, >, ®) where L is
a set totaly ordered by >, with a minimal (respectively maximal) element noted L
(respectively T) and @ isacommutative, associative, closed binary operation that satisfies
the properties of monotonicity and identity (i.e., a T-conorm) is acceptable. For simplicity,
we restrict ourselvesto the structure (N U {400}, >, +) with ¢ giving valuations different
from T = +o00 and L = 0. This choice allows the representation of severa policies for
characterizing preferred environments, such as those based on cardinality or lexicographic
ordering. It ensures that the valuation of each environment can be computed in polynomial
time.

2When the elements of H are unary constraints and ¢ is the constant function 1, we recover here the notion of
“minimal revision” first proposed by Dechter and Dechter [15].
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Example 1 (Continued. Let us step back to Example 1 and suppose the following
val uations of assumptions:

¢ (Hwheeld = ¢(Hbumpe9 = ¢(Htop) = ¢ (Hhood = 1,
¢(Hbody) =2, ¢ (Hdoors) = 2.
We thus get for each interpretation:

¢({Hbumpers Htop» Hwheels Hhood Hdoors}) = 2,

¢({Hbumpers Ht0p7 Hbody, Hyoorsh) =2,

¢({Hbumpers Htop» Hbody, Hhood}) = 3.
Thisyieldstwo V -interpretations:

{Hbumpers Ht0p7 Hwheels Hhood, Hdoors) and {Hbumpers Htop, Hbodyy Hgoors).-

Since ¢ assigns valuations different from 0 and +oo to assumptions, the pre-ordering
it induces on environments is consistent with (and refines) the pre-ordering based on set
inclusion:

Proposition 4. Let IT = (X, D, C, H) be an A-CSP. Any -interpretation of/T (respec-
tively V-restoration ofL on IT) is an interpretationrespectively a maximal restoratipn

Asaconsequenceof Propositions3 and 4, it is possibleto computethe V -interpretations
of ITfromitsnogoodsand, when (X, D, CUH) isconsistent, to computethe V -restorations
of L on IT from its explanations through the computation of hitting sets (minimizing the
sum of the valuations of the constraints kept in the hitting set rather that minimizing the
set with respect to ). 2 But thiswill be of apoor help, since aswe will seein Section 2.6,
computing the nogoods of IT is not cheaper than computing its V -interpretations.

As suggested by Lobjois and Verfaillie [25], a more tractable approach to consistency
restoration, and more generally, to constraint restoration, would be to use the machinery
provided by VCSP, thanksto the following property:

Proposition 5. Let IT = (X, D, C, H) be an A-CSP ang¢ be a valuation function of its
assumptions, i.e., a positive application frétito N*. Let¢’ be an application fron€ U
to NU {+oco} defined byVC € H, ¢'(C) = ¢(C) andVC € C, ¢'(C) = +o0o. The following
statements are equivalent
e E is aV-interpretation offT.
e (X,D,CU E) is minimal relaxation of the valued CS®, D,C U H, (N U {+o0},
>, +), ¢’) and its valuation differs from-oo.

Thus, the computation of V-interpretations (and, thanks to Proposition 2, of V-
restorations) can be achieved as a V CSP optimization problem: it leads to the computation
of al the solutions of aVVCSP.

3 However, every nogood of IT cannot be computed from its V -interpretations, only: it is not sufficient to cover
every V-interpretation to cover al the interpretations.
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Another way of computing V -interpretations is provided by Dechter and Dechter [14,
15]. This approach is restricted to tree-structured CSPs (it relies on the hypothesis that
(X, D, CUH) isahypertree of constraints) and proceeds by a forward propagation of the
valuations followed by a top-down (and backtrack free) search of the best interpretations.

2.5.

Application to configuration

In the context of a constraint-based interactive approach to product configuration, an
A-CSP IT can be used to represent both the feasible products (as the solutions of the CSP
(X, D, C)) and the current user’s choices as a set H of dynamic constraints/assumptions.
This A-CSP has the following noticeable properties:

Since each solution of (X', D, C) correspondsto afeasible product, we can reasonably
supposethat (X, D, C) is consistent.

Since the user's elementary choices typically consist in assigning one value to one
variable, each element of H isaunary constraint

The user’s choices are not self-contradictory, i.e., (X, D, H) is a consistent CSP.
Obvioudly, this does not mean that the user’s choices aways lead to afeasible product
(C isnot taken into account here).

The preferences of the user are expressed by means of a valuation function, i.e., an
application ¢ from H to N*. Accordingly, every dynamic constraint has a positive
importance (otherwise, it can be a priori discarded from the set of constraints) and
none of the dynamic constraints is mandatory.

Itisalways possibleto realize any kind of pre-computing or compilationon (X, D, C),
off-ling, i.e., before the configuration phase.

In order to help the user in his configuration task, our aim is to develop a system that
achievesthe following functionalities:

2.6.

Detection of inconsistency: at any time, the system must tell whether thereisafeasible
product that satisfies all the user’s requirements, i.e., it must be able to check whether
IT=(X,D,C,H) isconsistent or not.

Maintenance of global consistency: at any time, the system must discard from the
domains of available values those that cannot lead to a feasible product, i.e., it must
be able to compute Py, for any i.

In case of inconsistency, computation of nogoods and, more importantly, of interpre-
tations and V -interpretations must be offered.

When some interesting values become forbidden for a variable, computation of
minimal explanations and, more importantly, computation of V -restorations of these
values must be possible.

Complexity issues

Two factors influence the computational complexity of searching for nogoods, interpre-
tations, explanations and restorationsin assumption-based CSPs:

The number of objects, i.e, the size of the result The number of nogoods,
explanations, interpretations and restorations is exponential in the size of H in the
worst case.
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Table 1

Complexity results (/7 as input stands for (X, D, C, H))
Input Question Complexity
1, E is E aconflict? coNP-complete
I, E is E anogood? BH»-complete
n does there exist a conflict? coNP-complete

(respectively a nogood)

I1,E is E aconsistent environment? NP-complete
I, E is E an interpretation? BHj,-complete
n does there exist a consistent environment? NP-complete

(respectively an interpretation)

I1,E, L is E an explanation of L? BH»-complete
I, E, L is E aminimal explanation of L? BHj,-complete
L does there exist an explanation of =L? Eg-compl ete

(respectively aminimal explanation of —L)

I1,E, L is E arestoration of L? NP-complete
I, E, L is E amaximal restoration of L? BH,-complete
I, L does there exist an arestoration of L? NP-complete

(respectively amaximal restoration of L)

e The complexity of recognizing these objects (e.g., testing whether a given environ-
ment E is anogood for agiven A-CSP) or of testing their existence (e.g., does there
exist a nogood for a given A-CSP?).

Table 1 presents some results related to this second source of complexity (see the proofs
in Appendix A). These results dlightly generalize corresponding results obtained so far in
the ATM Sframework (some of them are close to results given in [20]). These results argue
in favor of hard search problems in the worst case; this is not surprising since one of the
key issues (consistency) is aready intractable. Note that the complexity results that are
reported are concerned with the general case, i.e., no specific assumption related to the
configuration issue is made.

One should notice that the computation of interpretationsis in the worst case no more
expensive than the computation of nogoods. This means that computing interpretations
from nogoods through hitting sets is not a good approach, unless nogoods can be obtained
at cheap cost.

In the restricted situation where the A-CSP framework is applied to interactive
configuration, some additional assumptionscan be made (see Section 2.5): C isknown to be
consistent, the constraints of H are unary, as well asthe constraints that must be explained.
In this case, all the complexity proofs remain valid, except those concerning existence
problemswhich becometrivial. Indeed, since the consistency restoration feature aswell as
the explanation of inconsistency cannot be invoked unlessinconsistency has been detected,
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there always is a consistent environment (@) and a conflict (7). Similarly, searching for
explanationsof aunary constraint —L or for restorations of L cannot beinvoked when —L
is not a conseguence of the current set of choices: H isatrivial explanation of —L and ¢
isatrivia restoration of L. However, this does not decrease the difficulty of the problem
of searching for good or optimal environments, nor the theoretical complexity of the other
decision problems, except the one concerning the test of E as an explanation of agiven L.
This problem becomes “only” coNP-complete: since C U H is known to be consistent, so
isalsoCU E, whatever E C H.

