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Introduction

Representing and reasoning under uncertainty is still an important and hot topic in the Artificial In-
telligence community. Indeed, many real world problems need to handle uncertain, and more generally,
imperfect information while requiring efficient inference and reasoning tools in order to draw conclu-
sions, and make decisions, etc. To meet such requirements, many settings have been proposed to model
different types of uncertainty ranging from classical probability and possibility theories to their general-
izations such as imprecise probability theory and interval-based possibility theory to name a few.

Clearly, what is needed is i) flexible, expressive and compact representations and ii) efficient infer-
ence and reasoning machineries. For the first part regarding the quality of the representations, one can
assert that imprecise probabilistic graphical models (commonly called credal networks) and probabilistic
logics [FHM90, Luk99, Ada66] are two of the most flexible and compact representations of uncertain
knowledge. However, inference and reasoning with such models is usually too computationally expen-
sive [MdCBA14, dCC05] to be used in real applications, often involving large sets of variables. This
is on the one hand. On the other one, flexible possibilistic representations such as interval-based possi-
bilistic logic and interval-based possibilistic networks share the same advantages in terms of flexibility
and compactness, and more interestingly they could show better results in reasoning and inference tasks
since the possibilistic setting is qualitative and makes query answering simpler in many situations. For
instance, the use of idempotent operators in the possibilistic setting like the minimum and maximum
may lead to speeding up many tasks while answering some types of queries. This is the starting point of
this thesis: Take advantage of flexible and compact possibilistic representations in order to reason with
uncertain knowledge. Many issues have to be solved to reach such objectives. More precisely,

— Reasoning and inference in interval-based possibilistic settings have not been proposed. For in-
stance, there is no study on conditioning uncertain information in interval-based possibilistic bases
and networks. Our first works were devoted to developing a conditioning machinery for interval-
based possibilistic logic. Such a machinery along with encoding interval-based possibilistic net-
works in the form of interval-based possibilistic bases will allow to update uncertain information
when new pieces of evidence become available. Our contributions regarding these issues are pre-
sented in Chapters 4, 5 and 6.

— Given the fact that agents and experts in real world problems are more used to probabilistic repre-
sentations and given the fact that empirical data is naturally captured by means of frequencies and
probabilities, probabilistic representations are very natural. The question then is how to perform
efficient inference and reasoning tasks given the very high computational complexity of inference
in expressive probabilistic formalisms such as credal networks. Our idea is to transform such prob-
abilistic representations into suitable possibilistic ones and answer queries using the possibilistic
representations. Of course, transformations may result in some information loss but they may al-
low to benefit from the efficiency of the reasoning and inference machinery that will be developed
for the interval-based possibilistic representations. Then there remains to find "good" transforma-
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tions allowing to encode the probabilistic representations in the interval-based possibilistic setting
and empirically evaluate such transformations. These issues are addressed in Chapters 7 and 8.

In this thesis, we are particularly interested in the possibilistic frameworks. Possibility theory [DP15,
Zad99] is a well-known uncertainty theory. This framework was coined by L. Zadeh [Zad99] and it
is developed by several researchers (e.g. Dubois and Prade [DP12], Yager [Yag82] and Borgelt and
Kruse [BK03]). Possibility theory is based on a pair of dual measures allowing to evaluate the knowl-
edge/ignorance relative to the event in hand. Among the main concepts of this framework are the ones
of possibility distributions and possibilistic logic knowledge bases. Possibility theory and possibilistic
logic [CSNC15, Dub14, Lan00, DP11, DGM11] are uncertainty frameworks particularly suited for rep-
resenting and reasoning with uncertain, incomplete, prioritized and qualitative information. Uncertainty
is syntactically represented by a set of weighted formulas of the form K = {(ϕi, αi) : i = 1, .., n}
where ϕi’s are propositional formulas and αi’s are real numbers belonging to [0, 1]. The pair (ϕi, αi)
means that ϕi is certain (or important) to at least a degree αi. An inference machinery has been proposed
in [Lan00] to derive plausible conclusions from a possibilistic knowledge base, which needs log2(m)
calls to the satisfiability test of a set of propositional clauses (SAT), where m is the number of different
levels used in K. Uncertainty is also represented at the semantic level by associating a possibility degree
with each possible world (or interpretation).

In the literature, many extensions have been proposed for possibilistic logic to deal for instance with
imprecise certainty degrees [BHLR11], symbolic certainty weights [BP05, CDT15], multi-agent beliefs
[BDKP13], temporal and uncertain information [DLP91], uncertain conditional events [CP16, CPV14],
generalized possibilistic logic [CSNC15, DP11, DPS12], justified beliefs [FL15], etc.

Interval-based possibility theory

Interval-based uncertainty representations extend the underlying uncertainty settings in order to en-
code uncertainty by means of intervals of possible degrees instead of single values. Such extensions
allow more flexible representations especially to deal with poor information, imprecise or ill-known
beliefs, confidence intervals and multi-source information [Dub06, NK14]. Such representations are
very widely used in some applications such as sensitivity analysis. Interval-based possibilistic logic
[BHLR11] extends the standard possibilistic logic setting to allow intervals of possible degrees instead
of single values attached to the formulas of the knowledge base.

Conditioning [FKRS12, Ker04] is an important task for updating the current uncertain information
when a new sure piece of information is received. A conditioning operator is designed to satisfy some
desirable properties such as giving priority to the new information and ensuring minimal change while
transforming an initial distribution into a conditional one. Conditioning in standard (single-valued) possi-
bility theory has been addressed in many works [His78, LMDCM95, DP06, Fon97, DP97a, BTM99, dC,
Hsi94, BDCPT13]. There are two major definitions of a possibility theory: min-based (or qualitative)
possibility theory and product-based (or quantitative) possibility theory. At the semantic level, these two
theories share the same definitions, including the concepts of possibility distributions, necessity mea-
sures, possibility measures and the definition of normalization conditions. However, they differ in the
way they define possibilistic conditioning. The first one is called min-based conditioning [His78, DP90]
(or qualitative-based conditioning) which is appropriate in situations where only the ordering between
events is important. In this case, the unit interval [0, 1] is viewed as an ordinal scale where only the min-
imum and the maximum operations are used for propagating uncertainty degrees. The second definition
of conditioning is called product-based conditioning (or quantitative-based conditioning) where the unit
interval is used in a general sense. In this case, the product operation can also be used in the propagation
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of uncertainty degrees.

Interval-based possibilistic logic defined in [BHLR11] is only specified for static situations and no
form of conditioning has been proposed for updating the current knowledge and beliefs. In this thesis,
we tackle both definitions of conditioning in an interval-based possibilistic setting. More precisely, we
address two important issues. The first one is whether one can extend and increase the expressive power
of standard possibilistic logic, by representing imprecision regarding uncertainty associated with formu-
las, without increasing the computational complexity of the reasoning process. The second important
issue concerns foundations of conditioning in the interval-based setting. Some concerns arise such as
what natural properties an interval-based conditioning should satisfy in a possibilistic setting. Another
extension of possibility possibilistic framework can be proposed. For instance, a new extension of possi-
bilistic logic where the weights associated with formulas are in the form of sets of uncertainty degrees. A
set of certainty degrees associated with a formula may represent the reliability levels of different sources
that support the formula. This can be provided along with a conditioning method. Among the other
extensions, symbolic possibilistic logic [BP05, CDT15] deals with a special type of uncertainty where
the available uncertain information is in the form of partial knowledge on the relative certainty degrees
(symbolic weights) associated with formulas. In [BDKP13], a multiple agent extension of possibilistic
logic is proposed. This extension associates sets of agents to sets of possibilistic logic formulas and aims
to reason on the individual and mutual beliefs of the agents. Note that no form of conditioning the whole
knowledge is proposed for this setting. Clearly, many of the qualitative extensions of possibilistic logic
mentioned in this section could benefit from our conditioning operators as far as they can be encoded as
set-valued possibilistic bases.

Probability-possibility transformations

A possibilistic formalism as we have said is a natural alternative to represent uncertain information.
However, in many cases, information might not always be expressed using possibility degrees. Indeed,
considering the different uncertain theories available to represent knowledge, a natural question is how to
deal with these different theories at the same time. Transformations in that respect is a natural solution.
The idea of transformation is to express the beliefs or uncertain information defined in some uncertainty
formalism into another formalism. The aim is to minimize information loss in order to be able to infer
the same conclusions in the new setting. In this thesis, we particularly focus on transformations from
probability to possibility distributions. The early works involving probability and possibility theories
were devoted to establishing connections between these two frameworks [Zad99, KG93]. These works
are mostly interested in finding desirable properties to satisfy and then proposing transformations that
guarantee the satisfaction of these properties. An example of such desirable properties is the consistency
principle used to preserve as much information as possible. Probability-possibility transformations are
useful in many ways. For instance, see [BCD07] for an example of propagating probabilistic (stochas-
tic) and possibilistic information in risk analysis. Another motivation is the fact that probabilities are
more suitable in a frequentist setting, but this requires a large number of data. And when data is not
available in sufficient quantities then the possibilistic setting can fill this lack as in [MD06]. Another
motivation for developing probability-possibility transformations is to use existing tools (e.g. algorithms
and software) developed in one setting rather than developing everything from scratch. In this thesis, we
analyze probability-possibility transformations with respect to reasoning tasks (such as marginalization
and conditioning) and also within graphical models (with a particular focus on MPE and MAP queries).
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MAP (Maximum A Posteriori) inference in probabilistic graphical models is a problem of great
interest and has been investigated for years [Kwi14, KBvdG10, MdCC15, Pea89, SD03]. Thus, there
exists a variety of methods and algorithms to compute the configuration of query variables with the
highest probability given some observed variables. However, Bayesian networks, which are the most
widely used probabilistic graphical models, might seem unfit for representing some kinds of information
such as the knowledge of a group of experts, or incomplete knowledge. This is why more general
frameworks are needed for allowing more flexibility especially regarding the model parameters. Credal
networks [Coz00] have been designed to generalize Bayesian networks and offer more expressiveness
as they represent uncertain information by means of credal sets instead of single probability values. The
problem when reasoning with such general and expressive models is that they entail higher computational
complexity. Methods and algorithms to compute MAP inference in credal networks exist and give good
results in terms of accuracy [MdCBA13]. However, these methods are not very efficient in terms of
computational complexity especially when dealing with problems having many variables. A question is
how to improve computational complexity of MAP inference in credal networks. Transformations from
imprecise probability theory to possibility theory is an idea. An experimental study would support the
idea. This thesis provides answers to these issues.

Organization of the thesis and contributions

The first part of this thesis (State of the art) is composed of three chapters. Chapter 1 presents main
concepts of probability theory [Kol60], possibility theory [Zad99], imprecise probability theory [Wal07],
OCF (Ordinal conditional functions)[BHK14, EK14, KT12] and belief functions [Dem67, Sha76]. The
second chapter concerns compact representations of uncertainty distributions (namely probability and
possibility) by means of graphical models and knowledge bases. Chapter 3 gives a review on exist-
ing procedures that transform (im)precise probability distributions to possibility distributions [DFMP04,
KG93, DPS93, MSMR06].

The second part (Conditioning in interval-based and set-based possibilistic frameworks) is dedi-
cated to the proposal of a conditioning operator in the interval-based possibility and set-valued possibility
frameworks. This part is divided into three chapters.

Chapter 4, entitled Quantitative conditioning in interval-based possibilistic setting, tackles con-
ditioning in quantitative or product-based interval-based possibilistic setting. The proposed conditioning
operator is based on the notion of compatible possibility distributions (resp. knowledge bases). It first
gives a reminder on interval-based possibility theory. We characterize expected properties that a compat-
ible conditioning should satisfy. Then we propose a natural definition of conditioning an interval-based
possibility distribution with a new evidence. This definition is safe since it takes into account all the
compatible distributions. We show that applying product-based conditioning leads to an interval-based
possibility distribution. We provide the exact computations of lower and upper endpoints of intervals
associated with each interpretation of the conditioned interval-based possibility distribution. Lastly, we
propose a syntactic counterpart of conditioning over interval-based possibilistic bases. The proposed
conditioning does not induce extra computational costs. Conditioning an interval-based possibilistic
knowledge base has the same complexity as conditioning a standard possibilistic knowledge base.

Results of this chapter have been published in [BLTK15, BLT15b].

Chapter 5, entitled Qualitative conditioning in an interval-based possibilistic setting, tackles
compatible-based conditioning in a qualitative (or min-based) interval-based possibility distribution. We
first propose three natural postulates for an interval-based conditioning. We show that any interval-
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based conditioning satisfying these postulates is necessarily based on applying min-based conditioning
on each compatible standard possibility distribution. The second contribution consists in providing the
exact lower and upper endpoints of min-based conditioning an interval-based distribution and a pro-
posal of efficient procedures to compute the lower and upper endpoints of the conditional interval-based
possibility distribution. The third contribution concerns syntactic computations of conditioning where
interval-based possibility distributions are compactly represented by interval-based knowledge bases.
We again show that qualitative interval-based conditioning has the same computational complexity as
the standard min-based conditioning.

Results of this chapter are to appear shortly in FSS - Fuzzy Sets and Systems journal (a minor revi-
sion is required).

Chapter 6, entitled Set-valued possibilistic framework : Definitions and conditioning, focuses on
a new extension of possibilistic logic where the weights associated with formulas are in the form of sets
of uncertainty degrees. The first contribution of this paper concerns then the definition of a set-valued
possibility theory which generalizes both standard possibility theory and interval-based possibility the-
ory [BHLR11]. The second contribution deals with conditioning in a set-valued possibility theory set-
ting. We again propose three natural postulates for a set-valued conditioning. These three postulates are
the counterparts of the ones used for analyzing qualitative interval-based possibilistic conditioning. We
also show that any set-valued conditioning satisfying these postulates is necessarily based on applying
min-based conditioning on each compatible standard possibility distribution. We provide the exact set
of possibility degrees associated with min-based conditioning a set-valued distribution. The last contri-
bution concerns efficient and syntactic computations of conditioning set-valued knowledge bases.

Results of this chapter have been published in [BLTK16].

Chapter 7, entitled Property analysis of probability-possibility transformations, deals with proba-
bility-possibility transformations with respect to reasoning tasks and graphical models. In this work,
we are interested in analyzing properties of probability-possibility transformations such as preserving
marginalization, preserving conditioning and preserving independence relations. We analyze these prop-
erties when the available information is encoded by means of distributions or in the form of graphical
models. We show that there is no transformation from the probabilistic into the possibilistic setting
that guarantees most of the reasoning tasks dealt with in this work. For instance, regarding preserving
marginalization, we show that no transformation can preserve the relative order of arbitrary events even
if it preserves the relative order of interpretations.

Results of this chapter have been published in [BLT15c, BLT15d].

In Chapter 8, entitled Approximation of Map Inference in Credal Networks, we provide a new
and efficient method for MAP inference in credal networks based on imprecise probability-possibility
transformations. The main contributions of this work consist in proposing and analyzing a probability-
possibility transformation allowing us to turn a credal network into a possibilistic network. We use
these transformations to propose an approximate approach for MAP inference in credal networks. We
experimentally evaluate and compare our approach to both existing exact and approximate approaches
for MAP inference in credal networks. The benefits of our approach are reducing the computational
time of MAP inference while ensuring narrower answer sets. An important contribution of this chapter
concerns the analysis of MAP inference complexity in possibilistic networks. The work of this chapter
is highlighted by an application to learning possibilistic networks with an application to classification
problems.

Results of this chapter have been published in [BLT15a, HLLT17, HLLT16, BLT17b, BLT17a].
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The Conclusion chapter contains a general review of the main contributions. It also highlights some
future works which are directly linked to our contributions.

In the Appendix, one can find additional background notions on graphical models.
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Chapter 1

Uncertainty theories

When it comes to knowledge representation, a major concern is how to handle and represent uncer-
tain information. In Artificial intelligence, since the last part of XXth century, the interest for knowledge
representation tends to grow, especially the representation of information tainted with imprecision and
uncertainty. This chapter gives a brief overview of some well-known uncertainty frameworks such as
probability theory [Kol60, Jay03, Nea12], possibility theory [DP88, Zad99, DP98, Coo97], imprecise
probability [Wal07, Wal00, Wei00, DP05], and belief functions [Dem67, Sha76, She94].

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Possibility theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Interval-based probability theory . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Belief functions theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Ordinal conditional functions (OCF) . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 Introduction

Referring to [DP09] the term information refers to any collection of symbols or signs produced either
through the observation of natural or artificial phenomena or by cognitive human activity with a view to
help an agent understand the world or the current situation, making decisions, or communicating with
other human or artificial agents.

In general, a piece of information can be generic or singular. Generic information refers to a collec-
tion of situations, for instance it can be a physical law, or information derived from repeated observations,
or even a piece of commonsense knowledge. A Singular information refers to a particular situation con-
sidered as true, such as results of an observation, of tests or yet measures. It can also come from a
testimony. The distinction between generic and singular information is important when considering
problems of conditioning or revision of uncertain information [KH15].

When dealing with uncertainty, a distinction between so-called objective information resulting from
sensor measurements and subjective information typically uttered by individuals (e.g. testimonies) is
often made. Namely, a subjective information is individual and susceptible to change given one’s per-
sonality, whereas objective information does not depend upon personal factors in the judgment made.

We can distinguish uncertain information by different types whether it is incomplete information,
imprecise information, fuzzy information or uncertain information.
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1.2. Probability theory

We define incomplete information as information that does not allow an agent to answer precisely a
question in a given context. In this respect, incompleteness and imprecision are linked, as we interpret
imprecision as a form of incompleteness, meaning that an imprecise answer only leads to incomplete
information.

In the case of uncertain information, the agent is unsure of the true value of the information, but
can qualify the uncertainty. This can be done with a numerical or symbolic label (e.g. linguistic). For
instance, consider the statements:

— the probability that the meeting takes more than two hours is 0.7

— it is very possible that it will rain tomorrow

— it is not absolutely certain that Jim comes to the shop tomorrow

To sum up, information entails uncertainty and to model and reason with this uncertainty, it is nec-
essary to have frameworks adapted for handling these different types of uncertain information. For that
purpose, we rely on uncertainty theories. In this context, there exists quite a few, as far as we are con-
cerned, we will present only probability theory and possibility theory; the extension of probability theory
known as imprecise probability and to be more relevant we will discuss a few others.

Notations

In order to represent the epistemic state of an agent, we need to introduce some notations that are
used in this chapter.

— V = {X1, X2, .., Xn} denotes a set of variables

— xi denotes a state of the variable Xi

— DX denotes the domain of X , i.e. xi ∈ DX , in this thesis, domains are finite and discrete.

— Ω denotes the universe of discourse. When variables are considered, Ω = DX1
×DX2

× ..×DXn

which is the Cartesian product of all domains of variables in V

— ω or ωi denotes an interpretation or configuration of Ω. It is an affectation of all variables

— Greek letters, such as φ, ψ (or φi, ψi), are used to denote a subset of interpretations, φ ⊆ Ω, ψ ⊆ Ω

— p and P respectively denote a probability function and a probability measure respectively

— we use equivalently x1, x2, x3 and x1x2x3 to denote the configuration of the variables X1 =
x1, X2 = x2 and X3 = x3

— ⊥ described the notion of independence, for example A ⊥ B means that A and B are independent

— π, Π and N represent the possibility function, the possibility measure and the necessity measure
respectively

— |∗ and |m denote the two different possibilistic conditioning operators using the product ∗ or the
minimum m

— for I an interval I and I represent the lower and upper bound of I

1.2 Probability theory

We commonly use the word "probability" on a daily basis as a degree of confidence that an event of
an uncertain nature will occur. For example, the weather report might say "there is a low probability of
light rain in the afternoon." Probability theory [Kol60, Jay03, Nea12] is the mathematical study of phe-
nomenon characterized by uncertainty. It was inspired by chance games in the 17th century. Probability
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theory is a well-known and widely used uncertainty framework. One of the building blocks of this set-
ting is the one of probability distribution p assigning a probability degree to each elementary state of the
world. Probability theory is ruled by Kolmogorov’s axioms [Kol60] and have two main interpretations
(namely, the frequentist and subjective interpretations).

In this section, we introduce the following background materials in probability theory, which will be
used in the remainder of this thesis:

— probability distributions.

— probability measure.

— dependence and independence.

— Bayes’ theorem.

1.2.1 Probability distribution

To measure uncertainty, we start with a given space of possible outcomes, denoted by Ω. For exam-
ple, if we consider the age of an agent, we might set Ω = {1, 2, 3, ..., 110}. The set Ω is also referred as
the universe of discourse. In addition, we define an event as a set of possible outcomes. Formally, each
event φ is a subset of Ω. In our agent’s age example, the event {6} represents the case where the agent is
6 years old, and the event {1, ..., 17} represents the case of a minor agent.

Definition 1.1 (Probability distribution ). Let Ω be the universe of discourse, a probability distribution p
maps to each state ωi, a degree within the interval [0, 1].

p : Ω → [0, 1]
∀ωi ∈ Ω, ωi → p(ωi) ∈ [0, 1].

(1.1)

When the universe of discourse Ω refers to a set of discrete variables V , p(x1x2...xn) denotes the
probability mass function of the variables in V , that is,

p(x1...xn) = p(X1 = x1, ..., Xn = xn). (1.2)

Note that a variable is denoted by an uppercase letter and its possible values are denoted by the corre-
sponding lowercase letter. For example, if Xi is a binary variable, then xi can be either 1 or 0.

One of the main concepts of probability theory is the concept of probability measure. The aim of a
probability measure is to assign to every subset of Ω a real value measuring the degree of uncertainty
about its occurrence.

Definition 1.2 (Probability measure). A probability measure P (φ) maps any event φ ⊆ Ω to a degree
(real) in the interval [0, 1] which reflects the odds of φ to realize. P (φ) is define as follows:

P (φ) =
∑

ωi∈φ

p(ωi) (1.3)

Example 1.1. On this example we give two different probability distributions, one over a set of configu-
rations Ω = {ω1, ω2, ω3, ω4} (see Table 1.1). And another one over a set of binary variables V = {A,B}
with DA = {a, a} and DB = {b, b} (see Table 1.2). Thus, the universe of discourse for this table is
given by Ω = {ab, ab, ab, ab}.

On this example, we might want to compute the degree associated to the event φ = {ω1, ω2} and
the degree associated to the event ψ = {ab, ab} which also refers to the degree of the event "A is true"
(A = a). To do so, it is enough to sum up the probability degrees of ω1 and ω2.
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1.2. Probability theory

ωi p(ωi)

ω1 0.2

ω2 0.5

ω3 0.15

ω4 0.15

Table 1.1 – Example of a probability distribution
over a set of states

AB p(AB)

ab 0.6

ab 0.3

ab 0.1

ab 0.0

Table 1.2 – Example of a probability distribution
over two binary variables A and B

Kolmogorov’s axioms

Probability theory is ruled by axioms, known as Kolmogorov axioms [Kol60]:

Axiom 1 (Non-negativity).
φ ⊆ Ω, 0 ≤ P (φ) ≤ 1 (1.4)

An event belonging to the universe of discourse can be in the worst case impossible (with a probability
degree of 0) or sure in the best of cases (with a probability degree of 1).

Axiom 2 (Normalization).
P (Ω) = 1 (1.5)

The probability mass is entirely distributed to the events of the universe of discourse.

Axiom 3 ((Finite) Additivity).

P (φ ∪ ψ) = P (φ) + P (ψ) if φ and ψ are disjoint sets (1.6)

This axiom is an aggregation formula that can be used to compute the probability of a union of disjoints
subsets. It states that the uncertainty of a given subset is the sum of the uncertainties of its disjoints parts.

From the above axioms, many interesting properties [CGH96] of a probability measure can be de-
rived. For example:

— Property 1 (Boundary): P (∅) = 0.

— Property 2 (Monotonicity): If φ ⊆ ψ ⊆ Ω, then P (φ) ≤ P (ψ).

— Property 3 (Inclusion-Exclusion): Given any pair of subsets φ and ψ of Ω, the following equality
always holds:

P (φ ∪ ψ) = P (φ) + P (ψ)− P (φ ∩ ψ) (1.7)

Property 1 states that the evidence associated with a complete lack of information is defined to be zero.
Property 2 shows that the evidence of the membership of an element in a set must be at least as great as
the evidence that the element belongs to any of its subsets. In other words, the certainty of an element
belonging to a given set φ must not decrease when adding elements to φ. Property 3 states that the prob-
abilities of the sets φ, ψ, φ ∪ ψ and φ ∩ ψ are not independent; they are related by Equation (1.7).

Intuitively, the probability P (φ) of an event φ quantifies the degree of confidence that a state from
φ will occur. If P (φ) = 1, we are certain that one of the outcomes in φ occurs, and if P (φ) = 0, we
consider all of them impossible. Other probability values represent options that lie between these two
extremes.

This description, however does not provide an answer to what the numbers mean. There are two
common interpretations for probabilities.

11



Chapter 1. Uncertainty theories

— Frequentist interpretation where probabilities are related to frequencies. We consider the proba-
bility of an event as the fraction of times the event occurs if we repeat the experiment indefinitely.

Finite frequentism remains the dominant view of probability in statistics, and in the sciences more
generally.

— Subjective probability is an alternative interpretation and it views probabilities as subjective de-
grees of belief. Under this interpretation, the statement P (φ) = 0.4 represents a subjective state-
ment about one’s own degree of belief that the event φ will come about. Thus, the statement "the
probability of having a math test tomorrow is 50 percent" tells us that in the opinion of the speaker,
the chances of a test or no test tomorrow are the same.

1.2.2 Probabilistic reasoning: marginalization and conditioning

Let V = {X1, X2, .., Xn} be a set of discrete random variables and {x1, .., xn} be a set of their
possible realizations or instantiations. Let p be a probability distribution, then given this distribution one
can apply some reasoning rules in order to infer information. These rules are defined in the following.

Once we define a distribution over the universe of discourse, we can consider a distribution over
events (or a set of variables, or a unique variable). This distribution is referred to as marginal probability

distribution and is given by Definition 1.3.

Definition 1.3 (Marginalization rule). Let {X1, . . . , Xk} ⊆ V ,

p(X1..Xk) =
∑

Xk+1..Xn

(p(X1X2..Xn)) (1.8)

Marginalization is an extension to variables of the additivity axiom.

Remark. A marginal distribution is a probability distribution, therefore it satisfies the three axioms from
Section 1.2.1.

Knowledge about the occurrence of an event can modify the probabilities of other events. For exam-
ple, the probability of rain tomorrow afternoon can change after watching the weather report on televi-
sion. Thus, each time new information becomes available, the probabilities of events may change. This
leads to the concept of conditional probability.

Definition 1.4 (Conditioning). Let φ and ψ be two events. Then the conditional probability of φ given
ψ is computed following:

P (φ|ψ) =
P (φ ∩ ψ)

P (ψ)
(1.9)

We deduce from Definition 1.4, the product rule that allows to compute any intersection of events.

Definition 1.5 (Product rule). Let φ and ψ be two events.

P (φ ∩ ψ) = P (φ) ∗ P (ψ|φ) = P (ψ) ∗ P (φ|ψ) (1.10)

The chain rule allows to compute any configuration of a distribution over a set of random variables
using only probabilistic conditioning rule.

Definition 1.6 (Chain rule). Let V = {X1, . . . , Xn}

P (X1X2..Xn) = P (X1) ∗ P (X2|X1) ∗ .. ∗ P (Xn|X1..Xn−1) (1.11)

12



1.2. Probability theory

Definition 1.7 (Bayes rule). ∀φ ⊆ Ω, ∀ψ ⊆ Ω,

P (φ|ψ) =
P (φ) ∗ P (ψ|φ)

P (ψ)
(1.12)

Bayes rule allows to express P (φ|ψ) given P (ψ|φ) (invert the probability). This allows, for example,
to compute probability measure of causes if the effects are known and the probability degrees of these
effects given the causes.

Conditioning with uncertain evidence

There are two types of evidence that one may encounter: hard evidence and soft evidence. Hard evi-

dence is information known to the true, which is also the type of evidence we have considered previously
in the definition of conditioning (Definition 1.4). Soft evidence or uncertain evidence, on the other hand,
is not certain: we may get an unreliable testimony that event φ occurred, which may increase our belief
in φ but not to the point where we would consider it certain. Conditioning with uncertain information,
therefore, differs from conditioning with hard evidence. We need to take into account the uncertainty
about the new information. For example, the confidence we have in the weather report might not be
complete, and after watching the report our belief changes but not with a certain measure so we must
adjust our judgment.

Jeffrey’s conditioning rule [Jef65] allows to revise a probability distribution p into p′ given a third
probability distribution depicting the new piece of uncertain information. Note that Bayes conditioning
is a special case of Jeffrey’s rule when α = 1. This method involves:

— A way to specify uncertain evidence: let φ1, ..., φn be an exhaustive and mutually exclusive set
of events where the uncertainty is described as a set of couples α = {(φi, αi), i = 1, ..., n} which
means that after the revision, the a posteriori probability of each event φi must be equal to αi.
Namely,

∀(φi, αi) ∈ α, P
′(φi) = αi (1.13)

— Minimal change principle: the minimal change principle says that the probabilistic conditioning
of any event ψ ⊆ Ω given an uncertain event φi stays the same in the initial and revised probability
distribution. More formally,

∀φi ⊆ Ω, ∀ψ ⊆ Ω, P ′(ψ | φi) = P (ψ | φi) (1.14)

The underlying interpretation of the revision involved in Equation (1.14) is that the conditioned
probability distribution p′ does not change the conditional probability degree of any event ψ given the
uncertain event φi.