Finally, while the existence of preferences modeled by a valuation function ¢ restricts
in practice the number of preferred assumptions (cf. Proposition 4), this number remains
exponential in the input size in the worst case. Besides, its exploitation does not make the
tasks tractable: as a consequence of Proposition 5, the corresponding problems are at |east
as difficult as decision problems associated to the optimisation of valued CSPs, i.e., they
are NP-hard (in the sense of Cook reduction).

3. Compilation of an A-CSP

According to the complexity results given in the previous section, the computational
tasks an A-CSP must achieve are highly combinatorial even under the simplifying
assumptions associated to configuration problems. On the other hand, interactivity impose
some contraints over the response time, which must not exceed a few seconds. That is
why we suggest to push the computational effort required by the handling of the on-line
requestsinto an off-line compilation phase.

The compilation of propositional knowledge bases has aready been intensively
investigated (see [8] for a survey) and many compilation functions have been proposed
so far (see, e.g., [6,13,18,26,31,37,38]). Compilation has aready been applied to CSPs as
well [16,28,41,42]. Following these works, we propose to compile the set of solutions of
the CSP under a form from which the computational tasks can be achieved more quickly
than from the original formulation.

The data structure used here is the one proposed by Vempaty [41], namely afinite-state
automaton that represents the set of solutions of (X', D, C). This concise representation
of the solutions can be logically understood as a compact, structured Disjunctive Normal
Form of the CSP. Vempaty [41] shows how consistency, validity and equivalence of CSPs
can be tested efficiently when represented as automata. For our purpose, the main interest
of this compiled form is that both interpretations and restorations can be generated from
the compiled form in time linear in its size Notice that this compilation is done only
once, athough several successive requests will be typically addressed in an interactive
configuration situation, and that the system can be used in several configuration situations
without requiring any re-compilation.

This approach relies on a few hypotheses that are satisfied in practice by configuration
problems. First, the persistence of (X, D, C) and the possibility of performing off-line
any computation on it, before the introduction of dynamic constraints; then, the restriction
of the dynamic part of the problem, H, to unary constraints; finally, the structure of the
set of solutions of (X, D, C) that allows its practical representation under the form of an
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automaton—its size, exponential in the worst case, can be reasonable in practice. In the
case of configurable products, the satisfaction of this last requirement is due to two facts:
the interchangeability of many values and the structure of the product into subproductsthat
are more or less independent from each other.

3.1. Compilation of a CSP in the form of an automaton

Let usrecall the keys points of the method introduced by Vempaty [41] to represent the
set of solutions of a CSP as an automaton.

Automata. We consider here the state diagramsf automata: a finite-state automaton
(FA) A on an aphabet X isa oriented digraph the edges of which are labeled by elements
of X (thetransitionsof the FA). The finite set of its nodes (or statesof the FA) is denoted
Q. It has one initial state denoted 7and at least one final state F and is such that any
transition and any state belongs to a least one path for the initial state to a fina state.
A word m = aazas. . .a, isrecognized by the automaton if there exists a path from the
initial state 7 to a final state F with the label m: I -5 g1 —2 g —2 ... % F. The
languagerecognized by A isthe set £(.A) of thewordsit recognizes. A FA isdeterministic
(DFA) iff al the transitions coming from the same state have different labels.

Associating FA with CSP.Let IT = (X, D,C) be a CSP. Given a permutation O =
[X1, X2,..., X,] of X, any solution of ITdefines a word of length n over the aphabet
D. Hence, the set of solutions of IT defines a language over D. This language, called the
solution language of IT w.rt. O and denoted Sy (IT), is a rational language. It is thus
possibleto represent Sp (IT) by aFA A. Thisautomaton has only one final state (noted F)
and is such that the length of any path from 7 to F isn.

For any path p = (I = g1 — g» 2 g3 —> ... - F = g,41) from I to F, for any
stateg; in p, wewritevar(g;) =i (assoon asg; isany state but F, var(g;) isthe index of
avariablein X). For any transition a of p, in(a) isitsinitial node and out(a) isitsterminal
node; var(a) is the variable Xyarin(q)) and val(a) the label of a. Using these notations,
(val(a), val(ap), ..., val(a,)) is thus an assignment of (var(ai),var(az), ..., var(a,))
and a solution of IT.

Definition 8. Let IT bea CSP, and .4 an automaton representing its set of solutions.

A transition a of A is said to supportthe value d for X; (i.e, the assignment X; :=d)
iff var(a) = X; andval(a) =d.

A transition a of A is said to support aunary constraint L on X; iff it supports at least
one of the values belonging to R(L).

A path of A supportsavaluefor avariable (respectively aunary constraint) iff it contains
atransition supporting this value (respectively this unary constraint).

Computing the automaton associated with a CSRccording to [41], the automaton
can be generated by using standard operators on automata: either by any CSP algorithm
that enumerates the set of solutions and adds them successively to the automaton, or by
composition operators on (small) automata representing the configuration constraints. The



212 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199-234

oy,

II: X ={X4,X»,X3} Dx;=Dx,=Dxg={rgb} X1

Fig. 2. DFA A4 and FA A7 associated with IT for O = [X1, X2, X3] are concise representations of the set of
solutions.

. bumpers : body : top : wheels : doors : hood

Fig. 3. An automaton associated with the CSP of Fig. 1.

first method istypically not tractable when configuration problems are considered, because
of the huge number of configurable products (about 10'? in the application presented in
Section 5). That iswhy the second method has been preferred here.

The complexity of the computation of the automaton obviously depends on its size
(whichis, inthe worst case, exponential in the size of the original CSP). Thissizeismainly
influenced by (i) the order with which the variables of the CSP are taken into account and
(ii) the algorithm used to built it. Vempaty proposed to build a DFA that minimizes the
number of states (MDFA). It is also possible to consider other minimization algorithms
generating smaller automata (e.g., non-deterministic ones).

3.2. A-CSP with valuations and weighted automata

In configuration problems, H represents the user’s choices. Each element of H is a
unary constraint Hy, on a variable X; and its importance is given by ¢(Hy,); taking
this constraint into account leads to remove some assignments of X;, and thus some
of the transitions of the automaton, namely any transition a such that var(a) = X; and
val(a) ¢ R(Hy,). The principle of our approach is to associate a cost to each transition:
¢(a) = ¢ (Hy,) if a correspondsto an assignment forbidden by arestriction Hy,, ¢ (a) =0
otherwise. We can thus define the cost of a path asfollows:
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Definition 9.
e cosip) = Zaep ¢ (a) isthe global cost of path p;
e cosia) isthe cost of abest (i.e.,, minimal cost) path from 7 to F through transition a;
e COslg) isthe cost of abest path from I to F through state ¢ .

Now, since every constraint of H has a positive valuation, any path from I to F of
cost zero does not violate any of the constraints of H and thus defines a feasible product
satisfying al user’s requirements. Conversely, any path of positive cost corresponds to a
product that violates at least one of the restrictions of H. Knowing the set of paths with
a zero cost is thus equivalent to knowing the set of solutions of (X', D,C U H). More
formally:

Proposition 6. LetIT = (X, D,C, H) be an A-CSRp a (positivg valuation function,A4 a
weighted automaton representififyand L a unary constraint. It holds that
(@) Any pathp from I to F corresponds to a consistent environmentsuch that
¢(E) = cos(p).
(b) If E is a consistent environment, then there exists a paftom 7 to F such that
cosip) < ¢(E).
(c) Any pathp from I to F that supportsL corresponds to a restoratiof of L on
ITsuch thatp (E) = cost(p).
(d) If E is arestoration ofL on IT, then there exists a pafh from [ to F that supports
L such that costp) < ¢ (E).

Proposition 6 gives a formulation in terms of optimal paths for most of the requests
identified in Section 2.5. It shows that:

Proposition 7.

(@) Every minimal path froml to F represents a-optimal interpretation ofl7Tand
conversely, to any -optimal interpretation corresponds at least one minimal path.

(b) H is a conflict forIT < there is no path of cost zero fromto F.

(c) Let Px, denote the projection of the solutions §&ff7) on variableX;: d € Px, <
there is a transitiorz such that vafa) = X;, val(a) = d anda belongs to a path of
cost zero front to F.

(d) Let L be a unary constraint ork; € X', Ay the set of transitions that support it
and A7 the cheapest of thef} = {a € Ay | cos(a) = Min, ¢4, costa’)}). Each
transition in A7 corresponds to & -restoration ofL on /Tand to anyV -restoration
of L on IT corresponds at least one transition A7 .

Example 1 (Continued. Let us step back to Example 1:
e Initiad CSP: X = {bumperstop, wheelsbody, hood doorg with all the variable
sharing the same initial domain: {white pink, red, black}. The constraints of C are
the following:

V(C1) = {body doorg, V(C2) ={hood doorg, V(C3) = {body hood},
V(C4) = {bumpersbody}, V(Cs) = {top, body}, V(Ce) = {wheelsbody},
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. bumpers : body : top : wheels : doors : hood

|— - —- pathp —-—-— pathp’ |

Fig. 4. A weighted automaton associated with the CSP of Fig. 1.

R(C1) = R(C2) = R(C3) = {(white white)},
R(C4) = R(Cs) = R(Cs) = {(white pink), (white, red), (white black),
(pink, red), (pink, black), (red, black)}.

o Set of assumptions: H = { Houmpes Htop, Hwheels Hbody: Hhood, Hdoors With:

R(Hpumperd = R(Hiop) = {white pink},  R(Hwheeld = {red},
R(Hpody = {pink red}, R(Hyoors) = {red, black},
R(Hnood) = {pink, black,

with the following valuations:

& (Hhood = 2, ¢(Hbody) =3,
¢(Hbumper§ = ¢(Htop) = ¢ (Hwheeld = ¢ (Hdoord = 1.

The weighted automaton encoding the set of solutions of the initial CSP and the set of
dynamical constraints H is depicted Fig. 4.

The path p with costp) = 3 corresponds to the assignment (bumpers= pink, body=
red, top= pink, wheels= pink, doors=red, hood= red). It representstheinterpretation
E = { Houmpers Htop, Hoody Hdoor} (¢ (E) = 3) where HyheelsanNd Hhood are relaxed.

The path p’ is minimal. It corresponds to the assignment (bumpers= white, body=
pink, top = white, wheels= white, doors= pink, hood= pink) that has a cost of 2. It
representstheinterpretation E’ = { Houmpers Htop, Hoody: Hhood! (¢ (E") = 2) where Hyoors
and Hyheelsare relaxed.

Eight paths represent the preferred restorations of the value red for the variable
body They share the same cost (3) and each of them corresponds to the restoration
E" = {Hbumpers Htop» Hbody, Hyoors (¢(E”) = 3)-

4. Algorithms

Let us now explain how we can take advantage of such an automaton to achievein an
efficient way the various computational tasks we are interested in. As a conseguence of
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bumpers body top wheels :  doors hood

Fig. 5. Left and right costs associated to the nodes of the automaton.

the previous propositions, these tasks amount to the search of some minimal pathsin the
automaton. In order to alow an efficient computation of these minimal paths, we attach to
any state ¢ of the automaton aleft cost ¢;(q) and aright cost ¢, (¢) defined as follows (see
aso Fig. 5):

Definition 10.
e Leta=(q",q). ci(q) = Ming outa)=¢c1(q") + ¢(a) isthe minimal cost of the paths
from I to g;
e Leta=1(q,q). ¢;(q) =Ming in@=qcr(q") + ¢(a) isthe minimal cost of the paths
fromg to F;

e c;(I)=c,(F)=0.

The cost costg) of a minimal path from 7 to F through ¢, and the cost cosia) of a
minimal path from 7 to F through a can be directly deduced from these two scores:

Proposition 8.

e cosig) =ci(q) +cr(q);
e costa) =¢(in(a)) + ¢(a) + ¢, (0ut(a)).

Finally, in order to ensure an efficient computation of the sets Py, , we maintain a counter
cnt(X;, d) for any pair variable-value (X;, d). cnt(X;, d) isthe number of transitions that
(i) support the assignment and (ii) belong to a path of cost 0 from I to F':

Definition 11.
cnt(X;, d) = Card({a | var(a) = X; and val(a) = d and cos{a) = 0}).

4.1. Adding and deleting restrictions

Suppose that the user adds to H a unary constraint H; on X; with the valuation
¢ (H;). Some of the transitions may become penalized, namely the transitions a such
that var(a) = X; and val(a) ¢ R(H;). It is thus necessary to update the costs of these
transitions: for instance, when no other constraint of H restricts X;, the cost of these
transitions must rise from 0 to ¢ (H;). Conversely, if the user relaxes H; and deletes it
from H, some of the penalized transitions become fully allowed, namely the transitions
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a such that var(a) = X; and val(a) ¢ R(H;). Especialy, when no other constraint of H
restricts X;, their costs come down to 0. In both cases, the modification of the cost of a
transition a has to be propagated back (to update ¢, ( )) and forward (to update ¢;()). This
can be donein three steps:

(1) Determination of thetransitions such that var(a) = X; and labeled by avalue val(a)
that does not belong to R(H;).

(2) Backward propagation from the right state of each of these transitions to the initial
state: this is done through a breadth-first search strategy, so as to update the right
costs ¢, () of the traversed states knowing the right costs of their successors.

(3) Forward propagation from the left states of these transitions to the final state: it is
also done with a breadth-first search strategy, so as to update the left costs ¢;() of
the traversed states knowing the left costs of their successors.

The cnt() counters are maintained at steps (2) and (3): for any transition a encountered,
cnt(var(a), val(a)) isincremented if cosia) rises from O to a positive value (a is no more
oneof thetransition of cost 0 that supportsthe assignment var(a) = val(a)) and conversely,
it is decremented if cosia) comes down to 0.

This algorithm runs in time polynomial in the size of the automaton. Linear implemen-
tations can be achieved, relying on ajudicious choice of the data structure that encodes the
automaton. The practical efficiency of this kind of algorithm can obviously be enhanced,
for instance by propagating the modificationsonly (in practice, the propagation has seldom
to reach the extremities of the automaton).

4.2. Detection of inconsistency

Maintaining the costs in the automaton allows us to determine at any time whether the
current set of assumptions (i.e., the current user’s choices) is consistent with the initial
CSP. Indeed:
Proposition 9.

(@) ¢ (I) =¢;(F) is the cost of a minimal path frothto F.

(b) His a conflictiffc, (1) > O (iff ¢;(F) > 0).

4.3. Maintenance of global consistency

According to Proposition 7(c), Py, can be derived from the automaton. It can actually
be computed in linear time (linear in the size of Dy, ) using the counters cnt( ):

Proposition 10. Py, = {d | cnt(X;, d) # 0}.
4.4. Computing/-interpretations

Whenever an inconsistency occurs, the system must provide the user with V-
interpretations: they correspond to the minimal paths from 7 to F (cf. Proposition 7(a)).

Theseoptimal pathsare easily obtained, going from 7 to F through “optimal” states, thanks
to the following property:
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Proposition 11.
(@) A pathp fromg to F is of minimal cost among the paths frgmto F iff for any
transitiona in p, ¢, (in(a)) = ¢ (a) + ¢, (OUt(a)).
(b) A pathp from I to ¢ is of minimal cost among the paths frohto ¢ iff for any
transitiona in p, c;(out(a)) = ¢ (a) + c¢;(in(a)).

Corollary 3. A path p from I to F is of minimal cost iff, for any transitiom in p,
cr(in(a)) = ¢(a) + ¢, (0ut(a)) andc;(out(a)) = ¢ (a) + c;(in(a)).

Computing a uniqueV-optimal interpretation can be done in polynomial time: since it
amountsto following an optimal path from I to F according tothemarksc;, (), itisbounded
by the number of variables of the origina CSP and the maximal number of successors
of a state, i.e., the size of the domains. The search for all V-interpretations is more or
less equivalent to the enumeration of all minimal paths of the automaton, the difficulty
being that a given interpretation can be represented by more than one path. Two different
methods can be proposed for the enumeration of the V -interpretations. The first oneis an
adaptation of the DPI agorithm [9] that develops the tree of the V -interpretations without
any backtrack due to a failuréndeed, the costs of the states are used to determine whether
abranchis optimal or not. The sketch of algorithm that followsis a simplified version that
assumes that at most one constraint of H restricts agiven variable X;.