Equations (1.13) and (1.14) allow to condition a probability distribution p′ given α. This is defined
as:

∀ψ ⊆ Ω, P ′(ψ) =
∑

φi

α ∗
P (ψ, φi)

P (φi)
(1.15)

Remark. The conditioned probability distribution p′ obtained using Jeffrey’s rule is unique and always
exists [CD05, BTS10].
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Chapter 1. Uncertainty theories

1.2.3 Probabilistic independence

Definition 1.8 (Independence of two events). Let φ and ψ be two events included in Ω. Then φ is said
to be independent of ψ, denoted φ ⊥ ψ, if and only if

p(φ|ψ) = p(φ). (1.16)

Otherwise φ is said to be dependent on ψ, denoted φ 6⊥ ψ.

Definition 1.9 (Independence of two variables). Let X and Y be two variables of the set of random
variables V . Then X is said to be independent of Y , denoted X ⊥ Y , if and only if

∀x ∈ X and y ∈ Y, p(x|y) = p(x). (1.17)

Otherwise X is said to be dependent on Y , denoted X 6⊥ Y .

Equation (1.17) means that if X is independent of Y , then our knowledge of Y does not affect our
knowledge about X . Also, if X is independent of Y , we can then combine Equation (1.9) and (1.17) and

obtain
p(x, y)

p(y)
= p(x), which implies

p(x, y) = p(x)p(y). (1.18)

Equation (1.18) says that if X is independent of Y , then the joint probability distribution of X and Y is
equal to the product of their marginals.

The concept of dependence and independence of two random variables can be extended to the case
of more than two random variables as follows:

Definition 1.10 (Independence of a set of variables). The random variables {X1, X2, ..., Xm} are said
to be independent if and only if

∀x1 ∈ X1, ..., xm ∈ Xm, p(x1, ..., xm) =
m
∏

i=1

p(xi). (1.19)

Otherwise they are said to be dependent.

In other words, {X1, ..., Xm} are said to be independent if and only if their probability distribution
is equal to the product of their marginal probability distributions. Note that Equation (1.19) is a general-
ization of Equation (1.18).

The concepts of dependence and independence deal with two subsets of variables. Now we turn to
a generalization of the concept of independence when more than two sets of variables are involved with
the definition of conditional independence.

Definition 1.11 (Conditional independence and dependence). Let X,Y and Z be three disjoint sets of
variables, then X is said to be conditionally independent of Y given Z, denoted X ⊥ Y |Z, if and only if

∀x ∈ X, y ∈ Y and z ∈ Z, p(x|z, y) = p(x|z). (1.20)

Otherwise X and Y are said to be conditionally dependent given Z, denoted X 6⊥ Y |Z.

This means that once Z is known, knowing Y can no longer influence the probability of X .
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Properties of conditional independence

There are five main properties of conditional independence [Daw79, Pea09].

— X ⊥ Y |Z if and only if Y ⊥ X|Z (Symmetry)

— X ⊥ Y ∪W |Z if X ⊥ Y |Z and X ⊥W |Z (Decomposition)

— X ⊥ Y ∪W |Z if X ⊥W |Z ∪ Y (Weak union)

— X ⊥ Y |Z and X ⊥W |Z ∪ Y if X ⊥W ∪ Y |Z (Contraction)

— X ⊥ Y |Z ∪W and X ⊥W |Z ∪ Y if X ⊥W ∪ Y |Z (Intersection)

Independence and conditional independence are two fundamental concepts of probability theory as it
is the base of Bayesian networks [Pea88] which are compact representations based on probability theory.

1.3 Possibility theory

Possibility theory [DP88, Zad99, DP98, Coo97] is an uncertainty theory dedicated to deal with in-
complete and qualitative information. It is largely comparable to probability theory because it is based
on sets. It differs from the latter since it uses a pair of dual set functions (possibility and necessity mea-
sures) instead of only one. Moreover, it is maxitive and makes sense on ordinal structures. The name
"Possibility theory" was coined by Zadeh [Zad99].

1.3.1 Possibility distribution

The basic building blocks of possibility theory were first described in [Zad99, DP80, DP12]. More
recent accounts are in [DP98, DP93].

Definition 1.12 (Possibility distribution). Let Ω be the universe of discourse, a possibility distribution
maps to each state ωi ∈ Ω, a degree within the interval [0, 1].

π : Ω → [0, 1]
∀ωi ∈ Ω, ωi → π(ωi) ∈ [0, 1].

(1.21)

The function π represents the knowledge of an agent where a distinction is made between what is
plausible from what is less plausible, what is surprising from what is expected. It can represent extreme
forms of knowledge with:

— π(ω) = 0 which mean that state ω is rejected or impossible;

— π(ω) = 1 which means that state ω is totally possible (plausible).

Note that possibility degrees are interpreted either qualitatively (in min-based possibility theory) where
only the "ordering" of the values is important, or quantitatively (in product-based possibility theory)
where the possibilistic scale [0, 1] is quantitative as in probability theory [DP98].

Contrary to probability theory where the uncertainty of an event φ is identified by the uncertainty of
the complementary event (namely, P (φ) = 1−P (φ)), in possibility theory given a possibility distribution
π over Ω, we distinguish two dual measures that are the possibility measure and the necessity measure.
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Possibility measure

The possibility measure represents the compatibility degree of the event φ with the encoded beliefs
in π. In other words, this measure evaluates the consistency degree of the event φ with the information
depicted in π. More formally,

Definition 1.13 (possibility measure). The possibility measure Π(φ) is defined by:

Π(φ) = max
ω∈Ω
{π(ω) : ω ∈ φ}. (1.22)

This possibility measure is characterized by:

— Π(φ) = 1 and Π(φ) = 0 means that φ is necessarily true,

— Π(φ) = 1 and Π(φ) ∈]0, 1[ means that φ is plausible at a certain degree (φ is more plausible then
φ),

— Π(φ) = 1 and Π(φ) = 1 depicts total ignorance (both φ and φ are possible),

— Π(φ) > Π(ψ) means that φ is more plausible than ψ.

Definition of necessity measure

The necessity measure is the dual measure of the possibility measure. It represents the certainty
degree of φ given the beliefs expressed in π. Formally,

Definition 1.14 (necessity measure). The necessity measure N(φ) is defined by:

N(φ) = 1−Π(φ) = min
ω 6∈φ

(1− π(ω)) (1.23)

Note that N(φ) > 0 ⇒ Π(φ) = 1 which means that an event is only necessary if it is completely
possible. This property ensures the following inequality N(φ) ≤ Π(φ). In the same way, this measure
is characterized by:

— N(φ) = 1 and N(φ) = 0 means that φ is necessarily true,

— N(φ) ∈]0, 1[ and N(φ) = 0 means that φ is plausible at a certain degree,

— N(φ) = 0 and N(φ) = 0 depicts total ignorance.

Axioms ruling possibility theory

Axiom 4 (Non-negativity).
∀φ ⊆ Ω, 0 ≤ Π(φ) ≤ 1 (1.24)

An event belonging to the universe of discourse can be in the worst case impossible (with a possibility
degree of 0) or totally possible in the best of case (with a possibility degree of 1).

Axiom 5 (Normalization). If Ω is exhaustive then at least one of the elements of Ω should be the actual
world, so that

∃ω ∈ Ω, π(ω) = 1. (1.25)

Distinct states may simultaneously have a degree of possibility equal to 1. Thus, a possibility distri-
bution mapping to each state of Ω the possibility degree 1 reflects total ignorance.

The next axiom is what makes the very big difference with probability theory since this latter is
additive while possibility theory is maxitive.
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Axiom 6 (Maxitivity).
Π(φ ∪ ψ) = max(Π(φ),Π(ψ)) (1.26)

From these axioms, the following properties can be stated:

— max(Π(φ),Π(φ)) = 1,

— Π(φ ∩ ψ) ≤ min(Π(φ),Π(ψ)),

— min(N(φ), N(φ)) = 0 is the only relation that links φ and φ,

— N(φ ∨ ψ) ≥ max(N(φ), N(ψ)),

— N(φ ∧ ψ) = min(N(φ), N(ψ)).

1.3.2 Possibilistic reasoning: marginalization and conditioning

As in the probabilistic setting, for possibility theory we also define marginalization and conditioning.

Definition 1.15 (Marginalization rule). Let {X1, . . . , Xk} ⊆ V ,

π(X1..Xk) = max
Xk+1..Xn

(π(X1X2..Xn)) (1.27)

Remark. A marginal distribution is also a possibility distribution, therefore it satisfies the three axioms
from Section 1.3.1.

Conditioning is an important belief change operation concerned with updating the current beliefs
encoded by a probability distribution or a possibility distribution when a completely sure event φ (ev-
idence) is available. While there are several similarities between the quantitative possibilistic and the
probabilistic frameworks (conditioning is defined in the same way), the qualitative one is significantly
different.

Quantitative conditioning

In the quantitative setting, the product-based conditioning (also known as Dempster rule of condi-
tioning) is defined as follows: given a possibility distribution π, and a new evidence φ ⊆ Ω (φ 6= ∅) the
conditional distribution π(.|φ) is obtained using (we assume here that Π(φ) > 0):

π(ωi|∗φ) =

{

π(ωi)
Π(φ) if ωi ∈ φ;

0 otherwise.
(1.28)

Qualitative conditioning

Conditioning in the qualitative setting is defined as follows [His78]:

π(ωi|mφ) =







1 if π(ωi) = Π(φ) and ωi ∈ φ;
π(ωi) if π(ωi) < Π(φ) and ωi ∈ φ;
0 otherwise.

(1.29)

Note that the two definitions of possibilistic conditioning satisfy the condition: ∀ω ∈ φ, π(ω) =
π(ω|φ)⊗Π(φ) where ⊗ is either the product or min-based operator.

Different extensions of these two definitions have been proposed. For instance, in [BDCPT13] the
authors dealt with syntactic hybrid conditioning of standard (point-wise) possibilistic knowledge bases
with uncertain inputs.
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Conditioning with uncertain information

Aside conditioning with sure piece of information, we also can condition with uncertain informa-
tion. As in probability with Jeffrey’s conditioning, Dubois and Prade [DP97b, BTS11] have addressed
conditioning with uncertain information for the possibilistic setting. Given π a possibility distribution
encoding the initial knowledge and Π′(φ) the uncertainty lying on the event φ, the uncertainty is denoted
by (φ, α) such that Π′(φ) = α. Then the possibility distribution π′ revised according to Dubois and
Prade’s rule [DP97b] must satisfy the following conditions:

1. ∀φ, Π′(φ) = α

2. ∀φ ⊆ Ω, ∀ψ ⊆ Ω, Π′(ψ | φ) = Π(ψ | φ)

Conditioning based on Jeffrey’s rule in the quantitative setting was formalized by Dubois and Prade
[DP97b] as follow:

Definition 1.16 (Quantitative conditioning with uncertain information). Let π be a possibility distribu-
tion and φ1, ..., φn an exhaustive and mutually exclusive set of events where the uncertainty is of the
form Π′(φi) = αi. The revised possibility degree of an event ψ ⊆ Ω is computed using the formula:

∀ψ ⊆ Ω, Π′(ψ) = max
φi

(αi ∗
Π(ψ, φi)

Π(φi)
) (1.30)

According to Definition 1.16, the revised degree of a world ωj ∈ Ω is computed using the following
Lemma 1.1.

Lemma 1.1.

∀ωj ∈ φi, π
′(ωj) = αi ∗

π(ωj)

Π(φi)
. (1.31)

It is important to note that Definition 1.16 satisfies the axioms defined for possibility theory in par-
ticular the normalization condition.

Remark. The conditioned possibility distribution π′ obtained using Jeffrey’s rule is unique and always
exists [BTS11].

Belief revision in qualitative possibility theory can be done using Jeffrey’s rule of Definition 1.17
that has been also proposed by Dubois and Prade [DP97b].

Definition 1.17 (Qualitative conditioning with uncertain information). Let π be a possibility distribution
and φ1, ..., φn an exhaustive and mutually exclusive set of events where the uncertainty is of the form
Π′(φi) = αi. The revised possibility degree of an event ψ ⊆ Ω is computed using the formula:

∀ψ ⊆ Ω, Π′(ψ) = max
φi

(min(Π(ψ | φi), αi)) (1.32)

We can easily verify that Π′ of Definition 1.17 satisfies the 3 axioms defining a possibility measure.
According to Definition 1.17, the conditioned possibility degree of a world ωj ∈ Ω is given by

Lemma 1.2.

Lemma 1.2.

∀ωj ∈ φi, π
′(ωj) =

{

αi if ωj ≥ αi or π(ωj) = Π(φi);
π(ωj) otherwise.

(1.33)

Remark. Contrary to product-based conditioning, the conditioned possibility distribution π′ obtained
using qualitative Jeffrey’s rule does not always exist [BTS11].
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1.3.3 Possibilistic independence

Possibilistic independence relationship is based on possibilistic conditioning. Indeed, consider X,Y
and Z three disjoint sets of variables, then X is said to be independent of Y given Z, if for any config-
uration z of DZ , the conditional possibility degree of any configuration x ∈ DX remains the same for
any configuration of y ∈ DY . More formally:

∀x, y, z, Π(x|y, z) = Π(x|z). (1.34)

Note that the definition is the same as in probability theory. The only difference lies in the definition of
Π(x|y, z) in the possibilistic setting. We have two different ways of conditioning; hence we have two
definitions of independence:

Definition 1.18 (Conditional independence based on the minimum). Initially defined as a non-interactivity
relation in [Zad79], this relation is obtained using the conditioning based on the minimum (in the quali-
tative possibilistic setting) of Equation(1.29) and is as follows:

∀x, y, z, Π(x|y, z) = min(Π(x|z),Π(y|z)). (1.35)

Definition 1.19 (Conditional independence based on the product). The independence is based on the
conditioning rule defined in the quantitative possibilistic setting. The relation is described as follows:

∀x, y, z, Π(x|y, z) = Π(x|z) ∗Π(y|z). (1.36)

Example 1.2. Let A,B and C be three binary variables. One can easily check in Table 1.3 that A
and B are independent given C. More formally, that ∀ai ∈ DA, ∀bj ∈ DB , ∀ck ∈ DC we have:
π(ai|bjck) = π(ai|ck).

ABC π∗(ABC) πm(ABC)

a1b1c1 .4 .4
a1b1c2 .6 .6
a1b2c1 .12 .3
a1b2c2 1 1
a2b1c1 .3 .3
a2b1c2 .162 .3
a2b2c1 .09 .3
a2b2c2 .27 .3

Table 1.3 – Possibility distribution of two conditionally independent variables A and B given C

1.4 Interval-based probability theory

Probability and possibility theory are among the two most popular theories to represent and reason
with uncertainty. However, it is difficult for an agent to provide precise and reliable crisp belief degrees.
This has led researchers to develop alternative and flexible formalisms for representing and managing ill-
known beliefs. Imprecise probability generalizes standard probability to encode ill-know beliefs where
these latter can be encoded by means of sub-intervals of [0, 1]. We use real number based intervals
I = [α, β] ⊆ [0, 1] to encode the uncertainty associated with worlds. We denote by I the set of all
closed intervals over [0, 1]. If I is an interval, then we denote by I and I its upper and lower endpoints
respectively. When all I’s associated with interpretations are singletons (namely I = I), we refer to
standard (or point-wise) distributions.
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1.4.1 Credal sets

In real life we have to deal with incomplete knowledge and ill-known beliefs. Such imperfections
are due to the lack of time, resources, patience from the agent, or the lack of confidence to provide
exact probability values. Imperfections can also come from dealing with a group of disagreeing experts,
each specifying a particular probability [Lev80]. It is therefore difficult to meet all the assumptions of
a standard probabilistic model. Imprecise probability theory [Wal07, Wal00, Wei00, DP05] generalizes
probability theory to encode imprecise and ill-known information.

A key notion in imprecise probability theory is the one of credal set.

Definition 1.20 (Credal set). A credal set is a convex set of probability distributions.

Intuitively, if K is a convex set of probability measures, then mixing any two distributions p1 and
p2 from K will result in a distribution p belonging to K. Mixing here means linearly combining a set
of distributions p1 ... pk as follows: p =

∑k
i=1(αi ∗ pi) where

∑k
i=1 αi = 1. A credal set is often

interpreted as a set of imprecise beliefs in the sense that the true uncertainty model (probability measure)
is in this set but there is no way to determine it exactly due to lack of knowledge. In order to characterize
a credal set, one can use a (finite 1) set of extreme points [MD13] (edges of the polytope representing the
credal set), probability intervals or linear constraints.

Interval-based probability distributions are a very natural and common way to specify imprecise
information. In an interval-based probability distribution IP , every interpretation ωi ∈ Ω is associated
with a probability interval IP (ωi) = [αi, βi] where IP (ωi) = αi (resp. IP (ωi) = βi) denotes the lower
(resp. upper) bound of the probability of ωi.

Definition 1.21 (Interval-based probability distribution). Let Ω be the set of possible worlds. An interval-
based probability distribution IP is a function that maps every interpretation ωi ∈ Ω to a closed interval
[αi, βi] ⊆ [0, 1].

Example 1.3. Let A be a variable with a domain DA = {a1, a2, a3}. Table 1.4 provides an example of
interval-based probability distributions.

A IP (A)

a1 [0, .4]
a2 [.1, .55]
a3 [.1, .65]

Table 1.4 – Example of an interval-based probability distribution

An interval-based probability distribution should satisfy the following constraints in order to ensure
that the underlying credal set is not empty and every lower/upper probability bound is reachable.

∑

ωi∈Ω

IP (ωi) ≤ 1 ≤
∑

ωi∈Ω

IP (ωi) (1.37)

∀ωi ∈ Ω, IP (ωi) +
∑

ωj 6=i∈Ω

IP (ωj) ≥ 1 and IP (ωi) +
∑

ωj 6=i∈Ω

IP (ωj) ≤ 1 (1.38)

In order to give a formal semantics for interval-based probability distributions, let us first define the
concept of compatible probability distribution.

1. It is important to note that the number of extreme points can reach N ! where N is the number of interpretations [Wal07].
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1.5. Belief functions theory

Definition 1.22 (Compatible probability distribution). A probability distribution p over Ω is said com-
patible with IP if and only if ∀ωi ∈ Ω, p(ωi) ∈ IP (ωi).

Note that while a standard probability distribution p induces a complete order over the set of possible
worlds Ω, an interval-based probability distribution IP may induce a partial order since some interpre-
tations may be incomparable in case of overlapping intervals. In this thesis, a credal set Ki associated
with a variable Ai having an interval-based probability distribution IP denotes the closed convex set of
(standard) probability distributions p that are compatible with IP .

Definition 1.23 (Credal set associated with an Interval-based probability distribution). Let IP (Xi) be
and interval-based probability distribution for the discrete variable Xi having the domain DXi

. The
credal set Ki associated with IPi is the set of probability distributions p such that:

{

p : ∀xi ∈ Di, p(xi) ∈ IP (xi)
∑

xi∈Di
p(xi) = 1

(1.39)

1.4.2 Reasoning with credal sets

Marginalization and conditioning are defined as follows:
Let K(X1..Xn) be a credal set over the set of variables V = {X1..Xn}. Let V1 and V2 be two

disjoint subsets of V such that V1 ∪ V2 = V . Then,

K(V1) = CH({
∑

V2

p(V1, V2) with p(V1, V2) ∈ K(X1..Xn)}) (1.40)

where CH is the convex hull operator.
As for conditioning, let φ be an evidence, then

K(X1..Xn|φ) = CH({p(X1..Xn|φ) with p(X1..Xn) ∈ K(X1..Xn) and p(φ) > 0}) (1.41)

As the semantics used here to represent an imprecise probability distribution is the one of compatible
probability distributions, we can equally redefine the concept of marginalization and conditioning using
the set of compatible distributions when the credal set is represented by an interval-based probability
distribution.

IP (V1) = [ min
p∈C(IP )

p(V1), max
p∈C(IP )

p(V1)] (1.42)

As for conditioning, let φ be an evidence, then

IP (X1, ..., Xn|φ) = [ min
p∈C(IP )

p(X1, ..., Xn|φ), max
p∈C(IP )

p(X1, ..., Xn|φ)] (1.43)

In the rest of this thesis we will always consider credal sets as imprecise (interval-based) probability
distribution.

Another generalization of probability and possibility theories is the one of belief functions.

1.5 Belief functions theory

Evidence theory (also known as Dempster-Shafer theory) has been initiated by Dempster [Dem67].
It has been then developed by Shafer [Sha76] with a more completed mathematical formalism and a
proposal of a belief functions theory as a general setting to represent uncertainty. It allows to take into
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Chapter 1. Uncertainty theories

account both aleatory uncertainty and epistemic uncertainty into one formalism. It has many interpreta-
tions such as upper and lower probability, for example.

Let us consider a variable X which has for possible values {x1, ..., xn}. The set of values gives the
universe of discourse: Ω = {x1, ..., xn}. The set of singletons and disjunctive sets composed of values
of X form the power-set 2Ω, defined by:

2Ω = {∅, x1, ..., xn, {x1, x2}, ..., {x1, ..., xn}} (1.44)

The different elements of 2Ω allows to represent the set of possible uncertainty situations.
There are several equivalent representations for quantifying beliefs within the belief functions frame-

work. The three main representations are mass functions denoted by m, belief functions denoted by bel

and plausibility functions denoted by pl.

1.5.1 Mass function

A mass function allows to encode our knowledge and other measures like belief function and plausi-
bility function are derived from this assignment. Formally, a mass function m is a mapping m : 2Ω →
[0, 1] assigning a mass value to each event φ ⊆ Ω of the frame of discernment 2Ω such that:

∑

φ∈2Ω

m(φ) = 1. (1.45)

An additional constraint requires that a mass function must not assign a positive value to the empty
set.

m(∅) = 0 (1.46)

A mass function satisfying this property is called normalized. m(φ) is interpreted as the part of the
belief that supports φ. In general, the mass function can be seen as a probability function defined on the
power set

1.5.2 Belief and plausibility functions

The total amount of belief committed to a hypothesis φ ∈ 2Ω, including all subsets ψ ⊆ φ, is denoted
by bel(φ). The function bel : 2Ω → [0, 1] is called a belief function. It can be directly computed from a
mass function m.

∀φ ∈ 2Ω, bel(φ) =
∑

ψ⊆φ

m(ψ). (1.47)

If m is normalized, then as consequence of Equation (1.47)

bel(Ω) = 1. (1.48)

The plausibility pl(φ) is the amount of belief not strictly committed to φ of φ. It therefore expresses
how plausible a hypothesis φ is, i.e. how much belief mass potentially supports φ. On a formal level, a
plausibility function pl : 2Ω → [0, 1] is defined as

∀φ ∈ 2Ω, pl(φ) = 1− bel(φ). (1.49)

The plausibility pl(φ) can be computed from a mass function m in the following way:

∀φ ∈ 2Ω, pl(φ) =
∑

ψ⊆Ω, ψ∩φ 6=∅

m(ψ). (1.50)
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1.5. Belief functions theory

1.5.3 Links to probability and possibility theories

Links can be established between the previous theories such as probability and possibility theory and
belief functions. Indeed, when the mass function is a probabilistic mass function, it means that the beliefs
over each elementary worlds are known precisely. Also, a belief function bel is sometimes interpreted
as defining a "lower bound" for an unknown probability function P . Therefore, the real value of the
occurrence of a subset φ ∈ 2Ω is surrounded on the lower part by bel(φ):

∀φ ⊆ Ω, bel(φ) ≤ P (φ). (1.51)

In this case, bel and P are called compatible.
Whereas bel can be viewed as a lower bound for an unknown probability function P under a lower

and upper probability interpretation, the plausibility can be viewed as an upper bound. For a normalized
plausibility function pl, a compatible probability function P must satisfy the property

∀φ ⊆ Ω, pl(φ) ≥ P (φ). (1.52)

De facto, the frame surrounding the real value of P (φ) is defined by:

bel(φ) ≤ P (φ) ≤ pl(φ) (1.53)

In case where φ is a singleton, this equation replaces ≤ by an equality.
bel and pl can therefore be seen as the upper and lower bound of an imprecise probability distribution.

Between possibility theory and belief function theory links can also be established, in belief function
setting, if the focal elements φ1, φ2, ..., φn are nested (i.e. φ1 ⊆ φ2 ⊆ ... ⊆ φn), then the belief function
bel is called consonant belief function and for all φ, ψ ∈ 2Ω, we have:

bel(φ ∩ ψ) = min(bel(φ), bel(ψ)) (1.54)

and

pl(φ ∪ ψ) = max(pl(φ), pl(ψ)) (1.55)

In this case belief functions are necessity measures and possibility measures i.e. bel = N and pl = Π.

There exist a lot more general representations to encode uncertain information. For instance, we
have random sets, generalized P-boxes, clouds as other means of representing probabilistic information.
A random set is a set-valued mapping from a probability space to a set V [Dem67]. In [DDC07], the
authors use mass functions [Sha76] to represent random sets. A p-box [FKG+03] (which literally means
"probability box") is defined using a pair of cumulative distributions [F , F ] that defines a probability
family. Modeling using p-box is generally used to deal with problems where the form of the probability
distribution is known but where parameters such as then mean or the standard deviation are imprecise.
This theory therefore, allows to deal together aleatory uncertainty and epistemic uncertainty. A P-box can
be built given known distribution and appears to be a natural choice for parametric model with imprecise
parameters. The intervals formed by the pair of distributions characterize the incomplete nature of the
knowledge. A P-box can also be built from experts opinions [CGF12]. This theory of P-box will be used
in one transformation from imprecise probabilities to possibilities in Chapter 3. Clouds are defined by
interval-valued fuzzy sets that can also be linked to possibility distributions [DP05].
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Chapter 1. Uncertainty theories

1.6 Ordinal conditional functions (OCF)

In this section, we present ordinal conditional functions (OCF) to represent epistemic states [Spo14,
TCD15, Wil95, Wil94a, BHK14, EK14, KT12].

An OCF distribution can be simply viewed as a function that assigns to each interpretation ω of Ω
an integer denoted by k(ω). k(ω) represents the degree of surprise of having ω as being the real world.
k(ω) = 0 means that nothing prevents ω for being the real world. k(ω) = 1 means that ω is somewhat
surprising to be the real world. k(ω) = +∞ simply means that it is impossible for ω to be the real world.

Example 1.4. Let a and b be two propositional symbols. Table 1.5 gives an example of an epistemic
state represented by an OCF distribution k:

ω k(ω)

ab 4
¬ab 1
a¬b 1
¬a¬b 0

Table 1.5 – An example of an OCF distribution

From Table 1.5, the most normal state of world is the one where both a and b are false. The most
surprising world (with a degree of surprise 4) is the one where both a and b are true.

From an OCF distribution k, one can induce a degree of surprise over events φ, simply denoted by
k(φ) and defined by:

k(φ) = min{k(ω) : ω ∈ Ω, ω ∈ φ}. (1.56)

For example, from Table 1.5 we have k(¬a ∨ ¬b) = min(k(¬a¬b), k(¬ab), k(a¬b)) = 0 while k(a ∨
b) = 1.

In this framework, several works have been proposed for revising OCF distributions. For instance,
in [Wil95, Wil94a] a general form of changing OCF distributions, called transmutations [Wil94b], has
been proposed. In [Ker01, KE14] a revision of OCF distributions with a set of conditionals has also been
proposed. And also a so-called multiple iterated belief c-revision proposed in [KH15, FKRS12, Ker04]
for revising an OCF distribution with a consistent set of propositional formulas.

In practice, an OCF distribution k cannot be provided over a set of interpretations Ω (except if
the number of propositional variables is small). A compact representation may be provided using for
instance the concept of OCF networks [KE13, BT10, GP13, DG94, EK14] or the concept of weighted
propositional knowledge bases.

Link to possibility theory

It is easy to see (cf. [DP13]) that the set function Nk defined by Nk(φ) = 1− e−k(¬φ) is a necessity
measure, with values in a subset of the unit interval. Moreover because k(φ) ∈ N, Nk(φ) < 1, ∀φ 6=
Ω. The set {k(ω)|ω ∈ Ω} is the counterpart of a possibility distribution π on Ω, such that Π(φ) =
max{π(ω)|ω ∈ φ}.
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1.6. Ordinal conditional functions (OCF)

Conclusion

Standard probability theory is the most used framework to represent uncertainty but it is always not
suitable to represent every type of uncertain information. Therefore, alternative frameworks such that
possibility theory, imprecise probability theory, belief functions theory or ordinal conditional functions
have been proposed. Some of these formalism can be seen as extensions of probability theory such as
imprecise probability. Others are devoted to a totally different kind of uncertainty. In general, theories
can be linked to one another, we will see later examples of such links between probability and possibility.

Uncertainty formalism have also practical problems as they entail higher storage space and higher
computational time complexity. Graphical models and logical-based models have been proposed to
tackled such complexity problems. This is the goal of the next chapter.
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Chapter 2

Compact uncertainty representations

Dealing with a lot of information and variables can induce higher space and time complexity. To
efficiently represent and reason with uncertain information, we use compact representations. In the
previous chapter, we introduced uncertain information and the various means to express them using
uncertainty frameworks. Though representing information with distributions is not suitable as soon as
the number of variables or the universe of discourse is too large. Clearly, representing real and complex
situations implying a large amount of information requires compact representations.

Graphical models in that sense offer a nice and efficient alternative to represent and store uncertain
information. Indeed, graphical models are interpretable as one can see the variables distinctively and see
the dependence relations (e.g. relation of cause and effect). They are modular, indeed one can elicit and
infer using the graph structure of the model. Lastly, they are compact as the number of entries (stored
in local tables) can be significantly smaller than in the joint distribution. This solution allows to reduce
space complexity but also in terms of reasoning offers a mean of representation that allows to efficiently
reason with uncertain information.