/1 In(a) (respectively Qut(a)) is the initial node (respec-
tively the term nal node) of transition a.
function optimal (a)

return (¢ (In(@) == ¢(a) + cr(Out(a)))

procedure Devel op(i, list, E)
if (list=0)
return false
elseif i>n
nmenorize E (it is a V-optimal interpretation)
return fal se (1)
el se
QKeepH ~—{}
QReIaxH ~—{}
forall state s in list
forall transition aeOut(s) such as optinmal (a) do
if ¢@=>0
add Out(a) to QRrelaxH
el se
add Out(a) to OkeepH
/1 Search for the interpretations that do not rel ax H;

if Develop(i+1, OkeepH, EU{H;}) (2)
return true
el se

/1l Search for the interpretations that relax H;
return Develop(i+1, OQOrelaxy, E) (3)
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The search for all interpretationsis invoked by Develop(1, (1), ). Several steps of the
algorithm deserve some comments. At line (1), the search can be halted as soon as some
criteria are fulfilled, for instance when a given number of V-interpretations have been
reached: it is enough to return the value “true” instead of “false”. At lines (2) and (3), the
two branches of the search tree are devel oped. A more interactive solution should be to ask
the user whether the branch “Relax H;” should be developed or not. The important point
is that a branch is entered (or proposed to the user) iff it is guaranteed that it leads to a
V-interpretation.

The other possible method is breadth searching the automaton, from 7 to F through
the optimal paths. The principleis to label every state met with the sets of elements of ‘H
which must be relaxed to reach the state: we thus get on F' the complementary sets (to H)
of the V-interpretations. The most expensive operation here is updating the sets attached
to states, since unioning setsis necessary at each update operation.

Anyway, for both methods, our representation by an automaton allows a computation of
al V-interpretationsthat is polynomial in the size of the result.

4.5. Computing/-restorations

The automaton also provides away to efficiently compute the V-optimal restorations of
aunary constraint L: such restorations correspond to the cheapest paths among those that
go from [ to F and that support L. If the user is interested in a uniquerestoration of a
set of values for a variable it is sufficient to find, among those supporting these values, a
transition a = (¢, ¢’) that minimizes cos{ ). The corresponding V -optimal restoration is
obtained going backward from ¢ to I and then forward from ¢’ to F through an optimal
path, thanks to the following corollary of Proposition 11:

Corollary 4. A pathp fromI to F that contains transitiom is of minimal cost among the
paths from/ to F that contains this transition iff
e foranya’ in p such that vata’) < var(a),

ci(outa") = ci(in(a’)) + ¢ (a');
o foranya’ in p such that vaa) > var(a’),

cr(in(a)) = cr(out(@")) + ¢ (a’).

Computing a unique V-optimal restoration can thus be done in polynomia time.
Again, ajudicious choice of the encoding of the automaton can lead to a more efficient
implementation (with a running time linearly bounded by the number of transitions that
support the unary constraint plus the product of the number of variables of the CSP by the
maximal humber of successors of a state, i.e., the size of the domains).

Now, in order to compute the set of al V-optimal restorations of the unary constraint L,
we can re-use the principles presented in the previous section. The ideais to mark, among
those supporting L, all the transitions a that minimize cos{). The optimal paths can be
marked using Corollary 4. It is then possible to take advantage of any of the methods
given in Section 4.4, running it not on the whole automaton but on the set of marked
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paths only. The worst computational cost for the generation of all V-restorationsis again
polynomially bounded in the size of the result.

5. An empirical evaluation

The algorithms given in the present paper have been implemented and tested on a quite
huge benchmark coming from areal applicationin car configuration. All experiments have
been done on a Sun Sparc5 with 128 Mb of RAM using C++.

5.1. The test problem

The test problem has been provided by Renault DVI, a french car manufactoring
company, and it deals with the configuration of a specific family of cars, called Renault
Megane. In this problem, decision variables represent the type of engine, the country,
optiorls like air cooling, etc. The full characteristics of the problem are the following
ones:

e There are 101 variables. The sizes of their domains vary from 2 to 43 (there are

actually 5 Boolean variables, 32 variables with a domain size between 3 and 5 and
13 variables with a domain size greater than 5).

e Expressed in a brute form, the CSP involves 858 constraints. Some of them can be

merged and a more compact set of 113 constraints is obtained.

e When the 113 constraints of the CSP are expressed by extensive relations (sets of

tuples), the file that describes the problem needs 6.6 Mb.

e The number of solutions of this CSPis 1418701950 016.

5.2. The automaton

Our strategy to generate the automaton mainly follows the principles described by
Vempaty by combination of (small) automata representing the constraints. The automaton
has been computed in 2h01mn, which is actually acceptable since compilation is an off-
line process. As a variable ordering heuristic, the first variables are those constrained by
the most restrictive constraints. The size of the resulting automaton is also very satisfying:
236160 states and 306809 transitions, which can be described in a file of 3.4 Mb.
Interestingly, this size is lower than the 6.6 Mb needed to store the original CSP (i.e.,
the 113 extensive relations).

As a matter of comparison, the same test problem has been compiled under the form
of an OBDD starting from a Boolean constraints representation. Bryant’s package [1,2]
has been used with the same variable heuristic as previously. The resulting OBDD is
significantly larger than the automaton: it contains 4104576 states and thus 8209 148
transitions (which represents afile of 29.5 Mb).

4 This problem is available at ftp://ftp.irit.fr/pub/I RI T/RPDMP/Configuration/.



220 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199-234
5.3. The experimental protocol

In order to test the efficiency of the algorithms proposed in Section 4, we have
“simulated” the behaviour of a user configuring a car. This simulation proceedsin severa
steps:

e A valueis assigned to each variable following a random ordering of the variables.
In any case, the valuation associated to the new user’s restriction is ¢ = 1. Global
consistency is maintained after each assignment (see Sections 4.1 and 4.3) and the
CPU time used to this updating of the automaton is measured. Notice that the value
assigned to avariableis always (randomly) chosen among the valuesthat are not ruled
out by the propagation process. When only one valueis available, the automaton does
not need to be updated and no measurement is made.

e Once the car has been fully specified, we test the computation of the V-optimal
restorations (i.e., the restorations of minimal cardinality, since ¢ = 1): for each
variable, for each of the values ruled out by propagation, the system is asked for
al the optimal restorations and the CPU time is measured.

e Finally, the global consistency maintenance is tested upon the unassignment of
variables: the constraints previously posted are del eted backward according to another
(random) ordering of the variables and the CPU time used for updating the automaton
is measured at each deletion. When the variable is not constrained, the automaton
does not need to be updated and no measurement is made.

The results presented in the next section have been obtained from a set of 20,000 sim-
ulations, i.e., 1,051,950 calls to the global consistency maintaining algorithm (525,975
calls by assignment 4+ 525,975 calls by deletion) and 5,021,098 computations of restora-
tion.

5.4. Experimental results

Concerning the maintainance of global consistency, updating the weights of the
automaton needed an average CPU time of 0.13 sec (standard deviation 0.163 sec, median
0.05 sec). Interestingly, the worst case observed only needed 0.68 sec. The cumulative
distribution function of the time needed to update the automatonis given in Table 2. Notice
that the performance does not depend on the event that calls the updating (i.e., assignment
or unassignment of variables).

The computation of restorations also revealed itself as really efficient: the call for the
computation of the set of optimal restorations needed an average CPU time of 0.015 sec
(standard deviation 0.023 sec, median 0.01 sec). The worst case observed took 1.05 sec
only. The cumulative distribution function of the time needed to compute the sets of
restorationis givenin Table 3.

Another question that may be addressed is the size of output, i.e., the size of the
restorations provided at each call and above all, the number of restorations provided (recall
that this number may be theoretically exponential). On our sample set, the average number
of optimal restorationsis 1.31 (standard deviation 0.7, median 1) and the maximal number
of restorations provided is 32 (the minimumisobviously 1). Therestorationsprovided have
an average cardinality of 3 constraints (standard deviation 2.35, median 2, minimum 1,
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Table2 Table 3
Cumulative distribution function of the time Cumulative distribution function of the time
needed to update the automaton needed to compute arestoration set
X (sec) % (CPU time < X) X (sec) % (CPU time < X)

0.01 31% 0.01 90%

0.02 38% 0.02 94%

0.03 43% 0.1 99%

0.04 47% 1.05 100%

0.05 50%

0.2 76%

0.3 84%

0.4 88%

0.5 95%

0.68 100%

Table 4

Cumulative distribution function of the full
size of the restoration set

X (# of constraints) % (sizgS) < X)

1 30%

2 51%

3 62%

4 71%

5 76%
10 92%
15 96%
192 100%

maximum 21). To summarize, let us define the full size of aset S of restorations as the
sum of the cardinality of the restorations it contains (Siz&S) = ) r.s Card(R)). On our
experiment set, the average size of the sets S is 4.31 constraints (standard deviation 5.39,
median 2). The bigger S involved 192 constraints (the cumulative distribution function of
the size of the restoration set is given in Table 4).