Another compact representation often used to represent information is knowledge bases. The notion
of uncertainty was introduced by adding weight to logical formulas expressing the degrees of certainty
of the formulas.

In this chapter, we discuss the two different representations of uncertain information, by means of
graphical models and by means of knowledge bases.
Contents

2.1 Graphical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Possibilistic knowledge bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Reasoning with uncertain information . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Graphical models

Graphs are important tools for building probabilistic and other models used in artificial intelligence.
There exist two main types of graphs that have been used in uncertainty-based graphical models: undi-

rected and directed models. In this thesis we only focus on directed graph, and we present their most
important properties 2. In the following, we get into details on the networks used to represent uncer-
tain information discussed in the previous chapter. The syntactic definition of a graph is the same. The
difference lies in the associated semantics.

In the rest of this chapter, the used notations are as follows:

2. Basics notions and definitions on graph theory can be found in Appendix A
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2.1. Graphical models

— we denote respectively a Bayesian network, a possibilistic network, a credal network and an
interval-based possibilistic network by BN , PN , CN and IPN ,

— Θp,Θπ,ΘIP and ΘIΠ denote respectively the set of local distributions associated to BN ,PN , CN
and IPN .

— in a knowledge base, we define L as the language composed of propositional formulas.

2.1.1 Bayesian networks

The term Bayesian networks [Pea88] was coined by Judea Pearl [Pea89]. They are sometimes re-
ferred to as probabilistic networks, belief networks, causal networks or DAG models. A Bayesian network
highlights three aspects [Pea89, Bay63]: the information represented in these networks; the inference
machinery; and how they can support both causal and evidential reasoning.

Definition 2.1 (Bayesian network). A Bayesian network BN = (G,Θp) is defined by:

— Graphical component: a DAG G = {V,E} where each node of the graph represents a variable of
interest and the edges describe the (in)dependence relation among the variables.

— Numerical component: a set of local probability distributions Θp, for each variable Xi given its
parents par(Xi).

Local probability distributions must satisfy the following normalization conditions:

— If par(Xi) = ∅ (Xi is a root node), then the marginal distribution associated to Xi has to satisfy:

∑

xi∈DXi

P (xi) = 1 (2.1)

— If par(Xi) 6= ∅ then the conditional distributions associated to Xi have to satisfy:

∀ui ∈ Dpar(Xi),
∑

xi∈DXi

P (xi|ui) = 1 (2.2)

where Dpar(Xi) represents the domain associated to the parents of Xi.

Example 2.1. The following figure illustrates a Bayesian network BN = (V,E), with V = {A,B,C}
with domains respectively being DA = {a1, a2}, DB = {b1, b2} et DC = {c1, c2}.

A Bayesian network compactly encodes a joint distribution that can computed using the chain rule:

Definition 2.2 (Chain rule). Given X1, ..., Xn a set of random variables. A Bayesian network over the
set of variables V = {X1, ..., Xn} allows to encode a probability distribution factorized as follows:

P (X1, ..., Xn) =

n
∏

i=1

P (Xi|par(Xi)) (2.3)

Remark. If all the local tables are normalized then the joint distribution is also normalized.

Example 2.2. The joint probability distribution encoded by the Bayesian network of Figure 2.1, com-
puted using Equation (2.3), is given by Table 2.1.
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Chapter 2. Compact uncertainty representations

A p(A)

a1 0.1
a2 0.9

A

B

C
C p(C)

c1 0.6
c2 0.4

B A C p(B | AC)
b1 a1 c1 0.2
b2 a1 c1 0.8
b1 a1 c2 0.7
b2 a1 c2 0.3
b1 a2 c1 0.5
b2 a2 c1 0.5
b1 a2 c2 0.4
b2 a2 c2 0.6

Figure 2.1 – Example of a Bayesian network

A B C p(A,B,C)

a2 b2 c2 0.216
a2 b2 c1 0.27
a2 b1 c2 0.144
a2 b1 c1 0.27
a1 b2 c2 0.012
a1 b2 c1 0.048
a1 b1 c2 0.028
a1 b1 c1 0.012

Table 2.1 – Joint probability distribution of the Bayesian network given by Figure 2.1

2.1.2 Possibilistic networks

As Bayesian networks are the main compact graphical representation for probability theory, possi-
bilistic networks [BK02] are graphical representations of possibility theory.

Definition 2.3 (Possibilistic network). A possibilistic network PN = (G,Θπ) is defined by two com-
ponent, a graphical one and a numerical one.

— the graphical component is a directed acyclic graph G = (V,E) on the set of variables V where
the set of edges E represent the (in)dependence relationships between variables.

— the numerical component is a set of local possibility distributions Θπ = {π(Xi|par(Xi)), ∀Xi ∈
V } of variables Xi given its parents par(Xi).

In the same way as Bayesian networks, the conditional distributions must satisfy normalizing condi-
tion.

∀uj ∈ Dpar(Xi), max
xi∈DXi

π(xi|uj)) = 1 (2.4)

Example 2.3. Let us consider 3 variables A,B and C having as domains respectively DA = {a1, a2},
DB = {b1, b2} and DC = {c1, c2}. An example of possibilistic network is illustrated by Figure 2.2.

We distinguish two types of possibilistic networks: quantitative possibilistic networks correspond-
ing to the numerical interpretation of the possibilistic scale and qualitative possibilistic networks corre-
sponding to the ordinal interpretation. It is known that quantitative possibilistic networks are close to
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A π(A)

a1 0.5
a2 1

A

B

C
C π(C)

c1 1
c2 0.1

B A C π(B | AC)
b1 a1 c1 0.8
b2 a1 c1 1
b1 a1 c2 1
b2 a1 c2 0.7
b1 a2 c1 1
b2 a2 c1 0.4
b1 a2 c2 0.6
b2 a2 c2 1

Figure 2.2 – Example of a possibilistic network

the Bayesian networks since they share the same characteristics (essentially, the product operator) with
theoretical and practical results almost identical.

Therefore, two definitions of the chain rule depending whether we use the quantitative scale or the
qualitative scale.

Definition 2.4 (Quantitative chain rule). The joint possibility distribution π associated to a quantitative
possibilistic network on a set of variables V = {X1, ..., Xn} is computed in the same way as for Bayesian
network using the product operator.

π(X1, ..., Xn) =
n
∏

i=1

π(Xi|par(Xi)) (2.5)

where π(Xi|par(Xi)) is the local possibility distribution associated to the local variableXi in the context
of its parents.

Definition 2.5 (Qualitative chain rule). The joint possibility distribution π associated to a qualitative
possibilistic network on a set of variables V = {X1, ..., Xn} is computed using the min operator. Thus,
the chain rule is given by:

π(X1, ..., Xn) = min
i=1,...,n

π(Xi|par(Xi)) (2.6)

Example 2.4. Given the possibilistic network of Figure 2.2, the joint possibility distribution defined by
π(A,B,C) = min(π(A), π(B | AC), π(C)) is given by Table 2.3. The joint possibility distribution
defined by π(A,B,C) = π(A) ∗ π(B | AC) ∗ π(C) is given by Table 2.2.

2.1.3 Credal networks

A credal network [Coz05, Coz00] is a graphical model that associates variables with sets of prob-
ability measures. An informal way to convey the content of a credal network is to think about it as a
representation for a set of Bayesian networks over a fixed set of variables. Note that there is no commit-
ment as to whether one of these Bayesian networks is the "correct" one.

The most obvious motivation for credal networks is to have them as "relaxed" Bayesian networks.

Definition 2.6 (Credal network). A credal network CN = (G,ΘIp) is seen as an extension of a Bayesian
network is also composed of:
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A B C π(A,B,C)

a2 b2 c2 0.1
a2 b2 c1 0.4
a2 b1 c2 0.06
a2 b1 c1 1
a1 b2 c2 0.035
a1 b2 c1 0.5
a1 b1 c2 0.05
a1 b1 c1 0.4

Table 2.2 – Possibility joint distribution of Fig-
ure 2.2 in the quantitative possibilistic setting

A B C π(A,B,C)

a2 b2 c2 0.1
a2 b2 c1 0.4
a2 b1 c2 0.1
a2 b1 c1 1
a1 b2 c2 0.1
a1 b2 c1 0.5
a1 b1 c2 0.1
a1 b1 c1 0.5

Table 2.3 – Possibility joint distribution of Fig-
ure 2.2 in the qualitative possibilistic setting

— a graphical component: a DAG G with nodes representing variables and edges describing inde-
pendence relationships

— a numerical component: a set of conditional credal sets, which consists in our case in imprecise
probability distributions (intervals).

Example 2.5. Figure 2.3 gives an example of a credal network CN on two boolean variables A and B.

A

B

A Ip(A)
a2 [.5, .9]
a1 [.1, .5]

A B Ip(B|A)
a2 b2 [.36, .4]
a2 b1 [.35, .35]
a1 b2 [.25, .25]
a1 b1 [0, .04]

Figure 2.3 – Example of a credal network

The semantics associated to a credal network is a family of Bayesian networks, therefore we define
the concept of compatible Bayesian network:

Definition 2.7 (Compatible Bayesian network). A Bayesian network BN = (G,Θp) is compatible with
CN = (G,ΘIp) has the same graph structure and for each local probability distribution p ∈ Θp satisfy

∀xi ∈ DXi|par(Xi), p(xi|par(xi)) ∈ Ip(xi|par(xi)) (2.7)

According to this semantics, a credal network CN encodes a set of joint probability distributions,
called extensions and denoted ext(CN ), where each joint distribution p ∈ ext(CN ) is encoded by a
compatible Bayesian network. A credal network CN induces a strong extension defined as follows:

Definition 2.8 (Strong extension). The strong extension extS(CN ) associated with a credal network CN
is the convex hull of all the joint probability distributions ext(CN ) encoded by the Bayesian networks
BN compatible with CN . Namely,

extS(CN ) = CH({PBN : BN is compatible with CN}). (2.8)
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Given an extension ext(CN ), one can compute an interval-based joint probability distribution as
follows:

P (a1a2..an) = min
p∈ext(CN )

(p(a1a2..an)) (2.9)

P (a1a2..an) = max
p∈ext(CN )

(p(a1a2..an)) (2.10)

In Equations (2.9) and (2.10), p(a1a2..an) is computed with the well-known chain rule in Bayesian
networks (see Equation (2.3)). Note that the vertices of ext(CN ) can be obtained by considering only
the set of vertices of the local credal sets Ki associated with the variables [Coz00].

This section presents all graphical models used in this thesis and how to compute the joint distribution
or set of distributions given the used semantic. In the next section we present another kind of compact
representations.

2.2 Possibilistic knowledge bases

In this section, we are particularly interested in possibilistic logic, a different compact representation
often used to encode a possibility distribution. As possibilistic logic is a logic-based framework, some
brief refresher on propositional logic is given in Appendix A.

Possibilistic logic [Ben10, DP04, Lan00] allows to handle uncertain information based on possibility
theory. Beliefs are expressed by means of uncertain propositional formulas. The uncertainty is quantified
by associating to each formula a degree of certainty corresponding to the minimal threshold of necessity
degree. As we have seen in Chapter 1, possibility theory can be interpreted two ways, one quantitatively
and the other one is qualitatively according to the scale used to represent the uncertainty. Therefore,
an agent can express his beliefs using either contexts using quantitative possibilistic logic or qualitative
possibilistic logic.

2.2.1 Possibilistic knowledge bases: syntax

In possibilistic logic, at a syntactic level information is encoded in a possibilistic knowledge base
which is a finite set of weighted formulas defined as

K = {(ϕi, αi) : i = 1, ..., n}, (2.11)

where the pair (ϕi, αi) is a possibilistic formula with ϕi is an element of L and αi ∈ [0, 1] is a valuation
of ϕi representing the minimal necessity degree N(ϕi). The necessity degree αi represents the degree
of certainty of ϕi of the knowledge base K encoding the beliefs of an agent upon the real state of the
world, or its degree of priority if K encodes the preferences of an agent. Indeed, the formula ϕi is said
to be more certain (resp. more prioritized) than ϑ if the weight associated to ϕ is greater than the one
associated to ϑ.

2.2.2 From possibilistic knowledge bases to possibility distributions

A possibilistic knowledge base is one of well-known compact representations of a possibility distri-
bution. Given a possibilistic base K, we can generate a unique possibility distribution where interpreta-
tions ω satisfying all propositional formulas in K have the highest possible degree π(ω) = 1 (since they
are fully consistent), whereas the others are pre-ordered with respect to the highest formulas they falsify.
More formally: ∀ω ∈ Ω,

πKπ(ω) =

{

1 if ∀(ϕ, α) ∈ K, ω |= ϕ
1−max{αi : (ϕi, αi) ∈ K, ω 2 ϕi} otherwise.

(2.12)
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The following lemma states that ’zero-weighted’ formulas can be added or removed from possibilistic
knowledge bases without changing the joint distributions.

Lemma 2.1. Let K be a possibilistic knowledge base K such that (δ, 0) ∈K. Let K ′ = K \{(δ, 0)}.
Then ∀ω∈Ω, πK(ω) = πK′(ω).

This lemma can be easily shown since if a formula δ has a certainty degree equal to 0, then if there
is an interpretation ω that falsifies only the formula δ then, according to Equation (2.12), the possibility
degree associated to ω will be 1− 0 = 1.

In the next subsection, we present a transformation of a possibilistic network into a possibilistic
knowledge base.

2.2.3 From possibilistic networks to possibilistic knowledge bases

We consider that two representation formats are semantically equivalent when they encode the same
joint distributions. In the possibilistic setting, transformation from possibilistic networks to possibilistic
knowledge bases have been proposed. In [BDGP02], the authors proposed two definitions to translate
a possibilistic graph into a base. Indeed, the two possibilistic networks are considered using either
the qualitative chain rule or the quantitative chain rule, this leads to two definitions. The authors also
discussed the converse translation.

Starting point

The possibilistic knowledge base associated with a possibilistic network results from a combination
of elementary bases. These elementary bases are associated to each local distribution of the network.
They are composed of weighted formulas where the weight refers to the conditional possibility degrees
of the node variable.

Let {X1, ..., Xn} be the set of variables of the possibilistic network PN . We describe PN as a set of
triples such as PN = {(xi, par(xi), αi) : αi = Π(xi|par(xi)) 6= 1 is an element of the graph}, where
xi is a value of the variable Xi and par(xi) is a configuration of the parents of Xi. Note that we restrict
to degrees different from 1 since only those are used in the computation of the joint distributions. Indeed,
1 is a neutral element with respect to both minimum and product operator.

Example 2.6. Let us consider the following possibilistic network given by Figure 2.4 over 3 binary
variables. As said in the above the starting point is to translate the network in the form of a set of triples.

Given the possibilistic network of Figure 2.4, the set of triples is: PNA = {(a2, ∅, .45)},PNB =
{(b2, ∅, .78)},PNC = {(c1, a2b1, .33), (c1, a2b2, .1), (c2, a1b2, .6)}.

We associate to each triple (x, par(x), α) a possibilistic formula (¬x ∨ ¬par(x), 1 − α). And we
can retrieve the possibility distribution πx,par(x) of the value x given a configuration of par(xi) with

πx,par(x)(ω) =

{

1 if ω |= ¬x ∨ ¬par(x),
α otherwise (namely if ω |= x ∧ par(x)).

(2.13)

Example 2.7. With the previous example and the translation obtained from PN , we associate to each
triple the possibilistic formula, which gives us the set of weigthed formulas: KA = {(a1, .55)}, KB =
{(b1, .22)} and KC = {(c2 ∨ a1 ∨ b2, .67), (c2 ∨ a1 ∨ b1, .9), (c1 ∨ a2 ∨ b1, .4)}.

Now that we have obtained for each variable of the graph the associated possibilistic knowledge base,
we can consider how to combine these knowledge bases. There are two methods given the possibilistic
scale used.
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A π(A)

a1 1
a2 .45

A

C

B
B π(B)

b1 1
b2 .78

C A B π(C | AB)

c1 a1 b1 1
c1 a1 b2 1
c1 a2 b1 .33
c1 a2 b2 .1
c2 a1 b1 1
c2 a1 b2 .6
c2 a2 b1 1
c2 a2 b2 1

Figure 2.4 – Possibilistic network to be transformed in a knowledge base

Logical encoding of PNm

We first consider qualitative possibilistic networks where the conditioning rule use the minimum
operation.

Definition 2.9 (Combination of two possibilistic knowledge bases). Let Σ1 and Σ2 be two possibilistic
knowledge bases. Let π1 and π2 be the two joint possibility distributions associated with Σ1 and Σ2

respectively. Let πm be the combination of π1 and π2 using the minimum operation. Then, ∀ω, πm(ω) =
min(π1(ω), π2(ω)). And the resulting base corresponding to πm is: Σm = Σ1 ∪ Σ2.

This leads us to the following Definition 2.10 that states formally how to compute the knowledge
base associated to a qualitative possibilistic network.

Definition 2.10 (Possibilistic knowledge base associated to PNm). The possibilistic knowledge base
associated with PNm = {(xi, par(xi), αi) : αi = Π(xi|par(xi)) 6= 1} is given by:

ΣPNm = {(¬xi ∨ ¬par(xi), 1− αi) : (xi, par(xi), αi) ∈ PNm}. (2.14)

This is an important result that implies that we can apply possibilistic logic reasoning on possibilistic
networks.

Example 2.8. Following the different knowledge bases of variables A,B and C given in the previous
example by KA = {(a1, .55)}, KB = {(b1, .22)} and KC = {(c2∨a1∨ b2, .67), (c2∨a1∨ b1, .9), (c1∨
a2 ∨ b1, .4)}, we can combine them using Definition 2.10 and it results in:

KPNm = {(a1, .55), (b1, .22), (c2 ∨ a1 ∨ b2, .67), (c2 ∨ a1 ∨ b1, .9), (c1 ∨ a2 ∨ b1, .4)}

.

Logical encoding of PN ∗

In the same way that we translate a qualitative possibilistic network into a possibilistic knowledge
base, it is also possible to encode possibilistic networks in the quantitative setting based on the product
operator.

The following combination operator that we present is commutative and associative, therefore we
can apply the combination in any order.
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Definition 2.11 (Combination of two possibilistic bases with the product). Let Σ1 = {(φi, αi) : i ∈ I}
and Σ2 = {(ψj , βj) : j ∈ J}. Let π1 and π2 be the two joint possibility distributions associated with Σ1

and Σ2 respectively. Let π∗ be the combination of π1 and π2 using the product operation. The resulting
base associated to π∗ is

C∗(Σ1,Σ2) = Σ1 ∪ Σ2 ∪ {(φi ∨ ψi, αi + βi − αi ∗ βj) : i ∈ I, j ∈ J, φi ∨ ψi 6= ⊤}. (2.15)

Then the definition of the translation of a possibilistic network into a possibilistic knowledge base is
given by:

Definition 2.12 (Possibilistic knowledge base associated to PN ∗). The knowledge base associated with
the graph PN ∗ is the combination by C∗ of the knowledge bases associated to each node of the graph.

Example 2.9. Let us pick up Example 2.6, with the encoding of the network given byKA = {(a1, .55)},
KB = {(b1, .22)} and KC = {(c2 ∨ a1 ∨ b2, .67), (c2 ∨ a1 ∨ b1, .9), (c1 ∨ a2 ∨ b1, .4)}. The ap-
proach here is different from the qualitative setting, we first combine KA and KB and obtain KAB =
{(a1, .55), (b1, .22), (a1 ∨ b1, .649)}. Then we only have to combine the new knowledge base KAB with
KC . Thus,

KABC = KAB ∪KC ∪ {(c2 ∨ a1 ∨ b2, .8515), (c1 ∨ a2 ∨ b1, .532), (c2 ∨ a1 ∨ b1, .9649)}

There exists also the converse translation [BDGP02] but since it is not needed to understand our
contributions, we will not present it here.

2.3 Reasoning with uncertain information

We address in this section the problem that can arise in real-world applications, showing how each
can be solved by the models defined above. There are at least four general types of queries that can
be posed with respect to graphical models. Which type of query to use in a particular situation is not
always trivial and some of the queries are guaranteed to be equivalent under certain conditions. We
define formally these query types in the following. As most of the work done with regards to querying
in graphical models has been done in the Bayesian networks, we will illustrate the following using a
Bayesian network.

2.3.1 Querying graphical models

In general, answering queries on graphical models is about taking into account an evidence where
one may want to compute the degree of a given event or compute the degree of a variable given an event
and so on. Therefore, we denote E the set of variables called evidence variables and Q the set of query
variables. And an evidence is denoted by the event φ ∈ DE where the domain associated to E is the
cartesian product of the domains of every variable in E.

Probability of evidence

One of the simplest queries is to ask for the degree or interval-degree of some variable instantiation
e. For example, in the Asia network (Figure A.3 in appendix A 3) we may be interested in knowing the
probability that the patient has a positive x-ray but no dyspnoea, P (X = yes,D = no). This can be
computed easily by tools for modeling and reasoning with graphical models like JavaBayes [Coz01].

3. Indeed, for more information and details on queries in graphical models, see Appendix A
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The query P (φ) is known as a probability-of-evidence query, although it refers to a very special type of
evidence corresponding to the instantiation of some variables.

There are other types of evidence beyond variable instantiations. In fact, any propositional sentence
can be used to specify evidence. For example, we may want to know the probability that the patient has
either a positive x-ray or a dyspnoea, X = yes ∨D = yes. In general, the existing tools do not provide
direct support for computing the probability of arbitrary pieces of evidence but such probabilities can be
computed indirectly using some methods and tricks like the "auxiliary node" trick.

Prior and posterior marginals

If probability-of-evidence queries are one of the simplest, then posterior-marginal queries are one
of the most common. The difference between prior and posterior marginals is that a prior marginal is a
marginal distribution given no evidence. And the posterior marginal distribution is computed given some
evidence φ,

p(x1, ..., xm|φ) =
∑

xm+1,...,xn

p(x1, ..., xn|φ). (2.16)

Computing posterior marginals comes down to summing probability-of-evidence.
The complexity of such query in the general case is proven to be NP-Hard [Coo90] in Bayesian

networks.

Most probable explanations

We now turn to another class of queries: computing the most probable explanation (MPE). The goal
here is to identify the most probable instantiation of network variables given some evidence. Specially,
if X1, ..., Xn are all the network variables and if φ is the given evidence, the goal then is to identify
an instantiation x1, ..., xn for which the probability p(x1, ..., xn|φ) is maximal. Such full instantiation
x1, ..., xn will be called a most probable explanation given evidence φ. More formally, the answer is

argmaxx1,..,xn∈DΩ
(p(x1, ..., xn|φ)) (2.17)

Maximum a posteriori hypothesis (MAP )

The MPE query is a special case of a more general class of queries for finding the most probable
instantiation of a subset of network variables given some evidence. Specially, suppose that the set of all
network variables is V and let Q be a subset of these variables. Given some evidence φ, our goal is then
to find an instantiation q of variables Q for which the probability p(q|φ) is maximal. Any instantiation
q that satisfies the previous property is known as a maximum a posteriori hypothesis (MAP ). Clearly,
MPE is a special case of MAP when the MAP variables include all network variables. One reason why
a distinction is made between MAP and MPE is that MPE is much easier to compute. More formally,
the answer to a MAP query is

argmaxq∈DQ
(p(q|φ)) (2.18)

2.3.2 Reasoning in probabilistic graphical models

We have just presented the four types of queries that are mainly used when reasoning with uncertain
information. One of the simplest methods for inference in graphical models such as Bayesian networks
is based on the principle of variable elimination. A process in which we successively remove variables
from the graph while maintaining its ability to answer queries of interest. Another algorithm widely used
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in Bayesian networks is the junction tree algorithm [Jen96]. These algorithms are detailed in Appendix
A.3 for more information.

As said previously, inference in probabilistic graphical models generally consists in computing the
probability of an event. In credal networks, this equivalently comes down to computing lower or upper
probabilities of an event. For Maximum A Posteriori (MAP ), given an assignment φ of evidence variables
E, the objective is to compute the most probable instantiation q of the query variables Q. In general,
Q ∩ E = ∅.

More formally, the MAP inference problem in credal networks comes down to compute:

argmaxq∈DQ
(IP (q | φ)) (2.19)

where argmax denotes a decision criterion allowing to choose the set of "most probable configurations"
of query variables. In the following, we will give some of the most used decision criteria that can be used
for answering MAP queries in credal networks.

We need decision criteria to answer MAP queries in credal networks due to the representation by
means of intervals. A natural criterion is the one of Interval-dominance (used for instance in [ACZ10]
for classification, decision tasks, etc.) which refers to non-dominated instantiations of query variables.

Definition 2.13 (Interval-dominance). An instantiation qi of query variables Q dominates another in-
stantiation qj if and only if IP (qi|φ)>IP (qj |φ) where φ is an instantiation of observation variables O.

This criterion is not enough informative and often of little use in practice. Indeed, this criterion
often results in large amounts of outcomes also called answer set (too many query variable instances
are not dominated), making it difficult to make decisions for instance in classification where only one
class (outcome) should be returned. The other possible criteria are the well-known criteria Maximax,
Maximin, and Hurwicz. These three criteria are commonly used in decision making under uncertainty
since the early 1950’s. The Maximax criterion can be viewed as an optimistic criterion. It examines the
maximum payoffs of alternatives and chooses the alternative whose outcome is the best. Definition 2.14
gives a formal definition of Maximax criterion for the imprecise probability setting.

Definition 2.14 (Maximax criterion). An instantiation qi of query variables Q is a result of MAP infer-
ence if and only if IP (qi|φ) ≥ max{1−

∑

qj 6=qk
IP (qj |φ), ∀qk}, where φ is an instantiation of observed

variables O.

The Maximin criterion also known as the Wald’s Maximin criterion is a pessimistic criterion. It
suggests that the decision maker examines only the minimum payoffs of alternatives and chooses the
alternative whose outcome is the least worst.

Definition 2.15 (Maximin criterion). An instantiation qi of query variablesQ is a result ofMAP inference
if and only if IP (qi|φ) ≥ max{1 −

∑

qj 6=qk
IP (qj |φ), ∀qk}, where φ is an instantiation of observed

variables O.

The last criterion we review is the well-known Hurwicz criterion which attempts to find a trade-off
between the extremes, posed by the optimistic and pessimistic criteria, by assigning a certain weight, a to
optimism and the balance 1−a to pessimism. This index reflects the decision maker attitude towards risk
taking. A cautious decision maker will set a = 1 which reduces the Hurwicz criterion to the Maximin

criterion. An adventurous decision maker will set a = 0 which reduces the Hurwicz criterion to the
Maximax criterion.

Definition 2.16 formally defines the Hurwicz’s criterion with imprecise probabilities using the coef-
ficient a = 0.5.
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Definition 2.16 (Hurwicz’s criterion). Let qi be an instantiation of query variablesQ with o an instantia-
tion of observed variables ofO, a = {0.5 ∗ (1−

∑

qi 6=qk
IP (qi|φ))+0.5 ∗ (1−

∑

qi 6=qk
IP (qi|φ)), ∀qk}.

Then qi is a result of MAP inference if and only if a = max∀qj{0.5 ∗ (1 −
∑

qj 6=qk
IP (qj |φ)) + 0.5 ∗

(1−
∑

qj 6=qk
IP (qj |φ)), ∀qk}.

Example 2.10. Let us show an example of these criteria over the following imprecise distribution (Ta-
ble 2.4).

ω IP (ω)

ω1 [.25; .3]
ω2 [.27; .32]
ω3 [.26; .33]
ω4 [.07; .12]

Table 2.4 – Example of an imprecise distribution

On this example, clearly the only world that can be excluded from the results with the interval-
dominance criterion is ω4. The outcomes that can be obtained using the different criteria are listed in the
following items.

— Interval-dominance: Answer set = {ω1, ω2, ω3},

— Maximax: Answer set = {ω3},

— Maximin: Answer set = {ω2},

— Hurwicz: Answer set = {ω2, ω3}.

As shown in this example, one of the main problems of MAP inference in credal networks is that the
number of outcomes may be very large especially when the interval-dominance criterion is used. The
second big problem is the one of computational complexity of MAP inference in credal networks.

Imprecise probability theory as we described is a necessity regarding the lack of information that we
can face in some applications.But dealing with such expressive frameworks requires a lot more effort
for representation and reasoning purpose. This is particularly due to the number of compatible credal
networks that we have to consider.

The following table summarizes complexity results of inference in Bayesian and credal networks
[MdCBA14, dCC05].

Query Polytree Bounded treewidth Multiply-
connected

Pr Polynomial Polynomial PP-Complete
Bayesian MPE Polynomial Polynomial NP-Complete
Networks MAP NP-Complete NP-Complete NPPP -Complete

Pr NP-Complete NP-Complete NPPP -Complete
Credal MPE Polynomial Polynomial NP-Complete

Networks MAP ΣP2 -Complete ΣP2 -Complete NPPP -Hard

This table shows in particular the very high complexity ofMAP inference in CN s in the general case.
In practice, the size of networks is often large. This motivates approximate inference approaches and in
this thesis, we provide a kind of approximate inference method for MAP in CN s by transforming the
credal network into a possibilistic one PN .
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There exist multiple algorithms to perform the different tasks such as the elimination variable or
junction tree, but in some frameworks such as credal networks or possibilistic networks there is not a
lot of implementations of the algorithm. Nevertheless, some implementation as GL2U or JavaBayes
provides some features for credal network and we actually base an experimental study on this platform
to test our approach, this contribution is given in Chapter 8.

2.3.3 Reasoning in possibilistic knowledge bases

An important notion that plays a central role in the inference process in possibilistic knowledge
bases is the one of strict α-cut. Let α be a positive real number. A strict α-cut, denoted by Kα, is a set
of propositional formulas defined by Kα = {ϕ : (ϕ, β) ∈ K and β > α}. The strict α-cut is useful to
measure the inconsistency degree of K denoted by Inc(K) and defined by:

Inc(K) =

{

0 if K0 is consistent
max{α : Kα is inconsistent} otherwise

(2.20)

If Inc(K) = 0 then K is said to be completely consistent. If a possibilistic base K is partially incon-
sistent, then Inc(K) can be seen as a threshold below which every formula is considered as not enough
entrenched to be taken into account in the inference process. More precisely, we define the notion of
core of knowledge base as composed of formulas with a certainty degree greater than Inc(K), namely:

Core(K) = KInc(K) = {ϕ : (ϕ, α) ∈ K and α > Inc(K)}

A formula ϕ is a consequence of a possibilistic baseK, denoted byK ⊢π ϕ, if and only if Core(K) ⊢
ϕ, i.e., if the formula ϕ is a classical consequence of the core of K.

Given the possibility distribution induced from the possibilistic knowledge base, the following com-
pleteness and soundness result holds:

K ⊢π ϕ if and only if πK |=π ϕ. (2.21)

Example 2.11. We here give an example to illustrate the previous definitions. LetK = {(a∨b, .7), (¬a, .6),
(¬b, .2)} be a possibilistic knowledge base.

In this case, Inc(K) = .2 and thus Core(K) = {a ∨ b,¬a} and, for instance, K ⊢π ¬a ∧ b.
From the semantic point of view, the possibility distribution is the following:

πK(¬a¬b) = .3 πK(¬ab) = .8
πK(a¬b) = .4 πK(ab) = .4

(2.22)

and then ΠK(¬a ∧ b) = .8 > ΠK(a ∨ ¬b) = .4 which implies πK |=π ¬a ∨ b.

The concept of α-cut can be used to provide the syntactic counterpart of conditioning a possibilistic
knowledge base with a propositional formula:

Definition 2.17. Let K be a possibilistic knowledge and φ be a sure piece of information. The result of
conditioning K by φ, denoted Kφ is defined as follows:

Kφ ={(φ, 1)}∪

{(ϕ, α) : (ϕ, α) ∈ K and K≥α ∧ φ is consistent.}

Namely, Kφ is obtained by considering φ with a certainty degree ’1’, plus weighted formulas (ϕ, α)
of K such that their α-cut is consistent with φ. It can be checked that:

∀ω ∈ Ω, πKφ
(ω) = πK(ω|⊗φ),

where πK and πKφ
are given using Equation (2.12) and πK(.|⊗φ) is obtained using the min-based

conditioning of Equation (1.29) or the product-based conditioning of Equation (1.28).
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a ∨ b

¬a

¬b

Inc(K)

0 1

Figure 2.5 – Necessity degrees associated with the formulas of K

Conclusion

This chapter presented compact representations mainly used to encode probability distributions, pos-
sibility distributions, or interval-based extension of probability distributions. Indeed, we presented the
main concepts defining a network and how to define their associated semantics (given by probability or
possibility distribution when dealing with Bayesian or possibilistic networks). We presented possibilistic
logic and provided the method to compute the associated possibility distribution. In this chapter, we also
presented the inference process in graphical models and some complexity results in Bayesian and credal
networks. Regarding MAP inference in possibility theory, it has not been established how complex it is
to reason with information. One of our goals will be to tackle this problem; this will be addressed in
Chapter 8.

Overall, graphical models and knowledge bases are the two mains compact representations used to
encode beliefs. We have given the connections and bridges that have been made between probability,
possibility and imprecise probability. In next chapter, we will study these bridges by presenting the
existing transformations in the literature between probability and possibility but also between imprecise
probability and possibility theories.
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Chapter 3

From (im)precise probability to possibility

distributions

In many situations, the available information may be encoded in different formalisms. One intuitive
use of probability-possibility transformation would be for unifying the encoding of belief expressed with
different theories. Moreover, transforming possibility measure into probability measure or reverse can
be useful in any situation dealing with uncertain knowledge (e.g. statistical data). More precisely,

— From probability to possibility: transforming a probability measure into a possibility measure can
be useful when the source of information is weak, or when computing with possibilities is less
hard than computing with probabilities. Possibility theory is a mathematical theory that deals with
different types of uncertainty and is therefore an alternative to probability theory. Possibility theory
is dedicated to handling incomplete information. Hence, analyzing with ignorance is easily handle
in possibility, or if one wants to reason qualitatively.

When the amount of data is low, for example in the frequentist setting where it is necessary to have
a large amount of data, it is not very sound to lie on probability theory. For example, Masson and
Denoeux [MD06] describe how to use probability-possibility transformations when working with
small empirical data sets.

— From possibility to probability: Possibility theory has been developed as a necessity to work with
uncertain and incomplete information. In this respect, there exist a lot of platforms and tools in
general to reason in probability theory. But in possibility theory, there does not exist as much
platforms and so having a transformation that preserves all of the information can allow us to use
these tools instead of creating or adapting into possibilistic context.

It is also interesting to have such transformations in the case of decision making [Sme89] and
multi-source information.

Contents

3.1 From probability distributions to possibility distributions . . . . . . . . . . . 40

3.2 From interval-based probability distributions to possibilistic distributions . . 46

3.1 From probability distributions to possibility distributions

3.1.1 Principles and properties

Transformation procedures from probability to possibility have been studied in the past [DFMP04,
KG93, DPS93, MSMR06]. Many researchers have worked on principles that have to be satisfied to
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ensure that information is properly preserved. These works are mainly restricted to the proposal of
principles and of transformations satisfying those. For example, when having information about an event
are encoded with both probability and possibility measures then these descriptions should be coherent.
Which suggest consistency principle. Other principles are proposed to guarantee other desired properties.

Zadeh consistency principle

The first principle that transformations tried to satisfy is the consistency principle due to Zadeh [Zad99]:
Zadeh [Zad99] measures the consistency between a probability and possibility distribution as follows:

Cz(π, p) =
∑

i=1..n

π(ωi) ∗ p(ωi) (3.1)

where p and π are a probability and a possibility distributions respectively over a set of n worlds. It
intuitively captures the fact that ”A high degree of possibility does not imply a high degree of probability,

and a low degree of probability does not imply a low degree of possibility”. The computed consistency
degree is questionable [DFMP04, KG93] in the sense that two resulted possibility distributions can have
the same consistency degree but do not contain the same amount of information. Indeed, the degree of
consistency is all the more close to 1 given that ∀ωi ∈ Ω, if p(ωi) > 0 then π(ωi) = 1. Multiple different
distributions can be found but does having the same degree of consistency mean that none of them is

better than another, which criterion use to distinct them?

Example 3.1. Let Ω = {ω1, ω2, ω3, ω4, ω5}, p be a probability distribution and π1, π2 two possibility
distributions of p. π1 represents total ignorance, whereas π2 only represents partial ignorance.

p π1 π2
ω1 0.2 1 1
ω2 0.1 1 1
ω3 0.3 1 1
ω4 0.4 1 1
ω5 0 1 0

Table 3.1 – Example of two distributions having the same consistency degree according to Zadeh criterion

Through distributions of Table 3.1, we note that Cz(π1, p) = 1 and Cz(π2, p) = 1, yet here, distri-
bution π2 is clearly better than π1 which represents total ignorance.

Klir consistency principle

Concept of consistency have been redefined by Klir [KG93]. By assuming that the worlds of Ω are
ordered such as pi > 0 and pi ≥ pi+1, ∀ i = {1..n}. A transformation should be based on these
postulates:

— the "scaling" postulate forces each value πi to be a function of pi
p1

(where p1 ≥ ... ≥ pn).

— the "invariance of uncertainty" postulate according to which p and π must have the same amount
of uncertainty.

— the consistency condition which establish that what is probable must be possible, then π can be
seen as an upper bound of p.

Dubois et Prade [DP80] have given an example to show that the "scaling" postulate of Klir can
sometimes leads to violate the consistency principle. The second postulate is also questionable since it
assumes that probability measure and possibility measure are commensurable.
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Dubois and Prade consistency principle

Dubois and Prade [DFMP04] defined three postulates allowing to define the optimal transforma-
tion [DFMP04] which always exist and it is unique.

— Consistency condition states that for each event (i.e. a set of worlds) φ ⊆ Ω, P (φ) ≤ Π(φ). Here,
the obtained possibility distribution should dominate the probability distribution.

— Preference preservation: ∀(ω1, ω2) ∈ Ω2, p(ω1) > p(ω2) if and only if π(ω1) > π(ω2) and
p(ω1) = p(ω2) if and only if π(ω1) = π(ω2). Intuitively, if two worlds are ordered in a given way
in p, then π should preserve the same order.

— Maximum specificity principle: This principle requires to search for the most specific possibility
distribution that satisfies the two above conditions.

The concept of specificity of possibility distributions allows to select a possibility distribution given
the quantity of information encoded. The definition of specificity relation is given as follow:

Definition 3.1 (Specificity). Let π1 and π2 be two possibility distributions over Ω, then π2 is said to be
more specific than π1 if and only if: ∀ω ∈ Ω, π2(ω) ≤ π1(ω).

3.1.2 Transformation rules

Many probability-possibility transformations have been proposed in the literature. We cite the Op-

timal transformation (OT) [DFMP04], Klir transformation (KT) [KG93], Symmetric transformation

(ST) [DPS93], and Variable transformation (VT) [MSMR06]. The optimal transformation (OT ) guar-
antees the most specific possibility distribution that satisfies Dubois and Prade’s consistency principle.

Klir transformation

Following his definition of consistency principle, Klir defined two probability-possibility transfor-
mations, under two scales. For these transformations, it is assumed that elements of Ω are ordered in
such way that: ∀i = 1..n, p(ωi) > 0, p(ωi) ≥ p(ωi+1) with p(ωn+1) = 0.

— The ratio-scale: called normalized transformation and defined by:

πi =
pi
p1

(3.2)

— The log-interval scale : defined by :

πi = (
pi
p1

)α (3.3)

where α is a parameter that belongs to the open interval ]0, 1[.
Klir’s transformation satisfies his consistency principle. But it does not satisfy Dubois and Prade

consistency condition. This is illustrated by the following counter example.

Example 3.2. Let us have Ω = {ω1, ω2, ω3, ω4} such as each degree assigned at each world is illustrated
in Table 3.2.

If we take φ = {ω2, ω3, ω4}, then we have P (φ) = 0.3 whereas Π(φ) = 0.142. Here, instead of
having P (φ) < Π(φ), we have P (φ) > Π(φ).
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ωi p(ωi) πKT (ωi)

ω1 0.7 1
ω2 0.1 0.142
ω3 0.1 0.142
ω4 0.1 0.142

Table 3.2 – Example of violation of Dubois and Prade consistency principle

Optimal transformation.

Proposed by Dubois and Prade [DFMP04], it is defined as follows:

π(ωi) =
∑

j/p(ωj)≤p(ωi)

p(ωj) (3.4)

OT is said to be optimal [DPS93] in the sense that it guarantees the most specific possibility distribution
satisfying Dubois and Prade’s consistency principle.

Symmetric transformation

After the Optimal transformation, the same authors in [DPS93] proposed a Symmetric transforma-

tion, defined as follows :

π(ωi) =
n
∑

j=1

min(p(ωi), p(ωj)) (3.5)

ST is easier to compute but it is less optimal in the sense that it is less specific than OT .

Variable transformation

It is proposed by Mouchaweh et al. [MSMR06] and it is defined as follows: assume that the elements
of Ω are ordered in such way that : ∀i = 1..n, pi > 0, pi ≥ pi+1 and πi > 0, πi ≥ πi+1 with pn+1 = 0
and πn+1 = 0, then :

πi = (
pi
p1

)k.(1−pi) (3.6)

k is a constant which must be guaranteed by the following consistency condition:

∀ω ∈ Ω : π(ω) ≥ p(ω) (3.7)

This condition is a particular case of the consistency principle of Dubois and Prade defined in Subsection
3.1.1. Indeed, condition of Equation (3.7) is the discrete case of the principle, i.e the distribution only
contains singletons. To guarantee the consistency principle, then the constant k has to take its value in
the following range:

0 ≤ k ≤
log(pn)

(1− pn).log(
pn
p1
)

(3.8)

When the value of k is equal to its maximum: kmax = log(pn)
(1−pn).log(

pn
p1

)
, the possibility degree πn,

computed according to V T is equal to pn. If the value of k increases beyond kmax then the value of πn
will become smaller than the one of pn, which means that V T will not satisfy the consistency principle
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of Equation (3.7). Indeed, V T transforms a probability distribution in a non-lineary way, which means
that V T adds more information to the bigger probability degrees than to the smaller ones. It is due to
the power k.(1 − pi) in Equation (3.6), smaller than the smallest of probability degrees. The difference
between Klir transformation and V T is that the Klir transformation has a constant power α belonging to
the unit interval ]0, 1[ in order to preserve the uncertainty, whereas the power k.(1− pi) in V T makes it
more specific.

Bouguelid [Bou07] proposed V Ti, as an improvement of V T , in order to make it as specific as OT .
Then, a parameter ki is associated to each πi. Formally, ∀ i = {1..n},

πi = (
pi
p1

)ki.(1−pi) (3.9)

where ki belongs to the interval: 0 ≤ ki ≤
log(pi+pi+1+...+pn)

(1−pn).log(
pn
p1

)
, ∀ i = {2..n}.

We will see later on that all these transformations suffer a lot of problems. Let us see an example of
these transformations on a probability distribution with the following example.

Example 3.3. Let us consider two variables A and B with their domains respectively DA = {a1, a2}
and DB = {b1, b2, b3}, the associated probability distribution is depicted in Table 3.3.

A B p(A,B)

a1 b1 0.36
a1 b2 0.18
a1 b3 0.06
a2 b1 0.2
a2 b2 0.12
a2 b3 0.08

Table 3.3 – Probability distribution of Example 3.3

Let us apply the transformation procedures OT , KT , ST , V T , and V Ti over the distribution of
Table 3.3. We get Table 3.4.

A B ΠKT ΠOT,V Ti ΠST ΠV T
a1 b1 1 1 1 1
a1 b2 0.5 0.44 0.8 0.38
a1 b3 0.16 0.06 0.36 0.06
a2 b1 0.55 0.64 0.84 0.45
a2 b2 0.33 0.26 0.62 0.19
a2 b3 0.22 0.14 0.46 0.09

Table 3.4 – Possibility distribution obtained by the different transformations

Table 3.5 summarizes characteristics of KT,OT, ST, V T and V Ti. For each transformation, it is
precised if it deals with the discrete case (D) and the continuous case (C) and if it satisfies the consistency
principle (Cs), the preservation of preference (PP) and the maximum of specificity (MS). Clearly, OT
and V Ti are the most interesting rules in the discrete case to transform from probability to possibility.

44



3.1. From probability distributions to possibility distributions

TR p→ π π → p Properties
D C Cs PP MS

KT × × × × ×
OT × × × × × × ×
ST × × × × × ×
V T × × ×
V Ti × × × × ×

Table 3.5 – Summary of transformations’ properties

3.1.3 Converse transformation: from possibility to probability

In this thesis, we are basically trying to get around using probability theory or its extensions such
as imprecise probability theory to express uncertain information. But in some cases it might be useful
to have transformation from possibility to probability. Therefore, this small part addressed the reverse
transformation. As we said previously, when going from a probabilistic representation to a possibilistic
representation, some information is lost. The converse transformation, on the contrary, adds information
to some possibilistic incomplete knowledge. First let us review the consistency principles such transfor-
mations must fulfill.

The principles involved in possibility-probability transformations are similar to the probability-possi-
bility transformation as they are complementary. Thus, the first principle known as the probability-
possibility consistency principle is the same as Dubois and Prade consistency principle (see Subsection
3.1.1).

The second principle is the preference preservation: a possibility distribution π induces a preference
order on Ω, such that π(ωi) > π(ωj) means that the world ωi is preferred to ωj . A transformation should
therefore satisfy:

π(ωi) > π(ωj)⇒ p(ωi) > p(ωj). (3.10)

Which results in a unique condition for probability-possibility transformation:

π(ωi) > π(ωj)⇔ p(ωi) > p(ωj). (3.11)

One principle devoted to possibility-probability transformation is the one of insufficient reason. This
principle claims that if all we know about ω is that ω belongs to a set φ, then we can assume that
the maximal uncertainty about ω can be described by a uniform probability distribution over φ. Yager
[Yag81] suggested a procedure that satisfies this principle and it is stated as follow:

Given a possibility distribution π, we apply this principle twice:

— on the unit interval: select α at random in (0, 1] and consider φα = {ω|π(ω) ≥ α}

— on the selected level-cut φα: select ω at random in φα.

This means that if π can be described by a finite set of level-cuts φ1, ..., φn corresponding to π1 = 1 >
π2 > ... > πn > πn+1 = 0, the selection process is guided by the density function:

p(ω) =
∑

i=1,...,n

πi − πi+1

|φi|
µφi(ω), ∀ω (3.12)

This procedure actually corresponds to a transformation already proposed by Dubois and Prade [DP83,
DP92] and discussed in the belief function setting by Smets [Sme89].
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3.2 From interval-based probability distributions to possibilistic distribu-

tions

Probability theory, which is the most widely used theory, might seem unfit for representing some
kinds of information such as the knowledge of a group of experts, or incomplete knowledge. This is
why more general frameworks are needed for allowing more flexibility. Imprecise probability theory
[DP05, Wei00, Wal00] in that respect has been designed to generalize probability theory and offers more
expressiveness as they represent uncertain information by means of credal sets instead of single proba-
bility values. The problem when reasoning with such general and expressive models is that they entail
higher computational complexity. This is why transforming to possibility theory can be useful.

When transforming uncertain information expressed by means of probability intervals to a possibility
distribution, there is to the best of our knowledge only one work [MD06] where the authors learn possi-
bility distributions from empirical data by transforming confidence intervals to possibility distributions.

3.2.1 Masson and Denoeux transformation (MD)

The starting point of this transformation is to consider an imprecise probability distribution as a
means of encoding a partial orderM over Ω. Indeed, contrary to precise probability distributions which
encode complete order relations over Ω, interval-based ones encode partial orders in the form ωi <IP ωj
in case where ui < lj . LetM be the partial order encoded by an imprecise probability distribution IP
and let C be the set of linear extensions (complete orders) that are compatible with the partial orderM.
The transformation proposed in [MD06] proceeds as follows:

— For every linear extension Cl ∈ C and for each ωi ∈ Ω, compute:

πCl(ωi) = max
p1..pn

(
∑

pj≤pi

pi) (3.13)

subject to the following constraints (in order to explore only compatible probability distributions
satisfying the current linear extension Cl):







pi ∈ [li, ui]
∑

i=1..n pi = 1
p1..pn satisfy the linear extension Cl

— Build the distribution π that dominates all the distributions πCl as follows: ∀ωi ∈ Ω,

π(ωi) = max
Cl∈C

(πCl(ωi)) (3.14)

The motivation of using Equation (3.14) is to guarantee that the obtained possibility distribution π
dominates the probability intervals IP . This transformation tries on one hand to preserve the order
of interpretations induced by IP and the dominance principle requiring that ∀φ ⊆ Ω, P (φ) ≤ Π(φ)
on the other hand.

This transformation comes down to the Optimal transformation OT when intervals of degrees are
singletons.

Example 3.4. Let us consider the following example in which we have an imprecise probability distri-
bution over 4 worlds as described in Table 3.6 4. The first thing is to compute the set of possible linear
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ω IP (ω)

ω1 [.10, .28 ]
ω2 [.34, .56]
ω3 [.25, .46]
ω4 [ 0, .08 ]

Table 3.6 – Imprecise probability distribution to be transformed by MD

extensions. Then for each linear extension, compute using a linear program solving on the Equation
(3.13).

We have three possible linear extensions:

— ω4 < ω1 < ω3 < ω2

— ω4 < ω1 < ω2 < ω3

— ω4 < ω3 < ω1 < ω2

After computing each πCl , we obtain the following table.

ω ω1 ω2 ω3 ω4

π(ω) .64 1 1 .08

There are two main drawbacks with the transformation of Equations (3.13) and (3.14):

— The first issue is about the computational complexity of such transformation. Applied directly,
this latter can consider in the worst case N ! linear extensions where N is the number of possible
worlds. The authors proposed in [MD06] an algorithm allowing to achieve some improvements
during this transformation but it is still very costly when one considers variables having domains
exceeding a dozen values, which is common in many applications.

— The second concern lies in the fact that this transformation does not guarantee that the obtained
distribution is optimal is terms of specificity. Indeed, it was shown in [DDC07] that the transforma-
tion of Equation (3.14) results in a loss of information as it is not the most specific one dominating
the considered imprecise probability distribution.

3.2.2 Cumulative distribution based transformation (CD)

The second transformation, called CD stands for Cumulative Distribution, is related to upper and
lower cumulative distributions. In [DDC08], the authors discussed the connection that one can make
between generalized p-box and possibility distributions and gave a representation of a p-box by two
possibility distributions. Given a set of probability intervals and an ordering relation ≤CI on a linear ex-
tension Cl between elements ωi, we can easily build a generalized p-box [DDC08], [F , F ] defined by two
cumulative distributions F and F . Given the consecutive sets Ai = {ωi, ∀ωi ∈Ω and such that ωi ≤CI

ωj if and only if i < j}, lower and upper generalized cumulative distributions corresponding to Ω are,
respectively:

F (ωi) = P (Ai) = max(
∑

ωi∈Ai

lj , 1−
∑

ωi 6∈Ai

uj)

F (ωi) = P (Ai) = min(
∑

ωi∈Ai

uj , 1−
∑

ωj 6∈Ai

lj)

4. The interval values associated with worlds are randomly chosen.
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From this two cumulative distributions, we can compute two possibility distributions πF and πF where:

πF (ωi) = 1−max{F (ωj) < F (ωi) : j = 0..n} (3.15)

πF (ωi) = F (ωi) (3.16)

Example 3.5. By keeping the same table as the previous example (Table 3.6). If we consider the follow-
ing linear extension : ω4 < ω1 < ω3 < ω2 then the resulting transformed possibility distribution by CD
is given by:

ω ω1 ω2 ω3 ω4

π(ω) .36 1 .66 .08

Conclusion

This chapter proposed a brief synthetic report mainly on transformation from probability to possi-
bility theory. We also provided some examples from imprecise probability theory to possibility theory.
Other transformations have been implemented in the continuous case rather than the finite case. Dubois
and Prade [DPS93] proposed an approach so that the transformation of a continuous probability distribu-
tion into a specific possibility distribution allows the upper limits of an event probability to be computed.

Yamada [Yam01] proposed a transformation based on the evidence theory. He reviewed three new
ideas based on evidence theory: one considers possibility on an ordinal scale, his work shows that the
preservation of order principle gives a unique ordinal structure of possibilities. For the numerical scale,
he investigated two methods and showed that one of them based on the equidistribution leads to a unique
transformation satisfying consistency and order preservation principles. This transformation turned out
to be the one proposed in [DP83].

We will see in Chapters 7 and 8 a deep analysis of the behavior of probability-possibility transforma-
tions with respect to reasoning tasks and the properties of transformations in graphical models. But first,
let us focus on interval-based possibility distributions.
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Conditioning in interval-based and

set-based possibilistic frameworks
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Chapter 4

Quantitative conditioning in

interval-based possibilistic setting

Interval-based possibilistic logic is a flexible setting extending standard possibilistic logic such that
each logical expression is associated with a sub-interval of [0, 1]. This chapter proposes our first contribu-
tion of this thesis. It first focuses on the fundamental issue of conditioning in the interval-based possibilis-
tic setting. The first part of the chapter provides a refresher on interval-based possibilistic frameworks.
The second part of the chapter proposes a set of natural properties that an interval-based conditioning
operator should satisfy. We then give a natural and safe definition for conditioning an interval-based
possibility distribution. This definition is based on applying standard product-based conditioning on the
set of all associated compatible possibility distributions. In the third part of this chapter, Subsection 4.3.1
analyzes the obtained posterior distributions and provide a precise characterization of lower and upper
endpoints of the intervals associated with interpretations which refers to the semantic conditioning. We
also provide in Subsection 4.3.2 an equivalent syntactic computation of interval-based conditioning when
interval-based distributions are compactly encoded by means of interval-based possibilistic knowledge
bases. We show that interval-based conditioning is achieved without extra computational cost comparing
to conditioning standard possibilistic knowledge bases.

Contents

4.1 Introduction to the interval-based possibilistic setting . . . . . . . . . . . . . 50

4.2 Conditioning interval-based possibility distributions: Properties and defini-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Conditioning interval-based possibility distributions: Computations . . . . . 56

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Introduction to the interval-based possibilistic setting

The aim of this section is to present a more general framework of possibility theory, where un-
certainty is not encoded with a single necessity value but by means of an interval [BHLR11]. This
framework allows the introduction of an imprecision on degrees associated with beliefs. We use real
number based intervals I=[α, β]⊆ [0, 1] to encode the uncertainty associated with formulas. We denote
by I the set of all closed intervals over [0, 1]. If I is an interval, then we denote by I and I its upper and
lower endpoints respectively. When all I’s associated with interpretations (resp. formulas) are singletons
(namely I=I), we refer to standard (or point-wise) distributions (resp. standard possibilistic bases).
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4.1. Introduction to the interval-based possibilistic setting

Given a set of intervals Ii = [αi, βi], where αi, resp. βi describes the lower, resp. the upper bound
of Ii. We define the following operations:

— Max of intervals:M{I1, . . . , In} = [max{α1, . . . , αn},max{β1, . . . , βn}]

— Reverse of an interval: 1⊖ Ii = [1− βi, 1− αi]

— Comparing intervals: Ii = [αi, βi] ⊳ Ij = [αj , βj ] if and only if βi < αj

By convention,M{∅} = [0, 0].

4.1.1 Interval-based possibility theory

Interval-based and compatible possibility distributions

An interval-based possibility distribution, denoted by Iπ, is a function from Ω to I. Iπ(ω)=I means
that the possibility degree of ω is one of the elements of I . Iπ only induces a partial pre-ordering between
interpretations defined by ω<ω′ (ω′ is preferred to ω) if and only if Iπ(ω) ⊳ Iπ(ω′). Since ⊳ is a partial
pre-order, an interval-based possibility distribution only induces a partial pre-order on interpretations.
We also interpret an interval-based possibility distribution as a family of compatible standard possibility
distributions defined by:

Definition 4.1 (Compatible possibility distribution). Let Iπ be an interval-based possibility distribution.
A possibility distribution π is said to be compatible with Iπ if and only if ∀ω∈Ω, π(ω)∈Iπ(ω).

Of course, compatible distributions are not unique. We denote by C(Iπ) the set of all compatible
possibility distributions with Iπ.

An interval-based possibility distribution is said to be weakly normalized if there exists ω such that
Iπ(ω) = 1. Weak normalization reflects the existence of a normalized pointwise possibility distribution
π which is compatible with Iπ.

Necessity and possibility measures

A natural way to define the counterparts of possibility and necessity measures associated with an
event φ from an interval-based possibility distribution is to use the set of all compatible distributions,
namely:

Definition 4.2. Let Iπ be an interval-based possibility distribution and let φ be an event, then:

IΠ(φ) = [ min
π∈C(Iπ)

Π(φ), max
π∈C(Iπ)

Π(φ)], and

IN(φ) = [ min
π∈C(Iπ)

N(φ), max
π∈C(Iπ)

N(φ)].

Definition 4.2 is safe since it relies on all the compatible distributions as opposed to a possible
approach when only an arbitrary set of compatible distributions is used.

In [BHLR11], the authors showed that in the particular case where intervals in a possibility distribu-
tion are only consisting of singletons, then the approach recovers the standard definitions of possibility
measures.
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4.1.2 Interval-based possibilistic bases

We now present the syntactic representation of interval-based possibilistic logic. We generalize the
notion of a possibilistic base to an interval-based possibilistic knowledge base as follows.

Definition 4.3 (Interval-based possibilistic base). An interval-based possibilistic base, denoted by IK,
is a multi-set of formulas associated with intervals:

IK = {(ϕ, I), ϕ∈L and I∈I} (4.1)

The intuitive interpretation of (ϕ, I) is that the necessity degree of ϕ is one of the elements of I =
[α, β].

An interval-based possibilistic base IK can be viewed as a family of standard possibilistic bases
called compatible bases.

Definition 4.4 (Compatible possibilistic base). A possibilistic base K is said to be compatible with an
interval-based possibilistic base IK if and only ifK is obtained from IK by replacing each interval-based
formula (φ, [α, β]) by a standard possibilistic formula (φ, δ) with α≤δ≤β.

We also denote by C(IK) the infinite set of all compatible possibilistic bases associated with an
interval-based possibilistic base IK. Contrarily to standard possibilistic bases, we do allow α to be equal
to 0. The presence of the degree ’0’ means that there exists a compatible knowledge base where the
formula ϕ is not explicitly supported.

Given an interval-based possibilistic base IK, we define two particular compatible possibilistic bases
IK and IK by selecting either lower endpoints of intervals (pessimistic point of view) or upper endpoints
of intervals (optimistic point of view):

1. IK = {(ϕ, α) : (ϕ, [α, β]) ∈ IK}

2. IK = {(ϕ, β) : (ϕ, [α, β]) ∈ IK}

From interval-based possibilistic bases to interval-based possibility distributions

As in standard possibilistic logic, an interval-based knowledge base IK is also a compact represen-
tation of an interval-based possibility distribution IπIK . The interval-based possibility distribution can
be equivalently obtained using: i) an extension of the definition of πK given by Equation (2.12) to deal
with intervals, ii) the set of possibility distributions associated with compatible bases, and iii) the two
particular compatible bases IK and IK. This is summarized by Definition 4.5.