6. Conclusion

Several authors [22,27,32,39] have proposed to extend the CSP framework so as to
handle configuration problems—the extension dealing mainly with the difficulties that
are inherent to the structure of configuration problems. The handling of another salient



222 J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199-234

feature of configuration problems, namely their interactivity, has prevailed on usto extend
the framework in another direction and to define “Assumption-based CSPs’. This led to
a direct extension to non Boolean domains of definitions and properties that are well-
known in the ATM S framework [17], e.g., hogoods, interpretations, explanations, etc. Of
course, a Boolean encoding of (finite domains) CSPs can be easily achieved in polynomial
time. However reducing a CSP to a CSP with Boolean constraints is definitely a bad
strategy in the general case. On the one hand, it is not viable from a computational
point of view. On the other hand, the Boolean encoding is difficult to understand and to
maintain by the user—a drawback that is prehibitory when user-driven processes, like the
interactive solving of a CSP, are considered. Moreover, the performances obtained on a
real configuration problem showsit practically useful, especially when compared with the
performances achieved via a Boolean encoding.

The requests considered in interactive configuration obvioudly correspond to problems
that are highly combinatorial. From a practical point of view, our approach consists in
pushing this cost into an off-line pre-computation step: the system works on a compilation
of the CSP under the form of an automaton (the size of which may be theoretically
exponential) but uses algorithms that are really efficient on this data structure (the worst
case complexity is linear in the size of the automaton). This approach takes advantage
of the fact that, in configuration problems, only a small set of constraints is subject to
dynamicity, and that these constraints are unary. It finds a justification in the fact that real
configurable products can actually be described concisely by automata. Thisis mainly due
to two factors: the frequent interchangeability of values and the fact that complex products
are typicaly structured into sub-componentsthat are more or less independent from each
other.

Theidea of compiling CSPs is not new. For instance, tree clustering [16] can be viewed
asan early proposal for CSP compilation. More recent works include Vempaty’s automata
[41], Moller’sarrays[28] and Weigel and Falting’s synthesistrees[42]. The data structures
and the requests offered in these approaches are different but in any case, the key ideaisto
compilethe set of solutions of a CSP and to run algorithmsthat require time polynomial in
the size of the compiled form. Our contribution hereis not anew compilation techniquefor
CSPs since we used Vempaty's automatain our work. What is new is the way in which we
then used the compiled form. Especially, we have shown that the set of computational tasks
that can be achieved in atractable way from such automata is not limited to consistency
checking but includes more sophisticated tasks, like some of those supported by ATM Ss.

The way we use Vempaty’s automaton [41] is actually close to the use of OBDD-like
structures in the handling of prime implicant/implicate and interpretations of a formula
(see[12] for seminal work, and [7,10] for some approaches close to ours). The principles
pertaining to the generation of a good (small) automaton are out of the scope of this
paper (see [41] for more details) but it should be noticed that this problem is close to
the generation of small OBDD-like structures. For instance, determining an ordering of the
variables that minimizes the size of the automaton isan NP-hard problem.

The algorithms given in the present paper have been implemented and tested on a quite
huge benchmark coming from areal application in car configuration. Concerning the off-
line phase, the time consumed by the compilation process (a few hours) is reasonable,
as well as the size of the resulting automaton (a few Mb). More importantly, concerning
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the on-line step, the algorithms described in this paper have been successfully tested:
maintaining global consistency as well as computing restorations is immediate (less than
0.2 sec in more than 75% of the cases, less than 1.05 sec in any case). Accordingly,
these empirical results show the practical value of a compilation-based approach to
configuration. They also cohere with the experimental results reported in [6,37] showing
that compilation can prove helpful in practice for many instances of a class of problems,
evenif thisis not the case for the class of problemsitself (i.e., in the worst case situation).

Further work will follow three main directions:

Empirical evaluation Our approach successfully addresses our application to car
configuration, but it is quite difficult to draw general conclusions from a few instances.
An important issue lies in the design of a protocol for the empirical evaluation of our
algorithm, that (even less closeto real problems) could enlighten the limits of the approach.
Such a protocol involves the definition of a generator of instances that satisfies our work
hypothesis (structuration and interchangeability) or more idealy that takes a degree of
structuration and a degree of interchangeability as input. Such a statistical tool would also
be useful for comparing the main forms of CSP compilation (automata, tree clustering,
synthesis trees).

Compilation of strongly structured CSPSur approach finds a justification in the fact
that real configurable products can be described concisely by an automaton. This is due
to two main factors: the frequent interchangeability of values and the fact that complex
products are structured into sub-components that are more or less independent from each
other. A more complete exploitation of the structural features of configurable products
should include the combination of the representation by automata with composite CSPs.
The second direction of research for the compilation of strongly structured CSPs consists
in mixing Vempaty’s automata with compilation procedures that are more oriented toward
the structure of the constraint graph, namely tree clustering and synthesis trees. The
next step in the compilation of CSP is undoubtedly the cross fertilization of existing
approaches.

Computation of explanationin this paper, we did not present algorithmsfor computing
explanations and nogoods since this kind of information is generally less attractive than
restorationg/interpretations in the context of a configuration task, ® unless the number of
explanations is small and the number of restorations is large: in this case, it would be
interesting for the user to generate the restoration by herself through the selection of
one constraint per explanation. Anyway, the computation of nogoods and explanations
can be attractive for other applications, e.g., the design of configuration knowledge bases
[21,35] or constraint-based diagnosis [33]. If we accept to relax the requirements of
minimality and of completeness, an efficient approach can be based on the information
gathered by consistency enforcing algorithms, e.g., atrace of afiltering algorithmasin [24]
or the justifications maintained by dynamic filtering algorithms like DN-AC4, DN-AC6
[4,19].

5 Their main interest is generaly ... the generation of restorations/interpretations through the computation of
hitting sets, whereas the direct generation is generally cheaper as explained in Section 2.6.
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Appendix A

A.1l. Proofs of Propositions 1-11

Proof of Proposition 1.

()=

(i) <

(ii) =

(i) <

Let E be a consistent environment of C. Suppose that there exists a nogood E;
such that E does not relax any congtraint of E; (i.e, (H\ E)NE; =@ ): dl
the constraints of E; arein E. Since E; is inconsistent with C, so isaso E:
contradiction. So, E being a consistent environment of C impliesthat E relaxes
at least one constraint per nogood.

Suppose that for every E; e N, (H \ E) N E; # ¥ and that E is not a consistent
environment: E is a conflict and thus a nogood is included in E. This is
not possible since E relaxes at least one constraint per nogood. Thus E is a
consistent environment.

Let E beaconflict of C. Suppose that there exists an interpretation E; such that
E does not include any constraint of H \ E; (i.e, EN(H\ E;))=0): ECE;.
Since E; is a consistent environment, so is each of its subsets, and so is E.
This contradicts the hypothesis“ E is a conflict”. So, for any interpretation E;,
EN(H\ E;) #0.

Suppose that for every E; € Z, EN (H \ E;) # ¥ and that E is not a conflict:
E isaconsistent environment and is thus a subset of an interpretation E;. Since
EN(H\E;) #0,weget EN(H\ E) # #. Fromthis contradiction, we conclude
that E isaconflict. O

Proof of Proposition 2. Let IT = (X, D, C, H) bean A-CSP.

e Eisanexplanationof L on (X,D,C,H )= (X, D, (CU{-L})U E) isinconsistent
and (X,D,CUE) isconsistent = E isaconflict of (X, D,C U {—L}, H).

e Eisaconflictof (X, D,CU{=L}, H) and (X, D,CUH) isconsistent = (X, D,CU
{=L}U E) isinconsistent and (X, D,C U E) is consistent = E is an explanation of
Lon(X,D,C, H).

e E isaminima explanation of L on (X,D,C,H) = (X,D,(CU{=L}) UE) is
inconsistent and no E’ C E is an explanation of L = E isaconflict of (X, D,C U
{=L},H) and (VE' C E, (X,D,CU{=L}U E’) is consistent or (X,D,C U E’) is
inconsistent) = E isaconflict for (X, D,CU{-L},H) andVE' C E, (X, D, (C U
{=L}) U E’) isconsistent = E isaconflict for (X, D,CU{-L},’H) and VE' C E,
E’ isnot aconflict for (X, D,C U {—L}) = E isanogood for (X, D,C U {=L}).