Definition 4.5 (Interval-based possibility distribution). Let IK be an interval-based possibilistic base,
then:

IπIK(ω) = [ min
K∈C(IK)

πK(ω), max
K∈C(IK)

πK(ω)]

where πK is a standard possibilistic distribution associated with the compatible base K.

4.2 Conditioning interval-based possibility distributions: Properties and

definitions

Our first contribution concerns conditioning with interval-based possibility distributions. Interval-
based possibilistic logic described until now is only specified for static situations and no form of condi-
tioning has been proposed for updating the current knowledge and beliefs.
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4.2.1 Properties of interval-based conditioning

Conditioning and belief change are important tasks for designing intelligent systems. Conditioning is
concerned with updating the current beliefs when a new sure piece of information becomes available. In
the possibilistic setting, given a possibilistic knowledge base K or a possibility distribution π and a new
evidence φ, conditioning allows to update the old beliefs, encoded by π or K, with φ. There are several
definitions of the possibilistic conditioning [DP97a, DP06, Fon97, His78, LMDCM95]. Conditioning
operators are designed to satisfy some properties such as giving priority to the new information and
performing minimal change.

This section gives natural properties that a conditioning operation should satisfy when interval-based
possibility distributions are used. Let us first fix the values of Iπ(.|φ) for degenerate possibility distribu-
tions Iπ when IΠ(φ) = 0 or IΠ(φ) = 0.

If IΠ(φ) = 0 then by convention, as in standard possibility distributions, ∀ω ∈ Ω, Iπ(ω|φ) = [1, 1].
Similarly, if IΠ(φ) = 0 (but IΠ(φ) > 0) then ∀ω ∈ Ω,

Iπ(ω|φ) =

{

[0, 0] if Iπ(ω) = [0, 0] and ω 2 φ;
[0, 1] otherwise.

(4.2)

In the rest of this paper, we assume that Iπ is not degenerate with respect to φ. Namely, we assume that
IΠ(φ) > 0 and hence for each compatible possibility distribution π, it is assumed that φ is somewhat
possible in π (namely, Π(φ) >0).

Besides, in this section, we assume that Iπ is normalized, namely there exists an interpretation ω
such that Iπ(ω) = 1. Hence, C(Iπ) refers to the set of pointwise normalized possibility distributions.

In an interval-based setting, a conditioning operator “ | ” should satisfy the following suitable prop-
erties:

(IC1) Iπ(.|φ) should be an interval-based distribution.

(IC2) ∀ω ∈ Ω, if ω 2 φ then Iπ(ω|φ) = [0, 0].

(IC3) ∃ω ∈ Ω such that ω |= φ and Iπ(ω|φ) = 1.

(IC4) If ∀ω 2 φ, Iπ(ω) = [0, 0] then Iπ(.|φ) = Iπ.

(IC5) ∀ω ∈ Ω, if ω |= φ and Iπ(ω) = [0, 0] then Iπ(ω|φ) = [0, 0].

(IC6) ∀ω |= φ and ∀ω′ |= φ, if Iπ(ω) < Iπ(ω′) then Iπ(ω|φ) < Iπ(ω′|φ).

(IC7) ∀ω |= φ, ∀ω′ |= φ, if Iπ(ω) = Iπ(ω′) then Iπ(ω|φ) =Iπ(ω′|φ).

Property IC1 simply states that the result of applying conditioning over an interval-based possibility dis-
tribution should result in an interval-based possibility distribution. Property IC2 requires that when the
new sure piece of information φ is observed then any interpretation that is a counter-model of φ should
be completely impossible. Property IC3 states that there exists at least a compatible possibility distri-
bution π′ of Iπ(.|φ) where Π′(φ) = 1. Property IC4 states that if φ is already fully accepted (namely,
all counter-models of φ are already impossible) then Iπ(.|φ) should be identical to Iπ. Property IC5

states that impossible interpretations (even if they are models of φ) remain impossible after conditioning.
Properties IC6 and IC7 express a minimal change principle. IC6 states that the strict relative ordering
between models of φ should be preserved after conditioning. IC7 states that equal models of φ should
remain equal after conditioning.

4.2.2 Definitions and property-based analysis

This section provides a natural and safe definition of conditioning an interval-based possibility dis-
tribution using the set of compatible possibility distributions. More precisely, conditioning an interval-
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based possibility distribution Iπ comes down to apply standard product-based conditioning on the set of
all compatible possibility distributions C(Iπ) associated with Iπ. Namely,

Definition 4.6. The compatible-based conditioned interval-based possibility distribution is defined on
the set of all compatible distributions such that: ∀ω ∈ Ω, Iπ(ω|∗φ) is given by the set of all conditioned
compatible distributions π(ω|∗φ), where |∗ is given by Equation (1.28)

Definition 4.6 is illustrated by Figure 4.1.

Iπ
Interval-based possibility distribution

πnπ1
Compatible possibility
distributions

π1(.|⋄φ) πn(.|∗φ)
Conditioned compatible pos-
sibility distributions

Iπ(.|∗φ)={πi(.|∗φ) ∀i∈1..n}

Figure 4.1 – Compatible-based conditioning

Conditioning according to Definition 4.6 is safe since it relies on all the compatible distributions as
opposed to a possible approach when only an arbitrary set of compatible distributions is used.
The first important issue with compatible-based conditioning of Definition 4.6 is whether conditioning
an interval-based distribution Iπ with an evidence φ gives an interval-based distribution, namely whether
the first property (IC1) is satisfied or not.

Proposition 4.1. Let Iπ be an interval-based distribution. Let φ be the new evidence and |∗ be the

standard product-based conditioning given by Equation (1.28). Then ∀ω ∈ Ω,

Iπ(ω|∗φ) = [ min
π∈C(Iπ)

(π(ω|∗φ)), max
π∈C(Iπ)

(π(ω|∗φ))]

is an interval.

Proof. Recall that it is assumed in the whole chapter that IΠ(φ) > 0. Let us show that ∀ω |= φ,
Iπ(ω|∗φ) is indeed an interval. Assume that there exist two numbers α and β such that:

— α < β,

— α ∈ Iπ(ω|∗φ), β ∈ Iπ(ω|∗φ), and

— ∀γ such that α < γ < β we have γ 6∈ Iπ(ω|∗φ).
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The assumption α ∈ Iπ(ω|∗φ) means that there exists a compatible possibility distribution π such

that α =
π(ω)

Π(φ)
. Similarly, β ∈ Iπ(ω|∗φ) means that there exists another compatible possibility distribu-

tion π′ such that β =
π′(ω)

Π′(φ)
. There are different cases to consider:

— π(ω) < Iπ(ω). Since α < β then trivially there exists ε such that α =
π(ω)

Π(φ)
<
π(ω) + ε

Π(φ)
< β.

Therefore it is enough to define a new compatible possibility distribution π′′ such that π′′(ω) =

π(ω) + ε and ∀ω′, π′′(ω′) = π(ω′). Clearly, π′′ is compatible and π′′(ω|∗φ) =
π(ω) + ε

Π(φ)
∈

Iπ(ω|∗φ).

— π′(ω) > Iπ(ω). Since α < β then trivially there exists ε such that α <
π′(ω)− ε

Π′(φ)
< β =

π′(ω)

Π′(φ)
.

Therefore it is enough to define a new compatible possibility distribution π′′ such that π′′(ω) =

π′(ω) − ε and ∀ω′, π′′(ω′) = π′(ω′). Clearly, π′′ is compatible and π′′(ω|∗φ) =
π′(ω)− ε

Π′(φ)
∈

Iπ(ω|∗φ).

— π(ω) = Iπ(ω) and π′(ω) = Iπ(ω). In this case we have π(ω) ≥ π′(ω). Since α =
π(ω)

Π(φ)
<

β =
π′(ω)

Π′(φ)
, we also have Π(φ) > Π′(φ). Let ω1 be an interpretation such that ω1 |= φ and

π(ω1) = Π(φ) = γ. Note first that γ > Iπ(ω1). Indeed, if γ = Iπ(ω1), then this means that
∀π′′, π′′ compatible with Iπ, we have π′′(ω1) ≥ γ. In particular, π′(ω1) ≥ γ = Π(φ) which
is impossible since Π′(φ) ≥ π′(ω1) (recall that ω1 |= φ), this means that Π′(φ) ≥ Π(φ) which

contradicts the fact that Π(φ) ≥ Π′(φ). Note also that π(ω) 6= Π(φ), otherwise α =
π(ω)

Π(φ)
= 1

which is impossible since α < β. Since γ > Iπ(ω1), let us define a new possibility distribution π′′

from π as follows: ∀ω∗ ∈ Ω,

π′′(ω∗) =

{

π(ω∗)− ǫ if π(ω∗) = Π(φ) and ω∗ |= φ
π(ω∗) otherwise

where ǫ is a very small positive number. Clearly, π′′ is compatible, since π is compatible and
π′′(ω∗) ∈ Iπ(ω∗) for all ω∗ ∈ Ω. Then one can easily check that:

α =
π(ω)

Π(φ)
<
π′′(ω)

Π′′(φ)
=

π(ω)

Π(φ)− ǫ
<
π′(ω)

Π′(φ)
= β.

In the rest of the chapter, we only use Iπ(.|φ) and π(.|φ) instead of Iπ(.|∗φ) and π(.|∗φ) to avoid
heavy notations. The following proposition states that the compatible-based conditioning given in Defi-
nition 4.6 satisfies properties IC1-IC7.

Proposition 4.2. Let Iπ be a normalized interval-based possibility distribution. Let φ be the new evi-

dence such that IΠ(φ) > 0. Then the updated interval-based possibility distribution computed according

to Definition 4.6 satisfies properties IC1-IC7.

Proof. Let φ be the new evidence such that IΠ(φ) > 0.
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— For postulate IC1, the proof is the one of Proposition 4.1. Indeed, using the product-based con-
ditioning of Equation (1.28), the obtained distribution Iπ(.|φ) using the compatible-based condi-
tioning of Definition 4.6 is an interval-based one.

— For postulate IC2, following the compatible-based conditioning of Definition 4.6, ∀ω 2 φ, Iπ(ω|φ) =
[minπ∈C(Iπ)(π(ω|φ)),maxπ∈C(Iπ)(π(ω|φ))] = [0, 0], since π(ω|φ) = 0 for all π ∈ C(Iπ) and for
all ω counter models of φ.

— For postulate IC3, recall that in Iπ, the new evidence is assumed to be somewhat possible, namely,
IΠ(φ) >0. Then, ∀π ∈ C(Iπ), ∃ω∗ � φ such that π(ω∗|φ) = 1. Hence, ∃ω∗ � φ such that
maxπ∈C(Iπ)(π(ω

∗|φ))=Iπ(ω∗|φ) = 1.

— For postulate IC4 stating that if φ is already fully accepted (namely, all counter-models of φ are
already impossible) then Iπ(.|φ) should be identical to Iπ. φ is already fully accepted if and only
if ∀ω 2 φ, Iπ(ω) = [0, 0] (namely, ∀π ∈ C(Iπ) and ∀ω 2 φ, π(ω) = 0). Two cases have to be
considered:

— Case 1: For counter-models of φ, according to Postulate IC2, ∀ω 2 φ, Iπ(ω|φ) = [0, 0].
Then, ∀ω 2 φ, Iπ(ω) = Iπ(ω|φ) = [0, 0].

— Case 2: For models of φ, since φ is already fully accepted then ∀π ∈ C(Iπ), Π(φ) = 1 since
each compatible distribution π is normalized and ∀ω 2 φ, π(ω) = 0. Now, since ∀π ∈ C(Iπ),
Π(φ) = 1 then ∀π ∈ C(Iπ) and ∀ω � φ, π(ω|φ) = π(ω)

Π(φ) = π(ω).

Then from Case 1 and Case 2, we conclude that if ∀ω 2 φ, Iπ(ω) = [0, 0] then ∀ω ∈ Ω, Iπ(ω) =
Iπ(ω|φ).

— For postulate IC5, recall that IΠ(φ) > 0 and that Iπ(ω|φ) = [minπ∈C(Iπ)(π(ω|φ)),maxπ∈C(Iπ)(π(ω|φ))].
Hence, if Iπ(ω) = [0, 0] then ∀π ∈ C(Iπ), π(ω) = 0 and π(ω|φ)=0. As a consequence,
[minπ∈C(Iπ)(π(ω|φ)), maxπ∈C(Iπ)(π(ω|φ))] = [0, 0].

— For postulate IC6, let ω |= φ and ω′ |= φ be two interpretations such that Iπ(ω) < Iπ(ω′). Then,
on the one hand we have maxπ∈C(Iπ)(π(ω)) < minπ∈C(Iπ)(π(ω

′)) (following the definition of up-
per and lower endpoints). This means that ∀π ∈ C(Iπ), we have π(ω) < π′(ω). On the other hand,
∀π ∈ C(Iπ), if π(ω) < π(ω′) then π(ω|φ) < π(ω′|φ). We conclude that maxπ∈C(Iπ)(π(ω|φ)) <

minπ∈C(Iπ)(π(ω
′|φ)). Said in other words, if Iπ(ω) < Iπ(ω′) then Iπ(ω|φ) < Iπ(ω′|φ).

— For postulate IC7, the proof is similar to the one of postulate IC6. Indeed, if ω |= φ and ω′ |= φ
are two interpretations such that Iπ(ω) = Iπ(ω′). Then, Iπ(ω) = Iπ(ω′) and Iπ(ω) = Iπ(ω′).
This also means that minπ∈C(Iπ)(π(ω)) = minπ∈C(Iπ)(π(ω

′)). Now, if minπ∈C(Iπ)(π(ω)) =
minπ∈C(Iπ)(π(ω

′)), then minπ∈C(Iπ)(π(ω|φ)) = minπ∈C(Iπ)(π(ω
′|φ)) allowing to state that Iπ(ω|φ) =

Iπ(ω′|φ). The same result holds for the upper endpoint using max instead of min.

4.3 Conditioning interval-based possibility distributions: Computations

4.3.1 Computing lower and upper endpoints of Iπ(.|φ)

The objective now is to determine the lower and upper endpoints of Iπ(.|φ). Let us start with a
particular case of interval-based distributions Iπ where in each compatible distribution π ∈ C(Iπ), φ is
accepted (namely, Π(φ) > Π(φ)). In this case, the computation of Iπ(.|φ) is immediate:

Proposition 4.3. Let Iπ be an interval-based possibility distribution and φ be a propositional formula

such that IΠ(φ) = 1 and IΠ(φ) < 1. Then
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— If there is only one interpretation ω∗ ∈ Ω such that ω∗ |= φ and Iπ(ω∗) = 1 then ∀ω ∈ Ω,

Iπ(ω|φ) =







[1, 1] if ω=ω∗

Iπ(ω) if ω 6=ω∗ and ω |=φ
[0, 0] otherwise.

(4.3)

— Otherwise, ∀ω ∈ Ω,

Iπ(ω|φ) =

{

Iπ(ω) if ω |=φ
[0, 0] otherwise (ω2φ)

(4.4)

Proof. The proof of this proposition can be obtained from the proof of postulate IC2 for counter-models
of φ.

For models of φ, since IΠ(φ) = 1 then φ is already accepted in each π ∈ C(Iπ) (namely, Π(φ) = 1
for all π′ ∈ C(Iπ)) and ∀ω |= φ, Iπ(ω|φ) = Iπ(ω).

Example 4.1. Let Iπ be the interval-based distribution depicted in Table 4.1. In this example, the new

ω ∈ Ω Iπ(ω) ω ∈ Ω Iπ(ω|φ)
ab [1, 1] ab [1, 1]

ab [.3, .6] ab [.3, .6]
ab [.1, .4] ab [0, 0]

ab [.3, .6] ab [0, 0]

Table 4.1 – Interval-based possibility distribution of Example 4.1.

evidence φ = a is already accepted. Following Proposition 4.3, the resulted distribution Iπ(ω|φ) is also
given in Table 4.1.

We now consider the complex case where IΠ(φ) = 1, namely there exists at least a compatible
possibility distribution π where φ is not accepted. Recall that by Equation (1.28), we have ∀ω ∈ φ,

π(ω|φ) =
π(ω)

Π(φ)
. Therefore, intuitively to get, for instance, the lower endpoint Iπ(ω|φ), it is enough to

select a compatible distribution π that provides the smallest value for π(ω) (namely, if possible π(ω) =
Iπ(ω)) and the largest value for Π(φ) (namely, if possible Π(φ) = IΠ(φ)). Hence, in the following

and without surprise we will constally find the expression
Iπ(ω)

IΠ(φ)
in the definition of Iπ(ω|φ). The

following two propositions give these bounds depending whether there exist a unique interpretation or
several interpretations having their upper endpoints equal to IΠ(φ).

Proposition 4.4. Let Iπ be an interval-based distribution such that IΠ(¬φ) = 1. If there exist more than

one model of φ having their upper endpoints equal to IΠ(φ), then ∀ω ∈ Ω:

Iπ(ω|φ) =







[

Iπ(ω)

IΠ(φ)
,min

(

1,
Iπ(ω)

IΠ(φ)

)]

if ω |=φ

[0, 0] otherwise

(4.5)

Proof. Let ω ∈ Ω be an interpretation and Iπ(.|φ) be the conditioned interval-based distribution Iπ with
φ.

— The lower endpoint Iπ(ω|φ) equals
Iπ(ω)

IΠ(φ)
. Indeed, this possibility degree

Iπ(ω)

IΠ(φ)
exists and is

obtained by considering a compatible possibility distribution π where Π(φ) = IΠ(φ) (recall that
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π(ω) ≤ Π(φ)). Besides, since for each compatible possibility distribution π′ we have Π′(φ) ≤

IΠ(φ) and π′(ω) ≥ Iπ(ω) then π′(ω|φ) =
π′(ω)

Π′(φ)
≥
Iπ(ω)

IΠ(φ)
.

— Similarly, the upper endpoint Iπ(ω|φ) is equal to min(1,
Iπ(ω)

IΠ(φ)
). Again, this possibility degree

min(1,
Iπ(ω)

IΠ(φ)
) exists and is obtained, by considering a compatible possibility π where Π(φ) =

IΠ(φ) and π(ω) = min(IΠ(φ), Iπ(ω)). Such compatible possibility distribution exists. Let us

show that for every compatible possibility distribution π′, we have π′(ω|φ) ≤ min(1,
Iπ(ω)

IΠ(φ)
).

Two cases are to be considered:

— Iπ(ω) < IΠ(φ). For every compatible possibility distribution π′, we have π′(ω) ≤ Iπ(ω).
Hence π′(ω) ≤ min(IΠ(φ), Iπ(ω)) since Iπ(ω) < IΠ(φ). Besides, by definition Π′(φ) ≥
IΠ(φ). Therefore,

π′(ω|φ) =
π′(ω)

Π′(φ)
≤

min(IΠ(φ), Iπ(ω))

IΠ(φ)
= min(1,

Iπ(ω)

IΠ(φ)
).

— If Iπ(ω) ≥ IΠ(φ) then trivially: π′(ω|φ) =
π′(ω)

Π′(φ)
≤ min(1,

Iπ(ω)

IΠ(φ)
) since min(1,

Iπ(ω)

IΠ(φ)
) =

1.

Example 4.2. Let Iπ be the normalized interval-based distribution of Table 4.2. Let φ = a be the new
evidence. In this example, we face the situation where we have more than one interpretation where
Iπ(ω∗) = IΠ(φ) = .6. Hence, according to Proposition 4.4, the resulted distribution is given in Ta-
ble 4.2.

ω ∈ Ω Iπ(ω) ω ∈ Ω Iπ(ω|φ)
ab [1, 1] ab [0, 0]

ab [.1, .4] ab [0, 0]
ab [.3, .6] ab [1/2, 1]

ab [.3, .6] ab [1/2, 1]

Table 4.2 – Interval-based possibility distribution of Example 4.2.

For the purpose of the next proposition, we define the notion of secondbest in an interval-based
possibility distribution.

Definition 4.7 (Secondbest). Let Iπ be an interval-based possibilistic distribution. Then,

secondbest(Iπ) = max{Iπ(ω′) : ω′ ∈ φ and Iπ(ω′) 6= IΠ(φ)}.

Note that this definition can be extended to interval-based possibilistic knowledge bases.

Example 4.3. Let us take the interval-based possibility distribution Iπ(ω) of Table 4.2. Then for
φ = ab, ab, ab we have secondbest(Iπ) = .6. Indeed, the three interpretations that belongs to φ have
respectively the upper bound equals to 1, .4 and .6. So the second best degree is .6.

The next proposition concerns the particular situation where there exists exactly one interpretation
ω∗, model of φ, such that Iπ(ω∗) = IΠ(φ). In this case, comparing to Proposition 4.4, only the lower
endpoint of the interpretation ω∗ will differ. More precisely:
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Proposition 4.5. Let Iπ be an interval-based possibility distribution such that IΠ(φ) = 1. Assume that

there exists exactly one interpretation ω∗, model of φ, such that Iπ(ω∗) = IΠ(φ). Then ∀ω ∈ Ω,

— If ω 6= ω∗ then Iπ(ω|φ) is the same as the one given in Proposition 4.4, namely:

Iπ(ω|φ) =







[

Iπ(ω)

IΠ(φ)
,min

(

1,
Iπ(ω)

IΠ(φ)

)]

if ω |=φ

[0, 0] otherwise

(4.6)

— If ω = ω∗, let secondbest(Iπ) defined by Definition 4.7. Then:

Iπ(ω|φ) =







[1, 1] if secondbest(Iπ) = 0
[

min(1,
Iπ(ω)

secondbest(Iπ)
), 1

]

otherwise
(4.7)

Proof. In the situation where there exists exactly one interpretation ω∗ such that Iπ(ω∗) = IΠ(φ). Then
first ∀ω′ 6= ω∗, we have :

Iπ(ω′|φ) =

[

Iπ(ω′)

IΠ(φ)
,min

(

1,
Iπ(ω′)

IΠ(φ)

)]

The proof for this case is exactly the same as the one given in Proposition 4.4.
Now regarding the interpretation ω∗, there are two cases to consider :

— if secondbest(Iπ) = 0 then this means that ∀ω′ 6= ω∗, Iπ(ω′) = [0, 0]. Hence, for each compatible
possibility distribution π we have π(ω∗|φ) = 1 and ∀ω′ 6= ω∗, π(ω′|φ) =0. Hence, Iπ(ω∗|φ) =
[1, 1] and ∀ω′ 6= ω∗, Iπ(ω′|φ) = [0, 0].

— if secondbest(Iπ) > 0 then this means that ∃ω′ 6= ω∗, such that Iπ(ω′) 6= [0, 0]. In this case,

Iπ(ω∗|φ) =

[

min(
Iπ(ω∗)

secondbest(Iπ)
, 1), 1

]

.

The upper endpoint (namely 1) is obtained by considering a compatible possibility distribution π
where π(ω∗) = IΠ(φ). The lower endpoint possibility degree exists and is obtained by consider-
ing another compatible possibility distribution π′ where π′(ω∗) = min(secondbest(Iπ), Iπ(ω∗))
and for some ω′, π′(ω′) = secondbest(Iπ) (such ω′ exists by assumption that secondbest(Iπ) 6=
0). Two cases are to be considered:

— If secondbest(Iπ) > Iπ(ω∗), then one can check that for each compatible possibility dis-
tribution π” we have π”(ω∗) ≥ Iπ(ω∗) (by definition of lower endpoints) and Π”(φ) ≤

secondbest(Iπ). Therefore, π′′(ω∗|φ) =
π”(ω∗)

Π”(φ)
≥

Iπ(ω∗)

secondbest(Iπ)
. Therefore, Iπ(ω∗|φ) =

minπ′∈C(Iπ)(π
′(ω∗|φ)) =

Iπ(ω)

secondbest(Iπ)

— If secondbest(Iπ) ≤ Iπ(ω∗), then trivially, for each compatible possibility distribution π”,

π′′(ω∗|φ) ≥ min(
Iπ(ω∗)

secondbest(Iπ)
, 1) since

min(
Iπ(ω∗)

secondbest(Iπ)
, 1) = 1.

Example 4.4. Let Iπ be the normalized interval-based distribution of Table 4.3. Let φ = a be the
new evidence. In this example, we face the situation where we have exactly one interpretation where
Iπ(ω∗) = IΠ(φ) = .6. Hence, according to Proposition 4.5, secondbest(Iπ) = .4.
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ω ∈ Ω Iπ(ω) ω ∈ Ω Iπ(ω|φ)
ab [1, 1] ab [0, 0]

ab [.3, .6] ab [0, 0]
ab [.1, .4] ab [.1/.6, 1]

ab [.3, .6] ab [.3/.4, 1]

Table 4.3 – Example of conditioning an interval-based possibility distribution using Proposition 4.5.

The nice feature of the proposed conditioning is that it extends the one used in standard possibil-
ity theory: namely when all intervals I , associated with interpretations, are singletons, then ∀ω ∈ Ω,
Iπ(ω|φ)= [π(ω|φ),π(ω|φ)] where π is the unique compatible distribution associated with Iπ.

We now provide the syntactic counterpart of the compatible-based conditioning.

4.3.2 Syntactic characterization of compatible-based conditioning

Given an interval-based knowledge base IK and a new evidence φ, conditioning at the syntactic level
comes down to altering IK into IKφ such that the induced posterior interval-based possibility distribution
IπIKφ

equals the posterior interval-based possibility distribution IπIK(.|φ) obtained by conditioning IπIK
with φ as illustrated in Figure 4.2.

IK IπIK

IKφ IπIK(.|φ)IπIKφ

Definition 4.5

Syntactic
conditioning

with φ

Definition 4.5 ?

Conditioning
on φ using

Propositions 4.4 and 4.5

Figure 4.2 – Equivalence of semantic and syntactic conditionings.

The aim of this section is then to compute a new interval-based knowledge base, denoted for the sake
of simplicity by IKφ, such that:

∀ω∈Ω, IπIK(ω|φ) = IπIKφ
(ω), (4.8)

where IπIKφ
is the interval-based distribution associated with IKφ using Definition 4.5, and IπIK(.|φ) is

the result of conditioning IπIK using the compatible-based conditioning presented in the previous section
(Propositions 4.4 and 4.5).

To achieve this aim, we need to provide methods that directly operate on the interval-based knowl-
edge base IK:

— to check whether IΠIK(φ) = 0 (resp. IΠIK(φ) = 0) or not,

— to check whether IΠIK(¬φ) = 1 or not,

— to compute IΠIK(φ) and IΠIK(φ),

— to compute secondbest(IπIK),

— to check whether there exists a unique interpretation ω∗ such that Iπ(ω∗) = IΠ(φ), and lastly

— to compute IKφ.
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Checking whether IΠIK(φ) = 0 (resp. IΠIK(φ) = 0) or not

Recall that an interval-based possibility distribution where IΠIK(φ) = 0 expresses a very strong
conflict with the evidence φ. Namely, IK strongly contradicts the formula φ.

Proposition 4.6. Let IK be an interval-based possibilistic base and IπIK be its associated interval-based

distribution. Then,

i) IΠIK(φ) = 0 if and only if {ϕ : (ϕ, I) ∈ IK and I = [1, 1]} ∪ {φ} is inconsistent. In this case,

IKφ = ∅.

ii) IΠIK(φ) = 0 if and only if {ϕ : (ϕ, I) ∈ IK and I = 1} ∪ {φ} is inconsistent. In this case,

IKφ = {(φ, [1, 1]), (¬φ, [0, 1])}.

Proof. — Proof of item i): Since {ϕ : (ϕ, I) ∈ IK and I = [1, 1]} ∪ {φ} is inconsistent then
each interpretation ω falsifies at least one formula with an interval-based weight equal to [1,1].
Using Definition 4.5, we conclude that ∀ω ∈ Ω, ω model of φ, IπIK(ω) = [0, 0]. Hence, IπIK is a
degenerate interval-based possibility distribution. Similarly, if {ϕ : (ϕ, I) ∈ IK and I = [1, 1]}∪
{φ} is consistent then it accepts a model ω such that the maximal lower endpoint of intervals
associated with formulas falsified by ω is strictly less than 1, hence IπIK(ω) > 0. Therefore,
IΠIK(φ) 6= 0.

Lastly, one can easily check that the possibility distribution associated with IKφ = φ is: ∀ω ∈ Ω,
IπIKφ

(ω) = [1, 1], which is exactly the result of conditioning interval-based possibility distribution
with IΠ(φ) = 0.

— Proof of item ii): Remember that IK is consistent, namely there exists ω∗ ∈ Ω such that Iπ(ω∗) =
1. Since {ϕ : (ϕ, I) ∈ IK and I = 1} ∪ {φ} is inconsistent then each interpretation ω, model
of φ, falsifies at least one formula with an upper endpoint weight equal to 1. Using Definition 4.5,
we conclude that ∀ω ∈ Ω, ω model of φ, IπIK(ω) = [0, β]. Hence, IΠIK(φ) = 0. Similarly,
if {ϕ : (ϕ, I) ∈ IK and I = 1} ∪ {φ} is consistent then it accepts a model ω such that the
maximal upper endpoint of intervals associated with formulas falsified by ω is strictly less than 1,
hence IπIK(ω) > 0. Therefore, IΠIK(φ) 6= 0. Again, one can easily check that the possibility
distribution associated with IKφ = {(φ, [1, 1]), (¬φ, [0, 1])} is ∀ω ∈ Ω,

IπIKφ
(ω) =

{

[0, 1] if ω |= φ
[0, 0] otherwise

. This is the result of conditioning Iπ by φ when IΠ(φ) = 0.

Example 4.5. Let IK = {(¬a, [1, 1]), (a ∨ ¬b, [.4, .6])} be an interval-based possibilistic knowledge
base. The associated interval-based possibility distribution is given in Table 5.2. Let φ = a be the new
evidence.

In this example, IΠIK(φ) = 0 since {ϕ : (ϕ, I) ∈ IK and I = [1, 1]} ∪ {φ} = {¬a} ∪ {a} is
inconsistent. Hence, IKφ = ∅.

In the following, we assume that IK is such that φ is somewhat possible. Namely in its associated
interval-based possibility distribution IπIK , we have IΠIK(φ) > 0.

Checking whether IΠIK(¬φ) 6= 1 or not

Proposition 4.7 shows how to syntactically check if φ is accepted or not, namely whether IΠIK(¬φ) =
1 or not.
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ω ∈ Ω IπIK(ω) ω ∈ Ω IπIK(ω|φ)
ab [0, 0] ab [1, 1]
a¬b [0, 0] a¬b [1, 1]
¬ab [.4, .6] ¬ab [1, 1]
¬a¬b [1, 1] ¬a¬b [1, 1]

Table 4.4 – Interval-based possibility distribution induced by the interval-based possibilistic base of
Example 4.5.

Proposition 4.7. Let IK be an interval-based possibilistic base and IπIK be its associated possibility

distribution. Then: IΠIK(¬φ) 6= 1 if and only if {ϕ : (ϕ, I) ∈ IK and I > 0} ∪ {¬φ} is inconsistent.

In this case: IKφ = IK ∪ {(φ, [1, 1])}.

Namely, IΠ(¬φ) 6= 1 if the set of somewhat certain formulas of K (namely having their lower
endpoints degrees greater than 0) is inconsistent with ¬φ.

Proof. Assume that {ϕ : (ϕ, I) ∈ IK and I > 0} ∪ {¬φ} is inconsistent. Then each interpretation ω,
model of ¬φ, falsifies at least one formula with a lower endpoint weight strictly greater than 0. Using
Definition 4.5, we conclude that ∀ω ∈ Ω, if ω |= ¬φ then IπIK(ω) < 1. Hence IΠIK(¬φ) 6= 1.
Similarly, if {ϕ : (ϕ, I) ∈ IK and I > 0} ∪ {¬φ} is consistent then it accepts a model ω that satisfies
all formulas (ϕ, I) with I >0. Hence, IπIK(ω) = 1 and ω is a model of ¬φ. Hence IΠ(¬φ) = 1.
Now, it is easy to check that the joint interval-based possibility distribution associated with IKφ =
IK ∪ {(φ, [1, 1])} is:

∀ω ∈ Ω, IπIKφ
=

{

Iπ(ω) if ω |= φ
[0, 0] otherwise

which is exactly the one given in Proposition 4.3.

Example 4.6. Let IK = {(¬a, [0, .3]), (a∨¬b, [.4, 1]), (a∧b, [.3, .6])} be an interval-based possibilistic
knowledge base. The associated interval-based possibility distribution is given in Table 4.5. Let φ = a
be the new evidence. In this example, IΠIK(φ) 6= 1 since {ϕ : (ϕ, I) ∈ IK and I > 1} ∪ {¬φ} =

ω ∈ Ω IπIK(ω) ω ∈ Ω IπIKφ
(ω)

ab [.7, .1] ab [.7, 1]
a¬b [.4, .7] a¬b [.4, 1]
¬ab [0, .6] ¬ab [0, 0]
¬a¬b [.4, .7] ¬a¬b [0, 0]

Table 4.5 – Interval-based possibility distribution induced by the interval-based possibilistic base (IK
and IKφ) of Example 4.6.

{a∨¬b, a∧ b,¬a} is inconsistent. Hence, IKφ = IK ∪{(φ, [1, 1])}. The associated distribution of IKφ

is given in Table 4.5.

Computing IΠIK(φ) and IΠIK(φ)

The computation of IΠIK(φ) and IΠIK(φ) comes down to computing the inconsistency degrees of
two particular standard possibilistic knowledge bases (considering only lower and upper endpoints of
intervals associated with formulas) as it is stated by the following proposition:
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Proposition 4.8. Let IK be an interval-based knowledge base. Let IK = {(ϕ, I) : (ϕ, I) ∈ IK} and

IK = {(ϕ, I) : (ϕ, I) ∈ IK}. Then:

IΠIK(φ) = 1− Inc(IK ∪ {(φ, 1)}) and

IΠIK(φ) = 1− Inc(IK ∪ {(φ, 1)}).

In Proposition 4.8, Inc(K) is the inconsistency degree of a standard possibilistic knowledge base K
given by Equation (2.20).

Proof. Let us start with the computation of IΠIK(φ). Recall that:

IΠIK(φ) = max{IπIK(ω) : ω ∈ Ω and ω |= φ}

and IπIK(ω) is defined as follows:

IπIK(ω) =

{

[1, 1] if ∀(ϕ, I) ∈ IK, ω |= ϕ

[1−max{I : (ϕi, I) ∈ K,ω 2 ϕi}, 1−max{I : (ϕi, I) ∈ K,ω 2 ϕi}] otherwise.

If there exists ω, model of φ, such that ∀(ϕ, I) ∈ IK, ω |= ϕ then IΠIK(φ) = [1, 1]. This means
that IK∗ = {ϕ : (ϕ, I) ∈ IK} ∪ {φ} is consistent. From the definition of inconsistency of a base,
Inc(IK) = 0 hence IΠIK(φ) = 1.

Assume now that IK∗ = {ϕ : (ϕ, I) ∈ IK} ∪ {(φ, [1, 1])} is inconsistent. Then, by definition:
IΠIK(φ) = max{IπIK(ω) : ω |= φ}

= max{1−max{I : (ϕ, I) ∈ IK, ω 6|= ϕ} : ω |= φ}
= 1−min{max{I : (ϕ, I) ∈ IK, ω 6|= ϕ} : ω |= φ}

Let us denote α = min{max{I : (ϕ, I) ∈ IK, ω 6|= ϕ} : ω |= φ}
This means that:

∀ω |= φ,max{I : (ϕ, I) ∈ IK, ω 6|= ϕ} ≥ α (4.9)

and
∃ω′ |= φ,max{I : (ϕ, I) ∈ IK, ω′ 6|= ϕ} = α (4.10)

The last equation means that:

{ϕ : (ϕ, I) ∈ IK, and I > α} ∪ {(φ, 1)} is consistent,

and Equation (4.9) means that:

{ϕ : (ϕ, I) ∈ IK, and I ≥ α} ∪ {(φ, 1)} is inconsistent.

The degree α corresponds simply to the definition of inconsistency degree of the standard possibilis-
tic knowledge bases obtained from IK by considering only the upper endpoints of intervals associated
with formulas and φ with a degree 1 of certainty. Hence, we have: IΠIK(φ) = 1− Inc(IK ∪ {(φ, 1)}).

The computation of IΠIK(φ) follows similar steps as the ones used in computing IΠIK(φ).

Example 4.7. Let IK = {(a ∧ b, [.4, .7]), (a ∨ ¬b, [.6, .9])} be a interval-based possibilistic base and
let φ = ¬a be a new evidence in hand. The associated distribution IπIK of IK is depicted in Table 4.6.
From Table 4.6, we can compute IΠIK(φ). Indeed, IΠIK(φ) = [.3, .6]. From the knowledge base IK,
let us compute IΠ(φ) = 1− Inc(IK ∪ {(φ, 1)}), Inc(IK ∪ {(φ, 1)}) = .4 then 1− .4 = .6. The same
goes for computing IΠ(φ).
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ω IπIK(ω)

ab [1, 1]
a¬b [.3, .6]
¬ab [.1, .4]
¬a¬b [.3, .6]

Table 4.6 – Interval-based possibility distribution induced by IK of Example 4.7.

Checking the uniqueness of models of φ having upper endpoints equal to IΠIK(φ)

We now need to show how to syntactically check whether, there exists a unique interpretation ω∗,
model of φ, such that IπIK(ω∗) = IΠIK(φ). If an interpretation ω, model of φ, is such that IπIK(ω) =
IΠIK(φ) then ω is a model of Φ = {ϕ : (ϕ, I) ∈ IK and I > Inc(IK ∪{(φ, 1)})}∪{φ}. Besides, if for
some ω′ 6= ω, IπIK(ω′) < IΠIK(φ) then this means that ω′ falsifies at least one formula from Φ ∪ {φ}.
Additionally, assume that there exists a unique model ω∗ of φ such that IπIK(ω∗) = IΠIK(φ). We
are interested to know whether ∀ω′ 6= ω∗, Iπ(ω′) = [0, 0]. It is enough to check that all formulas in
{ϕ : (ϕ, I) ∈ IKand I > Inc(IK ∪ {(φ, 1)})} have their associated interval I equal to [1,1]. The main
results of this subsection are summarized in the following proposition:

Proposition 4.9. Let IK be an interval-based knowledge base. Let IπIK be its associated possibility

distribution. Let Φ = {ϕ: (ϕ, I) ∈ IK and I > Inc(IK ∪ {(φ, 1)})} ∪ {φ}. Then:

— Φ ∪ {φ} admits a unique model if and only if there exists a unique interpretation ω∗, model of φ,

such that IπIK(ω∗) = IΠIK(φ).

— Φ ∪ {φ} admits a unique model and each formula in Φ has [1, 1] as certainty-based interval

weight if and only if there exists ω∗ model of φ such that Iπ(ω∗) = IΠIK(φ) and ∀ω′ 6= ω∗,

Iπ(ω′) = [0, 0].

Proof. — Proof of the first item: Let us show the proofs in both the directions. But, first recall that:
IΠ(φ) = 1− Inc(IK ∪ {(φ, 1)}) from Proposition 4.8. Namely,

i) If Φ ∪ {φ} admits a unique model ω∗ then IπIK(ω∗) = IΠIK(φ).

Since ω∗ is the unique model of Φ ∪ {φ}, then it falsifies all formulas of Φ. Recall that,
all the formulas of Φ have, in IK, their lower endpoints greater than Inc(IK ∪ {(φ, 1)}).
Then, ω∗ falsifies formulas of IK, such that their endpoints are equal to Inc(IK ∪ {(φ, 1)}).
Consequently IπIK(ω∗) = 1 − Inc(IK ∪ {(φ, 1)}) = IΠIK(φ). Since ω∗ is the unique
model of Φ ∪ {φ} then ∀ω ∈ Ω, ω 6= ω∗, ω model of φ, ω falsifies at least a formula
from Φ. Since all formulas in Φ have their endpoint greater than Inc(IK ∪ {(φ, 1)}) then
Iπ(ω) < 1 − Inc(IK ∪ {(φ, 1)}). Hence, there exists exactly one model ω∗ of φ such that
π(ω∗) = Π(φ).

ii) If there is a unique interpretation ω∗, model of φ, such that IπIK(ω∗) = IΠIK(φ) then
ω∗ is the unique model of Φ ∪ {φ}. Assume that there exists a unique interpretation ω∗,
model of φ, such that IπIK(ω∗) = IΠIK(φ). According to Definition 4.5, IπIK(ω∗) =
1−max{I, (ϕ, I) ∈ IK and ω∗ 2 ϕ}. Now, since IπIK(ω∗) = IΠIK(φ) and IΠIK(φ) =1-
Inc(IK ∪ {(φ, 1)}) (Proposition 4.8) then max(I, (ϕ, I) ∈ IK and ω∗ 2 ϕ) = Inc(IK ∪
{(φ, 1)}). This means that ω∗ does not falsify any formula from Φ given that formulas of Φ
are associated in IK with weights strictly greater than Inc(IK∪{(φ, 1)}). Then ω∗ is a model
of φ and Φ, consequently, it is a model of Φ ∪ {φ} meaning that Φ ∪ {φ} admits a model.
But is ω∗ the unique model of Φ ∪ {φ}? Assume that there exists another interpretation
ω′ 6= ω∗ such that IπIK(ω′) < IπIK(ω∗) and ω′ is a model of Φ ∪ {φ}. ω′ is a model of
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Φ ∪ {φ} if and only if ω′ does not falsify any formula in Φ ∪ {φ}. In this case, IπIK(ω′) ≥
1− Inc(IK ∪ {(φ, 1)}) = IΠIK(φ), which is a contradiction.

From items i) and ii), we conclude that Φ ∪ {φ} admits a unique model if and only if there exists
a unique interpretation ω∗, model of φ, such that IπIK(ω∗) = IΠIK(φ).

— Proof of the second item: Φ ∪ {φ} admits a unique model and each formula in Φ has [1, 1] as

certainty-based interval weight if and only if there exists ω∗ model of φ such that IπIK(ω∗) =
IΠIK(φ) and ∀ω′ 6= ω∗, IπIK(ω

′) = [0, 0].

a) Assume that Φ∪{φ} admits a unique model ω∗ and each formula in Φ is associated with the
certainty interval [1, 1]. This means that any another interpretation ω′ 6= ω∗ falsifies at least
one formula from Φ ∪ {φ}, consequently, the interval-based possibility interval-degrees of
ω′ will be associated with the interval [0, 0].

b) The converse can be stated as follows: Assume that there exists a unique ω∗ model of φ such
that IπIK(ω∗) = IΠIK(φ) and ∀ω′ 6= ω∗, IπIK(ω′) = [0, 0]. This means that ∀ω′ 6= ω∗, ω′

falsifies at least a formula with the interval [1, 1]. Then, Φ∪{φ} is satisfiable and admits only
ω∗ as a model. Hence, Φ ∪ {φ} admits a unique model and all its formulas are associated
with the certainty interval [1, 1].

Example 4.8 (First item of Proposition 4.9). Let IK = {(a∧ b, [.4, .7]), (a∨¬b, [.6, .9])} be an interval-
based possibilistic base and let φ = ¬a be a new evidence in hand. The associated distribution IπIK of
IK is already depicted in Table 4.6. In this example, we consider Φ = {a ∨ ¬b} ∪ {¬a}, which admits
a unique model ω∗ = ¬a¬b. From Proposition 4.9, we have indeed ¬a¬b, model of φ, being the only
interpretation having his upper endpoint equal to IΠIK(φ).

Example 4.9 (Second item of Proposition 4.9). Let IK = {(a∧b, [.4, .7]), (a∨¬b, [1, 1])} be a interval-
based possibilistic base and let φ = ¬a be a new evidence in hand. The associated distribution IπIK
of IK is depicted in Table 4.7. Here, we consider Φ = {a ∨ ¬b} ∪ {¬a}, which admits a unique

ω IπIK(ω)

ab [1, 1]
a¬b [.3, .6]
¬ab [0, 0]
¬a¬b [.3, .6]

Table 4.7 – Interval-based possibility distribution induced by IK of Example 4.9.

model ω∗ = ¬a¬b and each formula of Φ meaning ψ = a ∨ ¬b has a weight equal to [1, 1]. From
Proposition 4.9, we have ¬a¬b, model of φ, being the unique interpretation having his upper endpoint
equal to IΠIK(φ) and ∀ω′ |= φ, ω′ 6= ω∗, we have Iπ(ω′) = [0, 0].

Computing secondbest(IK)

Recall that IK = {(ϕ, I) : (ϕ, I) ∈ IK} and that secondbest(IK) is only computed in the situation
where there exists exactly one interpretation ω∗, model of φ, such that IΠ(φ) = Iπ(ω∗). In order to
easily define secondbest(IπIK), we first let D = {α1,. . ., αn} to be the different degrees present in

65



Chapter 4. Quantitative conditioning in interval-based possibilistic setting

IK, with α1 > . . . > αn. Then we define (Aα1
, Aα2

, . . ., Aαn) as the WOP (well ordered partition)
associated with IK, obtained by letting:

Aαi
= {(ψ, β) : (ψ, β) ∈ IK and β = αi}. (4.11)

Namely, Aαi
is the subset of IK composed of all weighted formulas having a certainty degree equal

to αi. Then:

Proposition 4.10. Assume that there exists exactly one interpretation ω∗, model of φ, such that IΠIKφ
(φ) =

IπIKφ
(ω∗). Let (Aα1

, Aα2
, . . . , Aαn) be the WOP associated with IK, where Aαi

’s are given by Equa-

tion (4.11). Define secondbest(IK) = 1 − min{αi : αi > Inc(IK ∪ {(φ, 1)}) and Aαi
is a non-

tautological formula }. Then secondbest(IK) = secondbest(IπIK).

Proof. To see the proof, first recall that IΠIK(φ) = 1 − Inc(IK ∪ {(φ, 1)}) (Proposition 4.8). Recall
also that there exists exactly one interpretation ω∗, model of φ, such that IπIKφ

(ω) = IΠIKφ
(φ). All

interpretations ω, different from ω∗, falsify at least one formula from IK having their lower endpoint
greater than Inc(IK ∪ {(φ, 1)}). Therefore, secondbest(Iπ) is obtained by considered the smallest
αi such that Aαi

is a non-tautological formula (otherwise such formula is always satisfied) and where
αi > Inc(IK ∪ {(φ, 1)}).

Example 4.10. Let IK = {(a∧b, [.4, .7]), (a∨¬b, [.6, .9])} be a interval-based possibilistic base and let
φ = ¬a be a new evidence in hand. The associated distribution IπIK of IK is depicted in the Example 4.7
- Table 4.6. In this example, φ admits a unique model ω∗ = ¬a¬b such that IΠIKφ

(φ) = IπIKφ
(ω∗).

From Proposition 4.10, the associated WOP with IK is given by (A0.4, A0.6) where A0.4 = {(a ∧
b, 0.4)} and A0.6 = {(a ∨ ¬b, 0.6)}. Let’s compute Inc(IK ∪ {(φ, 1)}) = 0.4 then secondbest(IK) =
1− 0.6 = 0.4. Then we have secondbest(IK) = secondbest(IπIK) (secondbest(IπIK) is computed in
Example 4.4).

Computing IKφ

We are now ready to give the syntactic computation of IKφ when IΠIK(¬φ) = 1. In order to
simplify the notations, we now denote:

i) αI = 1−
1− I

1− Inc(IK ∪ {(φ, 1)})

ii) αI = 1−
1− I

1− Inc(IK ∪ {(φ, 1)})

iii) 2αI = 1−
1− I

secondbest(IK)

iv) Φ = {ϕ: (ϕ, I) ∈ IK and I > Inc(IK ∪ {(φ, 1)})}

The two following propositions provide the syntactic computation of IKφ depending whether Φ∪{φ}
admits more than one model or not:

Proposition 4.11 (General case: Φ ∪ {φ} has more than one model). Assume that Φ ∪ {φ} has strictly

more than one model. Then:

IKφ = {(φ, [1, 1])} ∪ {(ϕ, [max (0, αI) , αI ]) : (ϕ, I)∈IK, and I≥Inc(IK ∪ {(φ, 1)})} (4.12)
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Proof. In order now to prove the proposition we have to show that ∀ω ∈ Ω, IπIKφ
= IπIK(.|φ). First

note that if an interpretation ω is not a model of φ, then by definition we have:

IπIK(ω) = IπIK(ω|φ) = [0, 0]

This is explained by the presence of (φ, [1, 1]) in IKφ. Recall first that Φ has strictly more than one
model which is equivalent to say that there exists more than one interpretation, model of φ, having its
upper endpoint equal to IΠIK(φ). Let ω be an interpretation which is a model of φ. Then by Definition
4.5 we have two cases:

— ω is a model of Φ then by Definition 4.5 we have:

IπIKφ
(ω) = [1, 1].

Besides, from Proposition 4.1, we have:

IπIK(ω|φ) =

[

IπIK(ω)

IΠIK(φ)
,min

(

1,
IπIK(ω)

IΠIK(φ)

)]

Since ω is a model of Φ we have: IπIK(ω) = 1− Inc(IK ∪ {(φ, 1)}). From, Proposition 4.8, we
have IΠIK(φ) = 1− Inc(IK ∪ {(φ, 1)}). Hence, IπIK(ω) = IΠIK(φ) and

IπIK(ω)

IΠIK(φ)
= 1

Besides, since trivially, IΠIK(φ) ≥ IΠIK(φ), we also have:

min

(

1,
IπIK(ω)

IΠIK(φ)

)

= 1

Therefore,
IπIK(ω|φ) = [1, 1] = IπIKφ

(ω).

— ω is a not a model of Φ then:

IπIKφ
(ω) = 1−max

{

1−
1− I

1− Inc(IK ∪ {(φ, 1)})
: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

}

.

= 1−max

{

1−
1− I

IΠIK(φ)
: (ϕ, I) ∈ IK, ω 6|= ϕ, and I > Inc(IK ∪ {(φ, 1)})

}

= min

{

1− I

IΠIK(φ)
: (ϕ, I) ∈ IK, ω 6|= ϕ, and I > Inc(IK ∪ {(φ, 1)})

}

=
min

{

1− I : (ϕ, I) ∈ IK ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})
}

IΠIK(φ)

=
min

{

1− I : (ϕ, I) ∈ IK and ω 6|= ϕ
}

IΠIK(φ)

=
1−max

{

I : (ϕ, I) ∈ IK and ω 6|= ϕ
}

IΠIK(φ)

=
IπIK(ω)

IΠIK(φ)
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IπIKφ
(ω) = 1−max

{

max

(

0, 1−
1− I

1− Inc(IK ∪ {(φ, 1)})

)

: (ϕ, I) ∈ IK, ω 6|= ϕ and

I > Inc(IK ∪ {(φ, 1)})}.

= 1−max

{

max

(

0, 1−
1− I

IΠIK(φ))

)

: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

}

.

= min

{

1−max

(

0, 1−
1− I

IΠIK(φ)

)

: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

}

.

= min

{

min

(

1,
1− I

IΠIK(φ)

)

: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

}

.

= min

(

1,min

{

1− I

IΠIK(φ)
: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

})

.

= min

(

1,
min {1− I : (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})}

IΠIK(φ)

)

.

= min

(

1,
min {1− I : (ϕ, I) ∈ IK and ω 6|= ϕ}

IΠIK(φ)

)

.

= min

(

1,
1−max {I : (ϕ, I) ∈ IK and ω 6|= ϕ}

IΠIK(φ)

)

.

= min

(

1,
IπIK(ω)

IΠIK(φ)

)

.

Clearly, the obtained lower and upper endpoints are the same as the ones given in Proposition 4.1. Hence,
we indeed have:

∀ω ∈ Ω, IπIKφ
(ω) = IπIK(ω|φ).

Example 4.11. Let IK = {(a∧ b, [.4, .7]), (¬a∨ b, [.6, .9])} be an interval-based possibilistic base. The
interval-based possibility distribution IπIK corresponding to IK according to Definition 4.5 is given in
Table 4.6.

Let us consider the new evidence being φ = ¬a. From this example, Φ = {¬a ∨ b} and Φ ∪ {φ}
has exactly two models. We face the case of Proposition 4.11. Therefore, IKφ = {(¬a, [1, 1]), (a ∧
b, [0, 1/2]), (¬a ∨ b, [0, 5/6])}. Computing IπIKφ

according to Definition 4.5, gives exactly the same
distribution as the one of Example 4.2 when conditioned on φ = ¬a using Proposition 4.1.

Proposition 4.12 (Particular case: Φ∪{φ} has exactly one model). Assume that Φ∪{φ} admits a unique

model.

1. If each formula in Φ has an interval equal to [1, 1], then: IKφ = {(ϕ, [1, 1]) : (ϕ,[1, 1]) ∈ IK and

Inc(IK ∪ {φ, 1}) < 1} ∪ {(φ, [1, 1])}.

2. If there exists a formula in Φ with a certainty interval different from [1, 1]. Then: IKφ =
{(φ, [1, 1])}∪{(ϕ, [max (0, αI) , αI ]) : (ϕ, I) ∈ IK, and I > Inc(IK∪{(φ, 1)})}∪{(ϕ, [0,max(0, 2αI)]) :
(ϕ, I) ∈ IK, and I = Inc(IK ∪ {(φ, 1)}) > 0}.

Note that Item 1 corresponds to the case where secondbest(IK) = 0.
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Proof. In the same way we prove Proposition 4.11, here we aim to show that ∀ω ∈ Ω, IπIKφ
=

IπIK(.|φ).

1. Proof of Item 1: The fact that Φ admits a unique model and each formula in Φ has a certainty interval
equal to [1,1] means that:

∀ω ∈ Ω, IπIK(ω) =

{

[Iπ(ω), Iπ(ω)] if ω is model of Φ
[0, 0] otherwise.

where Iπ(ω) = 1− Inc(IK) and Iπ(ω) = 1− Inc(IK).
Let ω∗ be the model of Φ. Then by Definition 4.5 we have

IπIKφ
(ω∗) = [1, 1].

Since Φ admits exactly one model, then each interpretation ω′, which is different from ω, falsifies at
least one formula from IKφ = {(ϕ, [1, 1]) : ϕ ∈ Φ}. Hence, again by Definition 4.5 we have:

∀ω′ ∈ Ω, IπIKφ
(ω′) = [0, 0].

Clearly, we have: ∀ω ∈ Ω, IπIK(ω|φ) = IπIKφ
(ω).

2. Proof of Item 2: Note first when Inc(IK∪{(φ, 1)}) > 0, then each interpretation falsifies at least one
formula from IKφ. Let ω∗ be the model of Φ. If Inc(IK ∪ {(φ, 1)}) > 0 then ω∗ falsifies a formula
from
{

(ϕ,

[

0,max

(

0, 1−
1− I

secondbest(IK)

)]

: (ϕ, I) ∈ IK, and I = Inc(IK ∪ {(φ, 1)}) > 0

}

.

Using Definition 4.5 we get: IπIKφ
(ω∗) = 1 and IπIKφ

(ω∗)=1−max

((

1−
1− I

secondbest(IπIK)

)

, 0

)

.

When Inc(IK ∪ {(φ, 1)}) = 0 then trivially IπIKφ
(ω∗) = 1 and IπIKφ

(ω∗) = 1.

IπIKφ
(ω) = 1−max

{

max

(

0, 1−
1− I

secondbest(IK)

)

: (ϕ, I) ∈ IK, ω 2 ϕ and I = Inc(IK ∪ {(φ, 1)})

}

.

= 1−max

{

max

(

0, 1−
1− I

secondbest(IπIK)

)

: (ϕ, I)∈IK, ω 2 ϕ and I=Inc(IK ∪ {(φ, 1)})

}

.

= min

{

1−max

(

0, 1−
1− I

secondbest(IπIK)

)

: (ϕ, I)∈IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

}

.

= min

{

min

(

1,
1− I

secondbest(IπIK)

)

: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

}

.

= min

(

1,min

{

1− I

secondbest(IπIK)
: (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})

})

.

= min

(

1,
min

{

1− I : (ϕ, I) ∈ IK, ω 6|= ϕ and I > Inc(IK ∪ {(φ, 1)})
}

secondbest(IπIK)

)

.

= min

(

1,
min

{

1− I : (ϕ, I) ∈ IK and ω 6|= ϕ
}

secondbest(IπIK)

)

.
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= min

(

1,
1−max

{

I : (ϕ, I) ∈ IK and ω 6|= ϕ
}

secondbest(IπIK)

)

.

= min

(

1,
IπIK(ω)

secondbest(IπIK)

)

.

For counter-models ω′ of Φ, the proof is exactly the same as the one presented in the previous proposition
(Proposition 4.11).

Example 4.12 (First item of Proposition 4.12). Let us consider Example 4.9 with the new evidence being
φ = ¬a. In this example, we consider Φ = {a ∨ ¬b} ∪ {¬a}, which admits a unique model ω∗ = ¬a¬b
and each formula of Φ, namely ψ = a∨¬b, has a weight equal to [1, 1]. From Proposition 4.12, 1st item,
we have IKφ = {(¬a, [1, 1]), (a∨¬b, [1, 1])}. The computation of IπIKφ

according to Definition 4.5 is
given in Table 4.11.

ω IπIKφ
(ω)

ab [0, 0]
a¬b [0, 0]
¬ab [0, 0]
¬a¬b [1, 1]

Table 4.11 – Interval-based possibility distribution induced by IKφ of Example 4.12.

Example 4.13 (Second item of Proposition 4.12).
Let IK = {(a ∧ b, [.4, .7]), (a ∨ ¬b, [.6, .9])} be an interval-based possibilistic base. The interval-based
possibility distribution IπIK corresponding to IK according to Definition 4.5 is given in Table 4.6.

Let us consider the new evidence φ = ¬a. From this example, Φ = {a ∨ ¬b} and Φ ∪ {φ} has
exactly one model. We face the case of Proposition 4.12, 2nd item. Hence, IKφ = {(¬a, [1, 1]), (a ∧
b, [0, .1/.4]), (a ∨ ¬b, [0, .5/.6])}. Computing IπIKφ

according to Definition 4.5, gives exactly the same
distribution as the one of Example 4.2 when conditioned on φ = ¬a using Proposition 4.5.