J. Amilhastre et al. / Artificial Intelligence 135 (2002) 199-234 225

e Eisanogood (X, D,CU{—L}and (X, D,CUH) isconsistent = (X, D,CU{—L}U
E) isinconsistent and thereisno E’ C E suchas (X, D,CU{—L}UE’) isinconsistent
and (X,D,CU E) isconsistent = E isaminimal explanation of L.

e Eisarestorationof L on (X, D,C, H) = (X,D,(CU{L}) UE) isconsistent & E
isaconsistent environment of (X, D, C U {L}, H).

e Eisaminimal restorationof L on (X, D, C, H) = (X, D, (CU{L})UE) isconsistent
and VE' D E (X,D,(CU{L}) UE’) isincondstent = E is an interpretation of
(X, D,CU{L},H). O

Proof of Proposition 3. Easy consequence of Propositions2and 1. O

Proof of Proposition 4. Easy from the fact that E' C E = ¢(E’) > ¢(E) when (i)
P(A) = ZHE'H\A¢(H) and (ii) ¢ differs from 0 and from +oo (since ¢ (H) is a non-
null integer for every assumption H of H). O

Proof of Proposition 5. Easy from the three following remarks:
o VE,¢(E) =Y yepnp $(H)=¢'(X,D,CUE)).
e E isaconsistent environment of I7 iff (X, D,C U E) isconsistent iff (X, D,C U E)
is arelaxation of the valued CSP (X, D, C U H, (NU {+o00}, >, +), ¢").
o ¢'((X,D,CUE)) # 400 sinceit relaxes only constraintson H, i.e., constraints such
that ¢’ # +o0. O

Proof of Proposition 6.

(@) A path p from I to F defines aassignment s of X that is a solution of (X, D, C).
Let us denote E the subset of H satisfied by s. Since s satisfies £ and C, E is a
consistent environment. Now, since the cost of p isequal to sum of the valuations of
the subset of constraintsin H that are violated by s, i.e., of the constraintsof H \ E,
it holdsthat ¢ (E) = cosi(p).

(b) Conversely, if E isaconsistent environment, then thereisasolution s of (X, D, C)
that satisfies at least all the constraints in E. Since al the solutions of (X, D, C)
are represented by the automaton, to s corresponds a path p. Let us denote F
the subset of constraints of H violated by s. It holds that (i) F € H \ E and (ii)
cosip) =) yep@(H).Since FCH\E, Y yepod(H) < ZHeH\E¢(H), i.e.,
cosi(p) < ¢(E).

(c) A path p from I to F that supports L defines a complete assignment of X, thatisa
solution s of (X, D, C) that satisfies L. Let F be the set of constraintsin H that are
violated by s. Since s satisfiesC and H \ F, E = H \ F isarestoration of L on IT.
Since cost(p) 3y cr ¢ (H), cos(p) = ¢(E).

(d) If E is arestoration of L, then thereis a solution s of (X', D, C) that satisfies L
and al the constraints in E. Since al the solutions of (X, D, C) are represented
by the automaton, to s corresponds a path p which supports L. Let us denote F
the subset of constraints of H violated by s. It holds that (i) F € H \ E and (ii)
cos(p) =) yep@®(H). Since F CH\E, Y e ¢(H) < Yy p(H), i€,
cos(p) < V(E). O
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Proof of Proposition 7.

(8 = Let p beaminimal path from I to F: for any path p’, cosip) < cosi{p’). From
Proposition 6, there exists a consistent environment E such that cost(p) = ¢ (E).
Let us prove that E is V-optimal. Consider any consistent environment E’. From
Proposition 6, there exists a path p’ from I to F with cos{(p’) < ¢(E’). Thus
¢(E) = cost(p) < cosi(p’) < ¢(E'): forany E’, ¢(E) < ¢p(E'), i.e, EisaV-
interpretation.
< Let E be a V-consistent environment. From Proposition 6, there exists a path
p from I to F with cost cost(p) < ¢(E). Let us provethat it is minimal: suppose
that there is another path p’ such that cos{p’) < cosip). From Proposition 6, this
means that there is a consistent environment E’ such that cosi(p’) = ¢(E’), i.e,,
¢(E") = cosi(p’) < cosi(p) < ¢(E); hence, E is not V-optimal. Hence, such a
path p’ does not exist: p isminimal.

(b) Comes from Proposition 6: if there is a path from I to F with cost O, then there
exists a consistent environment £ such that ¢ (E) =0, i.e, ZH\Eqs(H) =0.
Since it is assumed that no constraint has a null valuation, it holds that E = H,
i.e, H is not a conflict. Conversely, if H is not a conflict, then it is a consistent
environment. Thus, from Proposition 6, there exists apath p from I to F such that
cosip) < ZH\H ¢(H) =0: cosip) =0.

(c) If theassignment d of X; is supported by an edge involved in a path of cost zero,
then this assignment is involved in a solution of (X, D, C) that satisfies al the
constraints of H (assuming that no constraint has a null valuation), i.e., d € Py;.
Conversely, the automaton represents all the solutions of (X, D, C). Hence, if
every path that supports the assignment has a positive cost, then every solution
of (X, D, C) violates at |east one constraint of 7, i.e., d does not belong to Py, .

(d) Similar to the proof of item (a) (based on items (c) and (d) of Proposition 6 rather
than of items (a) and (b)). O

Proof of Proposition 8.

e Coslg) isthe cost of the minimal path from 7 to F through ¢. It is thus equal to the
cost of the minimal path from 7 to g plusthe cost of the minimal path from ¢ to F,
i.e,toc(q)+cr(q);

e costa) isthe cost of the minimal path from 7 to F through a. It is thus equal to the
cost of the minimal path from I to the origin of a plusthe cost of the minimal path
from the extremity of a plus ¢ (a), i.e.to ¢;(in(a)) + ¢ (a) + ¢, (out(a)). O

Proof of Proposition 9.
(a) Direct from Definition 10, since ¢;(F) isthe minimal cost of the pathsfrom I to F,
and ¢, (I) istheminimal cost of the pathsfrom 7 to F.
(b) Easy from (a) and Proposition 7(b). O

Proof of Proposition 10. cnf X;, d] isthe number of edgesthat (i) support the assignment
X, :=d and (ii) belong to a path of cost 0 from I to F. So there is a path of cost O that
support d for X; iff cnt(X;, d) > 0.

Since d € Py, iff thereis an edge a that supports d for X; and a belongsto a path of
cost zero from I to F (Proposition 7(c)), we have d € Py, iff cni(X;,d) >0. O
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Proof of Proposition 11. We prove only (a) (the proof of (b) is similar). Since
¢ (F) = 0 by definition, the proposition holds when the path reduces only to one edge
a: c(q) = Mina,in(a):q(cr(F) + o) = Mina,in(a):q(¢(a))- Thus cr(q) = ¢(a) iff
¢(a) =cosl(g, F)) isminimal.

Suppose now that proposition (@) holds for the paths of k& edges. Consider a path p of
k+ 1 edgesfor ag to F, let a; be the first of these edges and p’ be the subpath from
ouf(a) to F.

= If p is of minimal cost among the paths from g to F, Miny jn(.n=4 (¢, (0ut(a’)) +
¢(a’) = cr(0ut(ar)) + ¢(a1), thus ¢, (in(a1)) = ¢ (a1) + ¢ (out(ar)). Since p’ is minimal
among the paths from out(a) to F, the property ¢, (in(a)) = ¢ (a) + ¢, (out(a)) holds by
induction.

< Suppose that, for each edge a of p, ¢, (in(a)) = ¢(a) + ¢, (out(a)). From ¢, (g) =
Ming in()=¢ (cr (OUt(@)) + ¢ (a)) = ¢, (0ut(a1)) + ¢ (a1) we deduce that the minimal path
from g to F begins by edge a1. Now, by induction, we know that p’ is of minimal cost
among the paths from out(a;) to F. So p isminimal among the pathsfrom¢g to F. O

A.2. Complexity proofs

A.2.1. Background

We assume familiarity with basic notions of computational complexity theory (see, e.g.,
[29] for asurvey).

The class of all languages (encoding decision problems) that can be recognized in
polynomial time by a nondeterministic Turing machine is denoted by NP. Among all
the problems in NP, the hardest ones are those from which every problem in NP can be
polynomially many-one reduceslich problems are referred to as NP-completeIf any of
them has a polynomial agorithm, then P = NP holds. Accordingly, it is believed that
it is impossible to solve NP-complete problems in polynomia time. SAT, the problem
in determining whether a propositional formula is satisfiable, is the prototypical NP-
complete problem. Its complementary problem UNSAT (consisting of determining whether
apropositional formulais unsatisfiabl€) is not necessarily in NP (in contrast to P, NP is not
known to be closed under complementation). It is assigned to the class coNP that contains
the complementary problemsto problems of NP.