Algorithm 1 summarizes the main steps for computing IKφ. When formulas in IK are in a clausal
form then computing the conditioning of an interval-based possibilistic base has the same complexity as
the one of conditioning standard possibilistic knowledge bases (namely, when I’s are singletons). Indeed,
for standard possibilistic knowledge bases K the hardest task consists in computing Inc(K) which can
be achieved in time inO(log2(m).SAT) where SAT is a satisfiability test of a set of propositional clauses
and m is the number of different weights in K. For an interval-based knowledge base, the main (hard)
tasks in computing IKφ are:

— The computation of Inc(IK ∪ {(φ,1)}) and Inc(IK ∪ {(φ, 1)}). This is done inO(log2(m).SAT)
where SAT is a satisfiability test of a set of propositional clauses and m is the number of different
weights in IK and IK,

— The test whether the sub-bases A or B are consistent or not. This needs only one call to a SAT
solver.
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Algorithm 1 Syntactic counterpart of conditioning

Require: An interval-based logic base IK and a new evidence φ
Ensure: A new interval-based possibilistic base IKφ such that ∀ω ∈ Ω, IπIKφ

(ω) = IπIK(ω|φ).
1: Let A = {ϕ: (ϕ, I) ∈ IK and I=[1, 1]} ∪ {φ}
2: Let B = {ϕ: (ϕ, I) ∈ IK and I=1} ∪ {φ}
3: if A is inconsistent then

4: IKφ = ∅ (Prop. 4.6).
5: else if B is inconsistent then

6: IKφ = {(φ, [1, 1]), (¬φ, [0, 1])} (Prop. 4.6).
7: else if {ϕ : (ϕ, I) ∈ IK} ∪ {¬φ} is inconsistent then

8: IKφ = IK ∪ {(φ, [1, 1])} (Prop. 4.7).
9: else if Φ∪{φ} admits a unique model then

10: if each formula ϕ in Φ has a certainty interval equal to [1, 1] in IKφ then

11: IKφ = {(ϕ, [1, 1]) : (ϕ, [1, 1]) ∈ IK and Inc(IK) < 1} ∪ {(φ, [1, 1])} (Prop. 4.12).
12: else

13: IKφ = {(φ, [1, 1])} ∪ {(ϕ, [max (0, αI) , αI ]) : (ϕ, I) ∈ IK, and I > Inc(IK ∪ {(φ, 1)})} ∪
{(ϕ, [0,max(0, 2αI)]) : (ϕ, I) ∈ IK, and I = Inc(IK ∪ {(φ, 1)}) > 0} (Prop. 4.12).

14: end if

15: else

16: IKφ = {(φ, [1, 1])} ∪ {(ϕ, [max (0, αI) , αI ]) : (ϕ, I) ∈ IK, and I ≥ Inc(IK ∪ {(φ, 1)})}
(Prop. 4.11).

17: end if

— The computation of secondbest(Iπ) = 1 − min{αi : αi > Inc(IK ∪ {(φ,1)}) and Aαi
is a

non-tautological formula} (see Proposition 4.10). This needs: i) the computation of Inc(IK ∪
{(φ,1)}), done again in O(log2(m).SAT), and ii) checking for the lowest αi such that Aαi

is a
non-tautological formula, which is done in linear time (w.r.t the number of clauses in IK).

— Lastly, checking whether Φ = {ϕ : (ϕ, I) ∈ IK, and I > Inc(IK ∪ {(φ, 1)})} ∪{φ} admits a
unique model. This can be done using two calls to a SAT solver. Indeed, checking whether there
exists a unique interpretation ω∗ such that IπIK(ω∗) = IΠIK(φ) comes down to checking whether
the formula Φ ∪ {φ} has a unique model. If this formula is under the clausal form, then this
problem is the one of Unique-SAT. This can be done by launching two calls to a SAT solver: the
first call is applied to the formula Φ. When it returns a model ω (recall that Φ∪ {φ} is consistent),
then a second call to a SAT solver with the formula Φ ∧ ¬ω is performed (where ¬ω is a clause
composed of the disjunction of literals that are not true in ω). If a SAT solver declares that the
extended formula has no model, then we conclude that there exists a unique interpretation ω∗ such
that IπIK(ω∗) = IΠIK(φ). Otherwise the formula Φ ∪ {φ} has at least two models.

To summarize, the overall complexity of computing IKφ is:

Proposition 4.13. Computing IKφ is O(log2(m).SAT) where SAT is a satisfiability test of a set propo-

sitional clauses and m is the number of different weights in IK and IK.

Proposition 5.2 shows that the syntactic computation of conditioning an interval-based possibilistic
base has exactly the same computational complexity of computing product-based conditioning of stan-
dard possibilistic knowledge bases.
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Proof. For an interval-based knowledge base, the main (hard) tasks in computing IKφ using Algo-
rithm 3:

— The test whether the sub-bases A or B are consistent or not. This needs only one call to a SAT
solver.

— Checking whether Φ = {ϕ: (ϕ, I) ∈ IK, and I > Inc(IK ∪ {(φ, 1)})} ∪ {φ} admits a unique
model. This can be done using two calls to a SAT solver. Indeed, checking whether there exists
a unique interpretation ω∗ such that IπIK(ω∗) = IΠIK(φ) comes down to checking whether the
formula Φ ∪ {φ} has a unique model. If this formula is under the clausal form, then this problem
is the one of Unique-SAT. This can be done by launching two calls to a SAT solver: the first
call is applied to the formula Φ. When it returns a model ω (recall that Φ ∪ {φ} is consistent),
then a second call to a SAT solver with the formula Φ ∧ ¬ω is performed (where ¬ω is a clause
composed of the disjunction of literals that are not true in ω). If a SAT solver declares that the
extended formula has no model, then we conclude that there exists a unique interpretation ω∗ such
that IπIK(ω∗) = IΠIK(φ). Otherwise the formula Φ ∪ {φ} has at least two models.

— The computation of Inc(IK ∪ {(φ,1)}) and Inc(IK ∪ {(φ, 1)}). This is done inO(log2(m).SAT)
where SAT is a satisfiability test of a set of propositional clauses and m is the number of different
weights in IK and IK,

— Lastly, the computation of secondbest(Iπ) = 1 −min{αi : αi > Inc(IK ∪ {(φ,1)}) and Aαi
is

a non-tautological formula} (see Proposition 4.10). This needs: i) the computation of Inc(IK ∪
{(φ,1)}), done again inO(log2(m).SAT), and ii) the checking for the lowest αi such that Aαi

is a
non-tautological formula, which is done in linear time (w.r.t the number of clauses in IK).

4.4 Concluding remarks

Interval-based possibilistic logic offers an expressive and a powerful framework for representing and
reasoning with uncertain information. This setting was only specified for static situations and no form of
conditioning has been proposed for updating the knowledge and the beliefs. In this chapter, we proposed
a set of natural postulates that a conditioning operator should satisfy. We have thus defined a condition-
ing operator based on compatibles. We showed that conditioning can be handled in a natural and safe
way and without extra computational cost. We showed that applying product-based conditioning on the
set compatible possible distributions gives an interval-based possibility distribution. We provided the
exact computations of lower and upper endpoints of intervals associated with each interpretation of the
conditioned interval-based possibility distributions. Lastly, we provided a syntactic counterpart of the
compatible-based conditioning that does not imply extra computational cost.

72



Chapter 5

Qualitative conditioning in an

interval-based possibilistic setting

Chapter 4 addressed the issue of conditioning with product-based conditioning definition. This chap-
ter deals with conditioning uncertain information in a qualitative or min-based interval-valued possibilis-
tic setting. The first important contribution concerns a set of three natural postulates for conditioning
interval-based possibility distributions. We show that any interval-based conditioning satisfying these
three postulates is necessarily based on the set of compatible standard possibility distributions. The sec-
ond contribution consists in a proposal of efficient procedures to compute the lower and upper endpoints
of the conditional interval-based possibility distribution while the third important contribution provides
a syntactic counterpart of conditioning interval-based possibility distributions in case where these latter
are compactly encoded in the form of possibilistic knowledge bases.
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5.1 Qualitative conditioning in possibility theory: a reminder

Recall that conditioning in the qualitative possibilistic setting is done using the following equation:

π(ωi|mφ) =







1 if π(ωi) = Π(φ) and ωi ∈ φ;
π(ωi) if π(ωi) < Π(φ) and ωi ∈ φ;
0 otherwise.

(5.1)

Before presenting our interval-based extension to the min-based possibilistic conditioning, let us
first focus on some natural properties that an interval-based conditioning should satisfy in a possibilistic
setting.
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5.2 Three natural requirements for the interval-based conditioning

Before presenting the three natural properties for min-based conditioning, let us first show that min-
based conditioning does not satisfy IC1.

5.2.1 min-based conditioning does not satisfy IC1

From the previous chapter, we proposed suitable properties that a conditioning operator should sat-
isfy. The first important issue with compatible-based conditioning of Definition 4.6 using min-based rule
is that conditioning an interval-based distribution Iπ with an evidence φ does not guarantee to result in an
interval-based distribution, namely the first property (IC1) (cf. Subsection 4.2.1) is not always satisfied.

Indeed, let |m be the conditioning operator given by Equation (5.1). Then, there exists an interval-
based possibility distribution (see Example 5.1), a propositional formula φ, and an interpretation ω such
that Iπ(ω|mφ) is not an interval.

Counter-example 5.1. Let Iπ be the normalized interval-based distribution of Table 5.1. Let φ = a be
the new evidence. The compatible-based conditioned distribution Iπ(.|mφ) is obtained by conditioning
with |m of Equation (5.1) on the set of all compatible possibility distributions.

ω ∈ Ω Iπ(ω) ω ∈ Ω Iπ(ω|mφ)
ab [.7, .9] ab [1, 1]

ab [.4, .7] ab [.4, .7]∪{1}
ab [.8, 1] ab [0, 0]

ab [.4, .7] ab [0, 0]

Table 5.1 – Counter-example for Observation 1.

From Table 5.1, Iπ(ab|mφ) is not an interval. Indeed, one can check that for every compatible
distribution π of Iπ, such that π(ab) ∈ [.4, .7[ we have π(ab|mφ) ∈ [.4, .7[ (since π(ab) ≥ .7). Now, for
compatible distributions where π(ab) = .7 we have either π(ab|mφ) = .7 (if π(ab) > .7) or π(ab|mφ) =
1 (if π(ab) = .7). Hence, π(ab|mφ) = [.4, .7]∪{1} which is not an interval.

This result motivates us to propose a new set of properties dedicated to qualitative conditioning.

The first natural requirement concerns the degenerate case, namely when each interval Iπ(ω) con-
tains exactly one single degree π(ω). The result of the new conditioning procedure should coincide
with the result π(.|mφ) of the original conditioning procedure (Equation (1.29)). For each possibility
distribution π, by [π, π] we denote its interval-valued representation, i.e. an interval-valued possibility
distribution for which, for every ω ∈ Ω, we have Iπ(ω) = [π(ω),π(ω)]. In these terms, the above
requirement takes the following form:

P1. For all π, φ ⊆ Ω and ω ∈ Ω, ([π, π])(ω|φ) = [π(ω|mφ), π(ω|mφ)].
In other terms, let π be any possibility distribution and Iπ such that ∀ω, Iπ(ω) = [π(ω), π(ω)]. Then ∀φ,
Iπ(ω|φ) = [π(ω|mφ), π(ω|mφ)].

The second requirement is related to the fact that we do not know the exact values π(ω) since we only
have partial information about them. In principle, if we can get some additional information about these
values, then this would lead, in general, to narrower intervals (indeed, the width of an interval captures
the ignorance regarding the exact value of π(ω)). Let us define the concepts of specificity between
interval-based possibility distribution:
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Definition 5.1. Let Iπ and Iπ′ be two interval-based possibility distributions. Then Iπ is said to be more
specific than Iπ′, denoted Iπ ⊆ Iπ′, if Iπ(ω) ⊆ Iπ′(ω) holds for all ω ∈ Ω

It is reasonable to require that if we have new information about the original values π(ω), this should
help us also to narrow down the corresponding values of conditional distributions:

P2. If Iπ is more specific than Iπ′ (namely, Iπ ⊆ Iπ′) then Iπ(.|φ) is more specific than Iπ′(.|φ) (namely,
Iπ(.|φ) ⊆ Iπ′(.|φ)).

It is obvious that postulates P1 and P2 are not sufficient to fully characterize the new extension.
For example, we can take ([π, π])(.|φ) = [π(.|mφ), π(.|mφ)] for degenerate interval-valued possibility
distributions and Iπ(ω|φ) = [0, 1] for all other Iπ. To avoid such extensions, it is reasonable to impose
the following minimality condition:

P3. There exist no operation Iπ(.|1φ) that satisfies both properties P1–P2 and for which:

— Iπ(ω|1φ) ⊆ Iπ(ω|φ) for all Iπ, ω, and φ,

— Iπ(ω|1φ) 6= Iπ(ω|φ) for some Iπ, ω, and φ.

The following defines the concept of interval closure of a set of uncertainty degrees

Definition 5.2 (Interval closure). Let A be a set of degrees between 0 and 1. We define the interval
closure of A, denoted by IntCl(A), as the smallest (narrowest) interval that contains all the elements of
A.

Example 5.1. Assume that A is a set defined as follows: A = [.8, .9] ∪ {1} then the closure of A is
IntCl(A) = [.8, 1]. Clearly, the interval [.8, 1] is the narrowest sub-interval of [0, 1] containing all the
values of A.

The following theorem provides our first main result where we show that there is only one interval-
based conditioning satisfying P1-P3 and where the interval conditional possibility degree Iπ(ω|φ) is
defined as the interval closure of the set of all π(.|mφ), where π is compatible with Iπ.

Theorem 5.1. There exists exactly one interval-based conditioning, denoted by Iπ(.|mφ), that satisfies

the properties P1–P3, and which is defined by: ∀ω ∈ Ω,

Iπ(ω|mφ) = IntCl({π(ω|mφ) : π ∈ C(Iπ)}) (5.2)

where IntCl is the interval closure given in Definition 5.2.

Proof.

1◦. We need to prove:

— that this closure Iπ(.|mφ) satisfies the properties P1–P3, and

— that every operation Iπ(.|φ) that satisfies the properties P1–P3 coincides with the interval closure
of Iπ(.|mφ).

2◦. One can easily check that Iπ(.|mφ) satisfies the properties P1–P2.

3◦. Let us now prove that if an operation Iπ(.|φ) satisfies the properties P1–P2, then for every Iπ and φ,
we have Iπ(.|mφ) ⊆ Iπ(.|φ).

Then, for every distribution π ∈ C(Iπ), we have ([π, π]) ⊆ Iπ and thus, due to the postulate P2, we
have ([π, π])(.|φ) ⊆ Iπ(.|φ). By the property P1, we have ([π, π])(ω|φ) = [π(ω|φ), π(ω|φ)]. Thus, the
above inclusion means that π(.|φ) ∈ Iπ(.|φ).
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The interval Iπ(ω|φ) therefore contains all the values π(ω|φ) corresponding to all possible π ∈
C(Iπ):

{π(ω|φ) : π ∈ C(Iπ)} ⊆ Iπ(ω|φ). (5.3)

Since the set Iπ(ω|φ) is an interval, it therefore contains, with the set {π(ω|φ) : π ∈ C(Iπ)}, its
interval closure, i.e. the set Iπ(ω|mφ). Thus, we conclude that Iπ(ω|mφ) ⊆ Iπ(ω|φ) for all ω.

The statement is proven.

4◦. We can now prove that Iπ(.|mφ) also satisfies the property P3.
Indeed, if there is some other operation |1 that satisfies P1 and P2, and for which Iπ(ω|1φ) ⊆

Iπ(ω|mφ) for all ω, then, since we have already proven the opposite enclosure in Part 3 of this proof, we
conclude that Iπ(ω|1φ) = Iπ(ω|mφ) for all ω, so indeed no narrower conditioning operation is possible.

5◦. To complete the proof, let us show that if some Iπ(.|φ) satisfies the properties P1–P3, then it coincides
with Iπ(.|mφ).

Indeed, by Part 3 of this proof, we have Iπ(ω|mφ) ⊆ Iπ(ω|φ) for all ω. If we had Iπ(ω|mφ) 6=
Iπ(ω|φ) for some ω and φ, this would contradict the minimality property P3. Thus, indeed, Iπ(.|mφ) =
Iπ(.|φ). Uniqueness is proven, and so is for the proposition.

We can now go one step beyond Theorem 5.1 and provide the exact bounds of intervals associated
with Iπ(.|mφ).

5.3 Computing lower and upper endpoints of conditional interval-based

possibility distributions

The aim of this section is to compute the lower and upper endpoints of the conditional interval-based
possibility distribution.

Proposition 5.1. Let Iπ be an interval-based distribution. Then the interval-based conditional distribu-

tion, satisfying P1–P3, is described by Iπ(ω|mφ) = [Iπ(ω|mφ), Iπ(ω|mφ)], such that ∀ω ∈ Ω:

Iπ(ω|mφ) =







0 if ω 6∈ φ
1 if ∀ω′6=ω, ω′∈φ and Iπ(ω)≥Iπ(ω′)
Iπ(ω) otherwise

(5.4)

and

Iπ(ω|mφ) =







0 if ω 6∈ φ
1 if Iπ(ω)≥IΠ(φ),

Iπ(ω) otherwise

(5.5)

Let us briefly comment Proposition 5.1. Let ω ∈ Ω be an interpretation. First, for ω 6∈ φ, whatever
the considered compatible possibility distribution π, we have π(ω|mφ) = 0. Hence, Iπ(ω|mφ) = [0, 0].
Assume now that ω ∈ φ and ∀ω′ ∈ φ, Iπ(ω) ≥ Iπ(ω′). This means that whatever is the considered
compatible possibility distribution π, we have π(ω) ≥ max{π(ω): ω ∈ φ} = Π(φ). Hence, π(ω|mφ) =
1 and Iπ(ω|mφ) = [1, 1]. Now, the last case for determining lower endpoint concerns the case where
∃ω′ ∈ φ such that Iπ(ω) < Iπ(ω′). This means that there exists a compatible possibility distribution π
such that π(ω) = Iπ(ω) < Π(φ), hence π(ω|mφ) = Iπ(ω) which is the smallest possible value. Similar
reasoning goes for upper endpoints.
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Example 5.2. Let Iπ of Table 5.2 (left side table) be the interval-based possibility distribution that we
want to condition with the new piece of information φ = c. min-based conditional distribution Iπ(.|mφ)
given in Table 5.2 (right side table) is obtained using either Proposition 5.1 or Theorem 5.1. For instance,
for ω = abc, whatever the considered compatible possibility distribution π, we have π(abc|φ) between
.1 and 1. Thus, the interval closure of Iπ(abc|mφ) = [.1, 1].

ω ∈ Ω Iπ(ω) ω ∈ Ω Iπ(ω|φ)
abc [ 1, 1 ] abc [ 0, 0 ]
abc [ .4,.6] abc [ 0, 0 ]
abc [ .3,.6] abc [ 0, 0 ]
abc [ .3,.6] abc [ 0, 0 ]
abc [ .1,.7] abc [ .1, 1]
abc [ .4,.6] abc [ .4, 1]
abc [ .1,.6] abc [ .1, 1]
abc [ .3,.6] abc [ .3, 1]

Table 5.2 – Interval-based distribution Iπ and its conditioned distribution Iπ(.|φ)

5.4 Syntactic computations of interval-based conditioning

We now provide the syntactic counterpart of the interval-based conditioning presented above. Given
an interval-based possibilistic knowledge base IK and a new evidence φ, our aim is to compute the
conditional base IKφ corresponding to conditioning the information encoded in IK with φ. As illus-
trated in Figure 5.1, the aim of this subsection is therefore to propose the syntactic characterization of
conditioning such that:

∀ω∈Ω, IπIK(ω|mφ) = IπIKφ
(ω), (5.6)

where IπIKφ
is the interval-based distribution associated with IKφ, and IπIK(.|mφ) is the result of con-

ditioning IπIK using the conditioning operator presented in the previous subsection (Proposition 5.1 or
Theorem 5.1), and [φ] is the set of models of φ.

IK IπIK

IKφ IπIK(.|φ)IπIKφ

Definition 4.5

Aim of
this section

Definition 4.5 ?

Theorem 5.1

Figure 5.1 – Conditioning interval-valued possibilistic information at the semantic and syntactic levels.

We first need to introduce some notations.

— α = Inc(IK ∪ {(φ, 1)}) and β = Inc(IK ∪ {(φ, 1)}), Intuitively, α and β compute inconsistency
degree intervals resulting from assuming that φ is fully true. This offers a characterization of
IΠ(φ) = 1− β and IΠ(φ) = 1− α.
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— Let ω∗ be a model of {ψ : (ψ, I) ∈ IK and I > β}∪{φ}. Let IK¬ω∗ = IK∪{(¬ω∗, [1, 1])}
be a base obtained by adding the negation of ω∗, then we compute γ = Inc(IK¬ω∗ ∪ {(φ, 1)}).
Models ω of {ψ : (ψ, I)∈ IK and I > β} are exactly those having Iπ(ω) = IΠ(φ). γ computes
the second best value of models of φ (since a model ω∗ is excluded from IK) which is very useful
for characterizing Iπ(ω|mφ).

With the help of these notations, we are now ready to present the third contribution of this chapter.

Theorem 5.2. Let IK be an interval-based knowledge base. Let IπIK be its associated possibility dis-

tribution. Let IKφ = {(φ, [1, 1])} ∪ {(ϕ, I) : (ϕ, I) ∈ IK, and I > α} ∪ {(ϕ, [0, I]) : (ϕ, I) ∈
IK, and I < α and I > γ}. Then:

∀ω, IπIK(ω|mφ) = IπIKφ
(ω);

where IπIK(.|mφ) is the result of applying min-based interval conditioning on IπIK (see Proposition 5.1

and Theorem 5.1), and IπIKφ
is the interval-based distribution associated with IKφ using the Defini-

tion 4.5.

The knowledge base IKφ resulting from conditioning IK with φ is composed of three parts:

— The first consists in adding φ as a fully certain information, {(φ, [1, 1])}. From Definition 4.5,
all worlds that are outside φ (not satisfying φ) are excluded. This is in accordance with Proposi-
tion 5.1.

— The second part, {(ϕ, I) : (ϕ, I) ∈ IK, and I > α}, contains a subbase of IK where the intervals
are unchanged. This encodes the third item of definition of Iπ(ω) and Iπ(ω) in Proposition 5.1
(recall that 1− α = IΠ(φ)).

— The last part encodes exactly the situation where some possibility degrees (in Proposition 5.1) are
shifted up to 1. This is reflected in possibilistic knowledge bases by shifting down some certainty
degree to 0.

Proof. In order now to prove the theorem we have to show that ∀ω ∈ Ω, IπIKφ
= IπIK(.|m[φ]). First

note that if an interpretation ω is not a model of φ, then by definition we have:

IπIKφ
(ω) = IπIK(ω|m[φ]) = [0, 0]

This is explained by the presence of (φ, [1, 1]) in IKφ.
Now, for ω |= φ, we have two distinct cases:

— The case where ω falsifies a formula from: {(ϕ, I) : (ϕ, I) ∈ IK, and I > α} then:
IπIKφ

(ω)= 1−max{I : (ϕ, I)∈IK and I > α}.

= 1−max{I : (ϕ, I)∈IK and I > Inc(IK ∪ {(φ, 1)})}
= 1−max{I : (ϕ, I)∈IK and I > 1− IΠ([φ])}
= 1−max{I : (ϕ, I)∈IK and 1− I < IΠ([φ])}
= Iπ(ω) if Iπ(ω) < IΠ([φ])
= IπIK(ω|m[φ]).

IπIKφ
(ω)= 1−max{I : (ϕ, I)∈IK and I > α}.

= 1−max{I : (ϕ, I)∈IK and I > Inc(IK ∪ {(φ, 1)})}
= 1−max{I : (ϕ, I)∈IK and I > 1− IΠ([φ])}
= 1−max{I : (ϕ, I)∈IK and 1− I < IΠ([φ])}
= Iπ(ω) if Iπ(ω) < IΠ([φ])

= IπIK(ω|m[φ]).
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— The case where ω falsifies a formula from: {(ϕ, [0, I]) : (ϕ, I) ∈ IK, and I ≤ α and I > γ}
then:
As γ computes the second best value of models of φ, for this proof, we use secondbest(IK) to
determine γ and secondbest(IK) = 1− secondbest(IπIK).
IπIKφ

(ω)= 1−max{I : (ϕ, I)∈IK and I ≤ α and I > γ}

= 1−max{I : (ϕ, I)∈IK and I ≤ Inc(IK ∪ {(φ, 1)}) and I > secondbest(IK)}
= 1−max{I : (ϕ, I)∈IK and I ≤ 1− IΠ([φ]) and I > 1− secondbest(IπIK)}
= 1−max{I : (ϕ, I)∈IK and 1− I ≥ IΠ([φ]) and 1− I < secondbest(IπIK)}
= Iπ(ω) if Iπ(ω) ≥ IΠ([φ]) and Iπ(ω) < secondbest(IπIK)
= IπIK(ω|m[φ]).

IπIKφ
(ω)= 1−max{0 : (ϕ, I)∈IK and I ≤ α and I > γ}.

= 1−max{0 : (ϕ, I)∈IK and I ≤ Inc(IK ∪ {(φ, 1)}) and I > secondbest(IK)}
= 1−max{0 : (ϕ, I)∈IK and I ≤ 1− IΠ([φ]) and I > 1− secondbest(IπIK)}
= 1−max{0 : (ϕ, I)∈IK and 1− I ≥ IΠ([φ]) and 1− I > secondbest(IπIK)}
= 1 if Iπ(ω) ≥ IΠ([φ]) and Iπ(ω) < secondbest(IπIK)

= IπIK(ω|m[φ]).

Let us see an example to illustrate Theorem 5.2.

Example 5.3. Let IK be an interval-based possibilistic knowledge base such that

IK = {(a ∧ b, [.4, .6]), (a, [0, .7]), (c ∨ ¬b, [.3, .9])}.

The associated interval-based possibility distribution πIK (using Definition 4.5) is the same as the one
given in Table 5.2. Let φ = ¬c (and φ = [φ] the set of models of ¬c) be the new evidence. For the
computation of IKφ, let us first compute the values of α, β and γ. Then, we have: α = Inc({(a ∧
b, .6), (a, .7), (c ∨ ¬b, .9), (¬c, 1)}) = .6, β = Inc({(a ∧ b, .4), (a, 0), (c ∨ ¬b, .3), (¬c, 1)}) = .3 and
γ = .4.

Hence, according to Theorem 5.2, the result of conditioning IK by φ is given by: IKφ = {(a ∧
b, [0, .6]), (a, [0, .7]), (c ∨ ¬b, [0, .9]), (¬c, [1, 1])}. And if we compare with Example 5.2, where the
distribution Iπ(.|mφ) is conditioned according to Proposition 5.1 then the associated interval-based dis-
tribution to IKφ is exactly the same. Hence, Theorem 5.2 indeed provides a compact encoding of the
conditioning procedure.

The following proposition gives the computational complexity of conditioning an interval-based pos-
sibilistic knowledge base IK according to Theorem 5.2.

Proposition 5.2. Let IK be an interval-based possibilistic knowledge base and φ be the new evidence.

Let IKφ be interval-based possibilistic knowledge base computed according to Theorem 5.2. Then IKφ

have the same size as IK and computing IKφ is in O(log2(m).SAT ) where SAT is a satisfiability test

of a set propositional clauses and m is the number of different weights in IK and IK.

Clearly, once the parameters α, β, γ are computed, computing IKφ from {IK, φ, α, β, γ} is straight-
forward and it is done in linear time. Indeed, computing α, β, γ mainly comes down to compute the
inconsistency degrees of IK and IK. This needs log2(m) calls to a SAT solver exactly as in standard
possibilistic logic [Lan00]. Hence, the syntactic counterpart of conditioning an interval-based possibilis-
tic base has exactly the same computational complexity as computing the min-based conditioning of a
standard possibilistic base.
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5.5 From interval-based possibilistic networks to interval-based possibilis-

tic knowledge bases

In Chapter 2, we have presented how to translate a possibilistic network into a possibility knowl-
edge base. In this section, we adapt the same transformation to the interval-based possibility setting.
Especially, this is interesting in order to exploit the results of conditioning an interval-based possibilistic
knowledge base. Indeed, the previous section showed that using compatible-based conditioning over an
interval-based possibilistic knowledge base is done without inducing extra computational cost.

5.5.1 Interval-based possibilistic network

With regards to interval-based possibilistic networks [BLT14a, BLT14b], it is seen as an extension
of possibilistic networks. And as for credal networks, interval-based possibilistic networks can be seen
as a family of possibilistic networks. More precisely, interval-based possibilistic networks allow to
compactly encode families of joint possibility distributions. Intervals offer more flexibility to represent
and to handle incomparable events. Thus, in the following we define an interval-based possibilistic
network and a compatible possibilistic network.

Definition 5.3 (Interval-based possibilistic network). An Interval-based possibilistic network IPN =
(G,ΘIπ) compactly encodes an interval-based possibility distribution and is composed of

— a graphical component: a DAG describing independence relationships between variables in V

— a numerical component: a set of local interval-based possibility distributions ΘIπ

Note that in case where all the parameters of the network are singletons (pointwise-based possibili-
ties), then the network is a standard network.

Definition 5.4 (Compatible possibilistic network). A possibilistic network PN is compatible with an
interval-based possibilistic network IPN if it shares the same graphical structure and for each local
distribution:

∀xi ∈ DXi|par(Xi), π(xi|par(xi)) ∈ Iπ(xi|par(xi)) (5.7)

In [BLT14a], the authors proposed two different semantics of coherent interval-based possibilistic
network, one based on compatible models and one based on extending the chain rule. We present the
one based on compatible models, more details can be found in [BLT14a].

Semantics based on compatible models

Coherent interval-based possibilistic network IPN can be semantically seen as a family of compat-
ible possibilistic (pointwise) networks. Each of these compatible networks therefore encodes a joint
possibility distribution that we call c-model (for compatible model).

Definition 5.5 (Compatible models). A possibility distribution π is a compatible model (c-model) for an
interval-based possibilistic network IPN = (G,ΘIPN ) if there exist a standard network PN = (G,Θπ)
compatible with IPN such that:

∀x1, ..., xn ∈ Ω, π(x1...xn) = ⊗
n
i=1(Iπ(xi|par(xi))) (5.8)

where ⊗ denotes either the product or the min operator given the scale we are using.