To go further into the classification of non-efficiently solvable problems, an important
tool isthe notion of Turing machine (deterministic or nondeterministic) with oracle Let X
beaclass of decision problems. PX (respectively NPX) isthe class of all decision problems
that can be solved in polynomial time using a deterministic (respectively nondeterministic)
Turing machinethat can use an oraclefor deciding aproblem Q € X for “free” (i.e., within
aconstant, unit time).

On this ground, the complexity class =5 is defined by 7 = NP"P. The hardest
problemsof thisclassarereferredto as Eé’ -complete problems. Among them isthe validity
problem 2-QBF; that consists in determining whether a given quantified boolean formula
of theform3A VB X isvalid (where X isany formulafrom PRORs>s or even aformulain
digunctive normal form—DNF—and {A, B} isapartition of Var(X)).

In order to discriminate further among the problems from Ag = PNP, one can focus
on the number of calls to an NP oracle that are used. Thus, the complexity class BHy is
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defined by BH, = {L1 N Ly | L1 € NP, Ly € NP}. The membership to any language of
BH> can be determined using only two callsto an NP oracle. The hardest problems of this
class are referred to as BH»-complete problems. Among them is the SAT-UNSAT problem
that consists in determining, given apair (@, ¥) of propositional formulas in conjunctive
normal form (CNF), whether @ is satisfiable and ¥ is unsatisfiable.

A.2.2. How the proofs work

The membership proofs only assume that checking whether a given assignment s is a
solution of agiven CSP can be donein time polynomial in theinput size (thisis the unique
restriction that we put on the finite set of constraints C over X).

The hardness proofsrely on two principles:

e First, the transformation of a k-CNF X into abinary CSP CSRX) = (X, D, C) [3]:
the ideais to associate to each clause ¢; of X avariable x; such that the domain D;
of x; is the set of literals of ¢;. A constraint C; ; between two variables x; and x;
associated to two clauses ¢; and ¢; is created if the clause ¢; contains a literal and
c;j iscomplement. Therelation R(C; ;) is defined by the cartesian product D; x D;
minusthetuples (/;, [;) such that /; isthe negation of ;. Bennaceur [3] has shown that
thistransformation is polynomial and that X is satisfiable iff CSR Y') is consistent.

e Secondly, the definition of an A-CSP from a CNF X and a set of literds ® =
{l1,...,1n}. X isthe static part of the A-CSP and ® its dynamic part. First, we
generateatrivial CNF A fromtheliterals of ®: for each of /; of ®, the clause —[; v [;
is considered in A. Obvioudly, X' is equivalent to X U A. Then, define the A-CSP
AcspgX,®) = (X,D,C, H) as follows. (X¥,D,C) = CSRX U A) is Bennaceur's
encoding and H isaset {H(l1), ..., H(l,)} of unary constraints such that, for each
literal /; of ®, V(H(;)) is the variable encoding the clause —I; v I; of A and
R(H (1)) ={l;}. Let {l1,...,I;} beany subset of ®. It holdsthat: X Al A --- A lg
is satisfiable (respectively unsatisfiable) iff E = {H(l1), ..., H(ly)} is a consistent
environment (respectively a conflict) for Acsp X, ©).

Notice also that:

e (X, D, H) involvesunary constraints only.

e (X, D, H) isconsistent.

e Since X U Aisequivaentto X, (X, D, C) isconsistent iff X is satisfiable.

As a consequence, each of the following proofs remain valid under the first two
assumptions related to configuration problems: (X, D, H) is consistent and H contains
only unary contraints. All of them are valid when the constraints L to restore or to explain
are unary. Most of them aso remain valid when (X, D, C) is assumed to be consistent

(except (6)).

A.2.3. Complexity proofs: Conflicts
() GivenIT=(X,D,C,H)and E C H,is E aconflict for IT?

— Membership to coNP: We consider the complementary problem. E is not a
conflict for P iff (X, D,C U E) is consistent. This can be easily checked in
nondeterministic polynomia time (it is sufficient to guess an assignment over
X and to check in polynomial timethat it is a solution).
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— Hardness: Reduction from UNSAT. Let @ be a CNF formula. We define the
formula M = (newv @) where new is a new variable (not belonging to
Var(®)). M is satisfiable and it can be polynomialy transformed into an
equivalent CNF M’. It can be checked that @ is unsatisfiable iff —newA M’ is
unsatisfiable. Consider the A-CSP AcsgM’, {—new}): —newA M’ isunsatisfiable
iff {H(—new} is a conflict for AcsgM’, {—new). Since M’ is satisfiable, the
proof also holds under the restriction of a consistent set of constraintsC.

(2) GivenIT=(X,D,C,H)and E C H,is E anogood for IT7?

— Membership to BH2: We check that (X, D, C U E) is inconsistent (one incon-
sistency check) and independently, we check that (X, D, C U (E \ {e})) is con-
sistent for every e € E. All these consistency checks can be encoded in polyno-
mial time into a single consistency check. Indeed, C U (E \ {e}) is consistent for
every e € E iff the constraint /\ ., renaméC U (E \ {e})) isinconsistent (here,
each renaméC U (E \ {e})) isauniform renaming of the variables occurring in
C U (E \ {e}) into new variables). Hence, one inconsistency check plus one con-
sistency check are sufficient to test whether E is a nogood for 17, which shows
the membership to BH».

— Hardness: Reduction from SAT-UNSAT. Let @, ¥ be two CNF formulas. We de-
fine the formula M = (—new v @) A (—new; vV —new Vv renamév)) where
new and newp are new variables (not belonging to Var(®) U Var(rename&v))),
and renaméy) is a uniform renaming of the variables of ¥ (into new variables,
not occurringin Var(®)). M issatisfiable and it can be polynomially transformed
into an equivalent CNF M’. It can be checked that news A M’ is satisfiable. More-
over, @ is satisfiable and ¥ is unsatisfiable iff news A news A M’ is unsatisfi-
able and new A M’ is satisfiable. Consider the A-CSP AcsgM’, {newi, new}).
It holds that newi A news A M’ is unsatisfiable and newi A M’ is satisfiable iff
{H (new), H(new)} isanogood for AcsgM’, {new, newp}). Since M’ is satis-
fiable, the proof holds under the restriction of a consistent set of constraintsC.

(3) GivenIT = (X, D, C, H), isthereaconflict for IT?

— Membership to coNP: We consider the complementary problem. There is no
conflict for IT iff (X, D,C U H) is consistent, which can be checked easily in
nondeterministic polynomial time.

— Hardness: Reduction from UNSAT. Let @ be a CNF formula. We define the
formula M = (newv @) where newis anew variable (not belonging to Var(®)).
M is satisfiable and it can be polynomially transformed into an equivalent CNF
M'’. It can be checked that @ is unsatisfiable iff —newA M’ is unsatisfiable.
Consider the A-CSP AcsgM’, {—new): since M’ is sdtisfiable, the static part
of the A-CSP is consistent; thus {—new is the only potential conflict. Hence
—newA M’ is unsatisfiable iff there is a conflict for AcsgM’, {—new). Since
M’ is satisfiable, the proof also holds under the restriction of a consistent set of
constraints C.
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A.2.4. Complexity proofs: Consistent environments
(4) GivenIT=(X,D,C,H)and E C H, is E aconsistent environment for I7?

— Membership to NP: Trivial consequence of the fact that testing whether E is a
restoration of L on I7 isin NP since E isaconsistent environment for I7 iff E is
arestoration of true (the constraint always satisfied) on I7.

— Hardness: Direct consequence of the fact that E is a consistent environment for
IT iff E isnot aconflict for IT and the coNP-hardness proof above (1).

(5) GivenIT=(X,D,C,H)and E C H,is E aninterpretation of IT?

— Membership to BHa: It is sufficient to check that E is consistent for I7 (one
consistency check), and independently to check that (X, D,C U E U {h}) is
inconsistent for every h € H \ E. All these inconsistency checks can be encoded
in polynomia time into a single inconsistency check. Indeed, C U E U {h}) is
inconsistent for every h € H \ E iff the constraint \/heH\E renaméC U E U {h})
is inconsistent (here, each renam&C U E U {h}) is a uniform renaming of the
variables occurring in C U E U {h} into new variables). Hence, one consistency
check plus one inconsistency check are sufficient to test whether E is a maximal
consistent environment of I7, which shows the membership to BH>.

— Hardness. Reduction from SAT-UNSAT. Let @, ¥ be two CNF formulas. We
define the formula M = (—new v @) A (—news Vv renamév¥)) where new
and new are new variables (not belonging to Var(®) U Var(renam&v))),
and rename¥) is a uniform renaming of the variables of ¥ (into new
variables, not occurring in Var(®)). M is satisfiable and it can be polynomially
transformed into an equivalent CNF M’. It can be checked that @ is satisfiable
and ¥ is unsatisfiable iff newy A M’ is sdatisfiable and newi A new A M’
is unsatisfiable. Consider the A-CSP AcsgM’, {newi, new}); new A M’ is
satisfiableand new, A newp A M’ isunsatisfiableiff { H (newi)} isan interpretation
of AcsgM’, {new, new}). Since M’ is satisfiable, the proof also holds under the
restriction of a consistent set of constraintsC.

(6) GivenIT = (X, D, C, H), isthere aconsistent environment for I77?

— The problemistrivial if C isassumed to be consistent (in this case, # is atrivia
consistent environment). It is NP-compl ete otherwise:

— Membership to NP: A consistent environment for I7T exists iff (X, D,C) is
consistent, which can be easily checked in nondeterministic polynomial time.

— Hardness: Reductionfrom SAT. Let X beaCNF. X isasatisfiable CNF iff theen-
coding of X by aCSPis consistent iff Acsg X, {}) has a consistent environment.

A.2.5. Complexity proofs: Explanations
(7) GivenIT =(X,D,C,H), EC H,and L, is E an explanation of L on IT (general
case)?

— Membership to BH»: E is an explanation of L on [T iff (X,D,C UE) is
consistent and (X, D, C U E U {—L}) isinconsistent. Hence, one inconsistency
check plus one consistency check are sufficient to test whether E is an
explanation of L on I7, which shows the membership to BHa.

— Hardness: Reduction from SAT-UNSAT. Let @, ¥ be two CNF formulas.
We define the formula M = (—=new; v @) A (—new vV —new VvV renamey))
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where newi and news are two new variables (not belonging to Var(®) U
Var(renamév))), and renaméy) is a uniform renaming of the variables of
¥ (into new variables, not occurring in Var(®)). M is satisfiable and it can
be polynomially transformed into an equivalent CNF M’. It can be checked
that @ is satisfiable and ¥ is unsatisfiable iff new A M is satisfiable and
new A M A new is unsatisfiable. Consider the A-CSP AcsgM’, {new}), and
avariable X; of this CSP such that —new is a value of its domain. newy A M
is satisfiable and newg A M A news isnot iff H(new) is an explanation of the
unary constraint “ X; = —new”.
(7b) GivenC, E C H,and L, is E an explanation of L on IT?

This problem is “only” coNP-complete when (X, D,C U H) is known as

consistent.

— Membership to coNP: We consider the complementary problem. E is not an
explanation of L on I7 iff C U E isinconsistent or C U E U {—L} is consistent.
Since C U H is assumed consistent, it is also the case that C U E is consistent
since E C H. Accordingly, E isnot an explanationof L on IT iff CU E U {—L}
is consistent, which can be easily checked in nondeterministic polynomial time
(just guess an assignment and check that it isasolution of C U E U {—=L}).

— Hardness: Reduction from UNSAT. Let @ be a CNF formula. We define the
formulaM = (newv @) where newisanew variable (not belonging to Var(®)).
M is satisfiable and it can be polynomially transformed into an equivalent CNF
M’. It can be checked that @ is unsatisfiable iff —newA M’ is unsatisfiable.
Consider the A-CSP C = AcsgM’, {}). Since M’ is satisfiable, (X, D,C U H)
is consistent. Consider a variable X; of this CSP such that newis a value of
its domain. —newA M’ is unsatisfiable iff {} is an explanation of the constraint
“X; =—-hew.

(8 GivenIi=(X,D,C,H), EC H,and L, is E aminima explanation of L on IT?

— Membershipto BH2: E aminimal explanationof L on I7 iff C U E isconsistent,
C U E U {=L} isinconsistent and for every e € E, C U (E \ {e}) U{—L} is
consistent. In order to check whether C U E is consistent and for every e € E,
C U (E \ {e}) U{—L} is consistent, it is sufficient to check the consistency
of the constraint C A E A A\ ,.prenaméC U (E \ {e}) U {—L}) (here, each
renameéC U (E \ {e}) U {—L}) isauniform renaming of the variables occurring
inCU(E\ {e}) U{—L}into new variables). Hence, oneinconsistency check plus
one consistency check are sufficient to test whether E isaminimal explanation
of L on [T, which shows the membership to BH».

— Hardness. The hardness proof given above (7) still holds here since @ is an
explanation of L on I7 iff it isaminimal explanation of L on IT.

(9) GivenIT = (X, D, C, H) and L, isthere an explanation of L on IT?

— Membership to 25 : Hereisapolynomial time nondeterministic algorithm using
an NP oracle that is sufficient to determine whether an explanation of L on I7
exists. Guess asubset E of H, and check that E is an explanation of L on IT.
As shown above (7), this can be achieved using only two calls to an NP oracle
(one consistency check plus one inconsistency check).
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— Hardness: Reduction from 2-QBF;. Let 3A VB X be a quantified boolean

formulast. {A, B} isapartition of Var(X') and > isaDNF formula.

Let A ={a1,—a1,...,a,, —a,} be the set of al the literals built up on A.
JA VB X holds iff 3A” ¢ A such that A’ A =X is unsatisfiable and A’ is
satisfiable. Now, let M = newv — X where newis anew variable (not belonging
to Var(X)). M is satisfiable. Since X' isa DNF and thus =X aCNF, M can be
polynomially transformed into an equivalent CNF M’. It holdsthat A’ A =X is
unsatisfiable and A’ is satisfiableiff A’ A M A —newisunsatisfiableand A’ A M
is satisfiable. Consider the A-CSP AcsgM’, A), and avariable X; of this CSP
such that newisavalueof itsdomain. A’ A M A—newisunsatisfiableand A’ A M
satisfiable iff there is an explanation of the unary constraint “ X; = new'. Thus
@ is satisfiable and ¥ is unsatisfiable iff there is an explanation of the unary
constraint “ X; = new .

A.2.6. Complexity proofs: Restorations
(10) GivenIT=(X,D,C,H), EC H,and L, is E arestoration of L on IT?

— Membership to NP: Here is a polynomia time nondeterministic algorithm for

checking whether E is a restoration of L on I7T. Guess an assignment over X
and check in polynomial timethat it isasolution of C U E U {L}.

— Hardness: Direct consequence of the NP-hardness of the restricted case of

checking whether E is a consistent environment for I7 (item (4)).

(11) GivenIT=(X,D,C,H), EC H,and L, is E amaximal restoration of L on IT?

— Membership to BHa: It is sufficient to check that E is a restoration of L on

IT (one consistency check), and independently to check that (X, D,C U E U
{L} U {h}) isinconsistent for every h € H \ E. All these inconsistency checks
can be encoded in polynomial time into a single inconsistency check. Indeed,
C U E U {L} U {h}) is inconsistent for every h € H \ E iff the constraint
V hem £ re€NameC U E U{L} U {h}) isinconsistent (here, each rename&C U E U
{L}U{h}) isauniform renaming of the variables occurringin CU E U{L}U {h}
into new variables). Hence, one consistency check plus oneinconsistency check
are sufficient to test whether E isamaximal restoration of L on I7, which shows
the membership to BH».

— Hardness. Direct consequence of the BH»-hardness of the restricted case of

checking whether E is an an interpretation for IT (item (5)).

(12) GivenIT = (X, D, C, H) and L, isthere arestoration of L on I7?

— The problemistrivial when (X, D, C U {L}) isassumed to be consistent (4 isa

restoration of L). It is NP-compl ete otherwise:

— Membership to NP: A restoration of L on [T exists iff (X, D,C U {L}) is

consistent, which can be easily checked in nondeterministic polynomial time.

— Hardness: Reduction from sSAT. Let @ bea CNF formula. We define the formula

M = (newv @) where newis a new variable (not belonging to Var(®)). M is
satisfiable and it can be polynomially transformed into an equivalent CNF M’.
It can be checked that @ is satisfiable iff —newA M’ is satisfiable. Consider the
A-CSP AcspgM’, {}), and avariable X; of this CSP such that newis a value of
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its domain. —newA M’ is satisfiable iff there is a restoration of the constraint
“X; #new.
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