Definition 5.5 formally states that the possibility distribution π are c-models if they are associated
with a compatible possibilistic network PN using the min-based chain rule of Equation (2.6) or the
product-based chain rule of Equation (2.5). The set of all c-models is denoted by C(c-models)
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5.5.2 Qualitative encoding of an interval-based possibilistic network

In [BDGP02], Benferhat et al. have investigated the question of transforming possibilistic logic bases
into possibilistic causal networks and conversely. In their paper, the authors have provided a way of en-
coding a possibilistic network into a possibilistic knowledge base in both possibilistic scale (quantitative
and qualitative). And as it has been done in the standard setting, we use, for sake of simplicity, a set of
triples to represent an interval-based possibilistic network. Given the set of variables, derived from the
network IPN , V = {X1, .., Xn}, then IPNAi

= {(xi, par(xi), ιi) : where ιi = Iπ(xi|par(xi)) 6= [1, 1]
is an element of the graph } where xi is an instance of the variable Xi and par(xi) is an element of the
Cartesian product of the domain of the variable’s parents of Xi.

Therefore, we can define the set of weighted formulas associated to each triple by the following
definition.

Definition 5.6. For a variableXi, given a set of triple IPNXi
= {(xi, par(xi), ιi) : xi ∈ DXi

, par(xi) ∈
Dpar(Xi)} associated to Xi, the knowledge base IKXi

is composed with the weighted formulas:

IKXi
= {(¬xi ∨ ¬par(xi), 1⊖ ιi) : (xi, par(xi), ιi) ∈ IPNXi

} (5.9)

Note that the operator ⊖ is the reverse of an interval, defined in [BHLR11] and recalled in 4.1 by:

1⊖ι = [1−ι, 1−ι] (5.10)

From this set of formulas, we can easily retrieve the associated distribution:

Iπxi,par(xi)(ω) =

{

[1, 1] if ω |= ¬xi ∨ ¬par(xi),
ιi otherwise.

(5.11)

This process is done step by step. The first one is building for each variable of the interval-based
possibilistic network IPN , the associate knowledge base using Definition 5.6. Then we need to combine
one by one each knowledge base. To do so, we have to define a combination operator Cm. In the qualita-
tive possibilistic setting, the process is easy and arises from the min-based chain rule. Indeed, the value
of the local interval-based possibility distribution induced by the triple (xi, par(xi), ι) coincides with the
(local) conditional interval-based possibility value Iπ(xi|par(xi)). Thus, the combination operation in
the qualitative setting is described in the following definition.

Definition 5.7. Let IK1 and IK2 be two interval-based possibilistic knowledge bases associated with
two different variables. Let Iπ1 and Iπ2 be the associated joint interval-based possibility distributions of
IK1 and IK2 respectively. Let Cm be the combination operator, given by the min operator, of Iπ1 and
Iπ2. Then the resulting interval-based possibilistic knowledge base is given by:

Cm(IK1, IK2) = IK1 ∪ IK2 (5.12)

In the following example, we illustrate all of the notions introduced so far. Given an interval-based
possibilistic network that we transpose in the form of triples, we give the associate weighted formulas
and the resulting interval-based possibilistic knowledge base.

Example 5.4. Figure 5.2 represents an interval-based possibilistic network over a set of 3 boolean vari-
ables V = {A,B,C}, with their domains respectively DA = {a1, a2}, DB = {b1, b2} and DC =
{c1, c2}.

The set of triples associated to IPN is given by:

{(a1, ∅, [.2, 1]), (a2, ∅, [.3, .6])} ∪ {(b1, ∅, [.3, .8]), (b2, ∅, [.5, 1])}∪
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A Iπ(A)

a1 [.2, 1]
a2 [.3, .6]

A

C

B
B Iπ(B)

b1 [.3, .8]
b2 [.5, 1]

C A B Iπ(C | AB)

c1 a1 b1 [.3, .7]
c1 a1 b2 [.6, .8]
c1 a2 b1 [.4, .5]
c1 a2 b2 [.1, .2]
c2 a1 b1 [.1, 1]
c2 a1 b2 [1, 1]
c2 a2 b1 [.6, 1]
c2 a2 b2 [.5, 1]

Figure 5.2 – Example of an interval-based possibilistic network

A B C IπIPN (ABC)

a1 b1 c1 [.2, .7]
a1 b1 c2 [.1, .8]
a1 b2 c1 [.2, .8]
a1 b2 c2 [.2, 1]
a2 b1 c1 [.3, .5]
a2 b1 c2 [.3, .6]
a2 b2 c1 [.1, .2]
a2 b2 c2 [.3, .6]

A B C IπIK(ABC)

a1 b1 c1 [.2, .7]
a1 b1 c2 [.1, .8]
a1 b2 c1 [.2, .8]
a1 b2 c2 [.2, 1]
a2 b1 c1 [.3, .5]
a2 b1 c2 [.3, .6]
a2 b2 c1 [.1, .2]
a2 b2 c2 [.3, .6]

Table 5.3 – Joint distribution induced by the network IPN and joint distribution induced by the knowl-
edge base IKABC .

{(c1, a1b1, [.3, .7]), (c1, a1b2, [.6, .8]), (c1, a2b1, [.4, .5]), (c1, a2b2, [.1, .2]), (c2, a1b1, [.1, 1]),
(c2, a2b1, [.6, 1]), (c2, a2b2, [.5, 1])}

For each nodes of the network, we compute the interval-based possibilistic knowledge base associ-
ated:

— IKA = {(a2, [0, .8]), (a1, [.4, .7])}

— IKB = {(b2, [.2, .7]), (b1, [0, .5])}

— IKC = {(c2∨a2∨b2, [.3, .7]), (c2∨a2∨b1, [.2, .4]), (c2∨a1∨b2, [.5, .6]), (c2∨a1∨b1, [.8, .9]), (c1∨
a2 ∨ b2, [0, .9]), (c1 ∨ a1 ∨ b2, [0, .4]), (c1 ∨ a1 ∨ b1, [0, .5])}

Then the knowledge base associated to the interval-based possibilistic network IPN is given by: IKABC =
IKA∪IKB∪IKC The interval-based possibilistic knowledge base contains 11 weighted formulas, which
might seem a lot considering that the number of states of Ω is only 8. Indeed, some of this formulas are
not useful to compute the joint interval-based distribution, but it is more complicated to evaluate which
formulas are irrelevant without considering all cases. For instance, a formula can be subsumed by the
existence of two others, this problem of eliminating non-necessary formulas from the knowledge base is
a complex problem which can be related to the problem of redundancy in logic [Lib05].

An important matter that needs to be investigated is the equivalence of the semantics of those rep-
resentations. Let us then, compute the two interval-based possibility distributions induced by the two
models.
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On this example, we are able to state that the interval-based possibility distributions are equivalent.
This is the main concern of the next subsection.

5.5.3 Semantical equivalence of the network and the translate knowledge base

In this subsection, we present some results on the interval-based possibilistic encoding. We made
two assumptions on this translation. We first need to assure that the knowledge base is an interval-based
one. The next proposition states that the transformation of an interval-based possibilistic network in the
qualitative setting using the previous definition results in an interval-based possibilistic knowledge base.

Proposition 5.3. Let IPN be an interval-based possibilistic network then IKIPN is an interval-based

possibilistic distribution.

The proof is straightforward. Since the result of the transformation is the union of interval-based
possibilistic knowledge bases and that none of the bases shares the same formulas.

Next we are interested in proving that the proposed transformation between an interval-based possi-
bilistic network and an interval-based possibilistic knowledge base results in the same joint interval-based
possibility distributions. Meaning that the two formalisms are semantically equivalent.

The following proposition states that the two induced distributions are equivalent as they assign the
same interval degrees for each state of the world.

Proposition 5.4. Given the joint distribution IπIPN associated to IPN , given the joint distribution IπIKB
associated to the interval-based possibilistic knowledge base IKBIPN computed using Equation (4.5).
Then:

∀ω ∈ Ω, IπIPN (ω) = IπIKB(ω)

Proof. We need to prove that: ∀ωi ∈ Ω, IπIPN (ω) = IπIK(ω). More precisely:

IπIPN (ω) = IπIK(ω) et IπIPN (ω) = IπIK(ω). (5.13)

— First:

IπIK(ω) = 1−max{α : (ϕ, α) ∈ IK, ω 2 ϕ}
= min{1− α : (ϕ, α) ∈ IK, ω 2 ϕ}
= min{1− α : (¬xi ∨ ¬par(xi), α) ∈ IK, ω 2 ¬xi ∨ ¬par(xi)} (∗)
= min{α : (¬xi ∨ ¬par(xi), α) ∈ IK, ω 2 ¬xi ∨ ¬par(xi)}
= min{Iπxi,par(xi)(ω) : (¬xi ∨ ¬par(xi), α) ∈ IK, ω 2 ¬xi ∨ ¬par(xi)} (∗∗)

= IπIPN (ω)

— (*) given by the definition of the combination operator Cm and

— (**) given by the definition of IPN in the forms of a set of triple (Equation (5.11)).

— Then the other bound can be proven using the same reasoning.

The previous result is an important one that allows us to design efficient inference machinery for
the interval-based possibilistic networks. When it comes to reason with belief graphical models we
mostly are interested in two inference tasks: finding the most probable assignment (MAP inference) and
computing marginal distributions. In the interval-based possibilistic knowledge base, we have shown
that computing IKφ is in O(log2(m).SAT ) where SAT is a satisfiability test of a set propositional
clauses and m is the number of different weights in IK and IK which is the exact same complexity as
in standard possibilistic logic. Moreover, the combination operator Cm proposed here is an extension to
interval-based degree of the one in [BDGP02], so the amount of different weighted in IK is the same
that in any K compatible. This leads us to investigate the complexity of the proposed translation
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Proposition 5.5. The translation from IPN to IK using the combination operator Cm is done in linear

time in the number of variables.

The above proposition states that the complexity is linear in the number of variables. The proof of
that statement is explained by the fact that the union of the knowledge bases is straightforward. And to
transform each local distribution into a knowledge base, we need to consider every interpretations in the
distribution, this is done in one loop.

5.6 Concluding remarks

In the previous results on quantitative conditioning, we have proposed a set of seven postulates
IC1-IC7 for product-based conditioning. The question is how to relate our postulates P1-P3 to IC1-

IC7? Of course, the postulates IC1-IC7 use the product-based operator while P1-P3 use the min-based
conditioning. Now, if P1 is replaced by P’1 stating that:

P’1 ∀π, φ⊆Ω and ω∈Ω, ([π, π])(ω|φ) = [π(ω|∗φ), π(ω|∗φ)]. (5.14)

Then we can show that an interval-based conditioning that satisfies P’1,P2,P3 necessarily satisfies IC1-

IC7 but the converse is false.

This chapter addressed the issue of conditioning in a qualitative interval-based possibilistic setting.
Four main contributions were presented:

i) A set of three natural postulates P1-P3 ensuring that any interval-based conditioning satisfying
these three postulates is necessarily based on min-based conditioning the set of compatible stan-
dard possibility distributions. The first postulate P1 aims to recover the standard min-based condi-
tioning in case where all the intervals contain singleton values (all lower endpoints coincide with
upper endpoints). The second postulate P2 captures a kind of specificity regarding conditioning
interval-based sets of beliefs while the third postulate P3 aims to ensure a minimality condition.

ii) Efficient procedures to compute the lower and upper endpoints of the conditional interval-based
possibility distribution. Such procedures exclude any state of the world that is inconsistent with the
new evidence in hand and perform some kind of normalization based on the concept of compatible
possibility distribution without generating the whole set of compatible distributions.

iii) A syntactic counterpart of conditioning interval-based possibilistic bases. This counterpart per-
forms some tests and does some modifications on the formulas of the original knowledge base
such that the new evidence is integrated with a certainty degree of 1. This ensures the same result
as if the knowledge base were conditioned at the semantic level.

iv) An encoding of interval-based possibilistic networks into interval-based possibilistic knowledge
bases. This procedure provides the semantical equivalence of the two representations. This allows
to perform efficiently conditioning in interval-based possibilistic networks.

Interestingly enough, the syntactic counterpart of min-based conditioning has also the same com-
plexity as conditioning standard possibilistic knowledge bases. More precisely, conditioning an interval-
based possibilistic knowledge base does not require extra computational cost compared with conditioning
a standard possibilistic base.
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Chapter 6

Set-valued possibilistic framework :

Definitions and conditioning

Chapters 4 and 5 presented conditioning interval-based possibility distributions and knowledge bases.
This chapter deals with conditioning uncertain information where the weights associated with formulas
are in the form of sets of uncertainty degrees. The first part of the chapter studies set-valued possi-
bility theory where we provide a characterization of set-valued possibilistic logic bases and set-valued
possibility distributions by means of the concepts of compatible possibilistic logic bases and compati-
ble possibility distributions respectively. The second part addresses conditioning set-valued possibility
distributions. We first adapt the set of three natural postulates proposed in Chapter 5 for conditioning
set-valued possibility distributions. We then show that any set-valued conditioning satisfying these three
postulates is necessarily based on conditioning the set of compatible standard possibility distributions.
The last part of the chapter shows how one can efficiently compute set-valued conditioning over possi-
bilistic knowledge bases.

Contents

6.1 Set-valued possibility theory and set-valued possibilistic logic . . . . . . . . . 85

6.2 Conditioning set-valued possibilistic information . . . . . . . . . . . . . . . . 90

6.3 A syntactic counterpart of set-valued conditioning . . . . . . . . . . . . . . . 92

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Set-valued possibility theory and set-valued possibilistic logic

Let us first start with a short example to motivate our extension.

Example 6.1. Suppose we are interested in the amenities and facilities of a hotel in Paris to organize a
conference. For this, we posted a question on a specialized Internet platform. To simplify, the question
was about the presence of a large conference room in the hotel (represented by the variable c) and if the
hotel has a great restaurant (represented by a the variable r) to host the gala dinner. We also asked people
to specify how certain of the answers they are, using a unit scale [0, 1]. Assume that we got three answers
of three people: p1 is a former hotel employee, the second, p2, is an employee of the Paris tourism office
and the third, p3, is a client of the hotel. The certainty levels of these people with respect to different
scenarios 5 are summarized as follows:

5. In this example, the scenario cr means that the hotel has a conference room and has a great restaurant while the scenario
c¬r means that the hotel has a conference room but does not have a great restaurant .
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Table 6.1 – Example of multiple sources information

p1 p2 p3
cr 1 1 1
¬cr 1 1 1
c¬r .3 .2 .4
¬c¬r .4 .4 .4

Table 6.2 – Set-valued distribution corresponding to the multiple source information of Table 6.1.

Iπ

cr {1}
¬cr {1}
c¬r {.2, .3, .4}
¬c¬r {.4}

In this example, the confidence degrees provided by the responders can be viewed as possibility
degrees. Now, suppose that we got hundreds or thousands of answers or suppose that there is a large
number of variables, then it will be interesting to find a compact way to encode the obtained answers and
more importantly to reason with them (answer any query of interest and update the available information
when new sure information is obtained). Set-valued possibility theory is especially tailored to this type
of information.

Let us now introduce the concept of set-valued possibility distribution.

6.1.1 Set-valued possibility distributions

In the set-valued possibilistic setting, the available knowledge is encoded by a set-valued possibility
distribution Iπ where each state ω is associated with a finite set Iπ(ω) of possible values of possibility
degrees π(ω).

If S is a set, then we denote by S and S the maximum and minimum values of S respectively. When
all S’s associated with interpretations (or formulas) are singletons (meaning that S = S), we refer to
standard distributions (resp. standard possibilistic bases). Here, Iπ(ω) (resp. Iπ(ω)) denotes the mini-
mum (resp. maximum) of the possibility degrees of ω.

Clearly, set-valued possibility theory is also an extension of interval-based possibility theory [BHLR11],
where the set is denoted as an interval of possible values. Therefore, we now consider sets of degrees
and we define a set-valued possibility distribution as follows:

Definition 6.1 (Set-valued possibility distribution). A set-valued possibility distribution Iπ is a mapping
Iπ : Ω → S from the universe of discourse Ω to the set S of all sub-sets included in the interval [0, 1],
with the normalization property requiring that maxω∈Ω Iπ(ω) = 1.

The information corresponding to Example 6.1 could be compactly encoded as follows:

Example 6.2. (Example 6.1 cont’d.) Let us represent the available knowledge from Example 6.1 as a
set-valued possibility distribution given in Table 6.2.

As in an interval-based possibility theory [BHLR11], we also interpret a set-valued possibility dis-
tribution as a family of compatible standard possibility distributions defined by:
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Table 6.3 – Example of set-valued possibility distribution Iπ, compatible possibility distributions π1 and
π2 and a non compatible one π3.

ω ∈ Ω Iπ ω ∈ Ω π1 π2 π3
cr {1} cr 1 1 .4
¬cr {1} ¬cr 1 1 1
c¬r {.2, .3, .4} c¬r .3 .4 .2
¬c¬r {.4} ¬c¬r .4 .4 .4

Definition 6.2. Let Iπ be a set-valued possibility distribution. A normalized possibility distribution π is
said to be compatible with Iπ if and only if ∀ω∈Ω, π(ω)∈Iπ(ω).

As shown in Example 6.3, compatible distributions are not unique. We denote by C(Iπ) the set of all
possibility distributions compatible with Iπ.

Example 6.3. Let Iπ be a set-valued possibility distribution described in Table 6.3.
Then following Definition 6.2, the possibility distributions π1 and π2 (from Table 6.3) are compatible

with Iπ.
However, π3 is not compatible with Iπ since π3(cr) = .4 6∈ Iπ(cr) = {1}.

Let us now see how to generalize standard possibilistic logic into a set-valued setting.

6.1.2 Set-valued possibilistic logic

Contrary to standard possibilistic logic where the uncertainty is described with single values, set-
valued possibilistic logic uses sets.
The syntactic representation of set-valued possibilistic logic generalizes the notion of a possibilistic base
to a set-valued possibilistic knowledge base as follows:

Definition 6.3. A set-valued possibilistic knowledge base, denoted by IK, is a set of propositional for-
mulas associated with sets:

IK = {(ϕ, S), ϕ∈L and S is a set of degrees in [0, 1]}

In Definition 6.3, ϕ ∈ L denotes again a formula of a propositional language L.

A set-valued possibilistic base IK can be viewed as a family of standard possibilistic bases called
compatible bases. More formally:

Definition 6.4 (Compatible possibilistic base). A possibilistic baseK is said to be compatible with a set-
valued possibilistic base IK if and only if K is obtained from IK by replacing each set-valued formula
(ϕ, S) by a standard possibilistic formula (ϕ, α) with α ∈ S.

In other words, each compatible possibilistic base is such that K = {(ϕ, α) : (ϕ, S) ∈ IK and
α∈S}.

We also denote by C(IK) the finite set of all compatible possibilistic bases associated with a set-
valued possibilistic base IK.

Example 6.4. In the following, we will use this set-valued possibilistic knowledge base to illustrate our
propositions. Let IK be a set-valued possibilistic knowledge base such that:

IK = {(¬c ∨ r, {.4, .7, .8}), (r, {.6})}.
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An example of a compatible possibilistic knowledge base is:

K = {(¬c ∨ r, .4), (r, .6)}.

As in standard possibilistic logic, a set-valued knowledge base IK is also a compact representation
of a set-valued possibility distribution IπIK .

6.1.3 From set-valued possibilistic bases to set-valued possibility distributions

Let us go one step further with the contribution on how to compute the set-valued possibility distri-
bution from a set-valued base.

Let IK = {(ϕi, Si): i=1, ..., n} be a set-valued possibilistic knowledge base. A natural way to define
a set-valued possibility distribution, associated with IK and denoted by IπIK , is to consider all standard
possibility distributions associated with each compatible knowledge base. Namely:

Definition 6.5. Let IK be a set-valued possibilistic knowledge base. The set-valued possibility distribu-
tion IπIK associated with IK is defined by:

∀ω ∈ Ω, IπIK(ω) = {πK(ω) : K ∈ C(IK)}.

Recall that C(IK) is the set of compatible knowledge bases (given in Definition 6.4) and πK is given
by Equation (2.12).
Similar to the single valued possibilistic logic setting, we can get rid of some formulas of a set-valued
knowledge base without any information loss. More precisely, we can ignore any formula of IK attached
with only one certainty degree equal to zero, as stated in the following lemma.

Lemma 6.1. Let IK be a set-valued possibilistic base such that (δ, {0}) ∈ IK. Let IK ′=IK \ {(δ, {0})}.
Then ∀ω ∈ Ω, IπIK(ω)=IπIK′(ω).

Lemma 6.1 is again useful for establishing proofs of some propositions. The idea behind this lemma
stands in the definition of compatible bases and Lemma 2.1. Indeed, in the case where IK is such that
(δ, {0}) ∈ IK, then in every compatible base K, we have (δ, 0) ∈ K, therefore, as stated in Lemma 2.1,
the weighted formula (δ, 0) can be ignored from K without changing its associated distributions, and
this can be generalized to the set-valued formula (δ, {0}).

Let us now characterize IπIK . The following proposition provides the conditions under which the
highest possibility degree ’1’ belongs to IπIK(ω):

Proposition 6.1. Let IK be a set-valued possibilistic knowledge base. Let ω be an interpretation. Then:

1∈IπIK(ω) if and only if ω �
∧

{ϕ : (ϕ, S) ∈ IK and S > 0}

Namely, 1 ∈ IπIK(ω) if and only if ω satisfies all formulas having a strictly positive certainty degree.

Proof. Recall that 1 ∈ IπIK(ω) means that there exists a compatible possibilistic base K ∈ C(IK)
such that πK(ω) = 1. Now, formulas of K having a certainty degree equal to ’0’ can be removed,
thanks to Lemma 2.1, without changing πK . The fact that πK(ω) = 1 implies that ω is a model of
{ϕ : (ϕ, α) ∈ K,α > 0}. This also means that ω is also a model of {ϕ, (ϕ, S) ∈ IK, S > 0}.

Let us now show the converse. Assume that ω is a model of {ϕ, (ϕ, S) ∈ IK, S > 0}. Let K be a
compatible possibilistic knowledge base obtained from IK by replacing each set-valued S by its lower
bound S. Clearly, {ϕ : (ϕ, S) ∈ K} is satisfied by ω. Hence, 1 ∈ IπIK(ω).
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Example 6.5. (Example 6.4 cont’d) Let us continue with the knowledge base from Example 6.4. Recall
that IK = {(¬c ∨ r, {.4, .7, .8}), (r, {.6})}. Following Proposition 6.1, interpretations cr and ¬cr will
have among their possibility degrees the degree 1 (namely 1 ∈ IπIK(cr) and 1 ∈ IπIK(¬cr)) since
these interpretations are models of all the formulas of IK attached only to strictly positive degrees.

We now study under which conditions a possibility degree (1 − α) belongs to IπIK(ω), with α ∈
[0, 1]. Clearly, if (1−α) ∈ Iπ(ω) then there exists a compatible base K such that πK(ω)=1−α. Hence,
there exists (ϕ,α) ∈ K such that ω 2 ϕ. Then there exists (ϕ, S) ∈ IK such that ω 2 ϕ and α ∈ S.

To determine the possible values of IπIK(ω), it is enough to browse all certainty degrees associated
with formulas of IK falsified by ω and check whether their inverse will belong or not to IπIK(ω).

This is precisely specified by the following proposition:

Proposition 6.2. Let ω be an interpretation. Let A =
⋃

{S : (ϕ, S) ∈ IK, ω 2 ϕ}. Let a ∈ A ∪ {0}.
Then,

(1− a)∈IπIK(ω) if and only if ω � {ϕ : (ϕ, S) ∈ IK, S > a}

Proof. Proposition 6.2 recovers Proposition 6.1 in case where a = 0. Hence, we only focus on the case
a > 0. To see the proof, assume that a > 0 and (1 − a) ∈ IπIK(ω). This means that there exists a
compatible possibilistic knowledge base K ∈ C(IK), such that πK(ω) = 1− a.

This means that {ϕ : (ϕ, b), b > a} is consistent and satisfied by ω. Since {ϕ : (ϕ, S), S > a} ⊆
{ϕ : (ϕ, b), b > a}, this also means that {ϕ : (ϕ, S), S > a} is consistent and satisfied by ω.

Let us show the converse. Assume that ω � {ϕ : (ϕ, S), S > a} ∧ ω. Clearly, if A = ∅ (namely,
a = 0) or A = {0} then whatever is the compatible base K, ω will satisfy each formula in K, hence
πK(ω) = 1, and (1 − a) ∈ IπIK(ω). Assume that a ∈ A and a > 0. Let (ϕ1, S1) be a formula of IK
such that a ∈ S1 and ω 2 ϕ1. Let K be a compatible base defined by:

K = {(ϕ, S) : (ϕ, S) ∈ IK, ϕ 6= ϕ1} ∪ {(ϕ1, a)}.

Namely, K is obtained from IK by replacing S by S for each formula in IK, except for ϕ1 where a is
used instead of S. It is easy to see thatK is compatible with IK, namelyK ∈ C(IK). It is also easy to see
that πK(ω) = 1−a, since {ϕ : (ϕ, b) ∈ K, b > a} is satisfied by ω, {ϕ : (ϕ, b) ∈ K, b > a}∪{(ϕ1, a)}
is falsified by ω. Therefore (1− a) ∈ IπIK(ω).

Let us continue our example, and illustrate Proposition 6.2.

Example 6.6. (Example 6.4 cont’d) We need to check which degrees belong to IπIK(ω). For each
interpretation, we first compute A =

⋃

{S : (ϕ, S) ∈ IK, ω 2 ϕ}. For instance, let us consider
ω = c¬r then A = {.4, .7, .8, .6}. Now, let us analyse each value a of A ∪ {0},

— For a = 0, c¬r 2 {¬c ∨ r, r}, then 1 6∈ IπIK(c¬r);

— For a = .4, c¬r 2 {r}, then .6 6∈ IπIK(c¬r);

— For a = .7, ∅ ∧ c¬r is consistent, then .3 ∈ IπIK(c¬r);

— For a = .8, ∅ ∧ c¬r is consistent, then .2 ∈ IπIK(c¬r)

— Finally, for a = .6, ∅ ∧ c¬r is consistent, then .4 ∈ IπIK(c¬r).

Then we can conclude that IπIK(c¬r) = {.2, .3, .4}.
Let us take another interpretation, for instance ω=¬c¬r. Then A = {.6} and for each a ∈ A ∪ {0},

— For a = 0, ¬c¬r 2 {¬c ∨ r, r}, then 1 6∈ IπIK(¬c¬r);
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— And for a = .6, ∅ ∧ ¬c¬r is consistent, then .4 ∈ IπIK(¬c¬r).

We can conclude that IπIK(¬c¬r) = {.4}.
The whole distribution is exactly the one given in Example 6.2.

Let us now deal with the issue of conditioning a set-valued possibilistic base. The following section
extends min-based conditioning to set-valued possibility distributions.

6.2 Conditioning set-valued possibilistic information

Before providing our extension of min-based conditioning to the set-valued setting, let us first focus
on the natural properties that a set-valued conditioning operator should fulfill.

6.2.1 Three natural requirements for the set-valued conditioning

The first natural requirement (called recovering standard conditioning) is that in the degenerate case,
namely when each set Iπ(ω) contains exactly one single degree π(ω), the result of the new conditioning
procedure should coincide with the result π(.|mφ) of the original conditioning procedure. For each
possibility distribution π, by {π(ω)} we denote its set-valued representation, i.e., a set-valued possibility
distribution for which, for every ω ∈ Ω, we have Iπ(ω) = {π(ω)}. In these terms, the above requirement
takes the following form:

S1. If for every ω ∈ Ω, we have Iπ(ω) = {π(ω)}, then Iπ(ω|φ) = {π(ω|mφ)} for all ω and φ.

The second requirement (called specificity) is related to the fact that we do not know the precise
values Sπ(ω) since we only have partial information about them. In principle, if we can get some
additional information about these values, then this would lead, in general, to narrower sets (indeed, the
cardinality of a set captures the ignorance regarding the exact value of π(ω)). Let us define the concepts
of specificity between set-valued possibility distribution:

Definition 6.6. Let Iπ and Iπ′ be two set-valued possibility distributions. Then Iπ is said to be more
specific than Iπ′, denoted Iπ ⊆ Iπ′, if Iπ(ω) ⊆ Iπ′(ω) holds for all ω ∈ Ω.

S2. If Iπ(ω) ⊆ Iπ′(ω) for all ω, then Iπ(ω|φ) ⊆ Iπ′(ω|φ) for all ω.

Of course, these two postulates are not sufficient. For example, we can take Sπ(.|φ) = {π(.|mφ)} for
degenerate set-valued possibility distributions and Iπ(ω|φ) = [0, 1] for any other set-valued distribution
Iπ. To avoid such extensions, it is reasonable to impose the following minimality condition:

S3. There does not exist a conditioning operation ’|1’ that satisfies both properties S1–S2 and for which:

— Iπ(ω|1φ) ⊆ Iπ(ω|φ) for all Iπ, ω, and φ,

— Iπ(ω|1φ) 6= Iπ(ω|φ) for some Iπ, ω, and φ.

S3 is called minimality condition. The following theorem provides one of our main results where
we show that there is only one set-valued conditioning satisfying S1-S3 and where the set conditional
possibility degree Iπ(ω|φ) is defined as the closure of the set of all π(.|mφ), where π is compatible with
Iπ.

Theorem 6.1. There exists exactly one set-valued conditioning, also denoted by Iπ(.|φ) for sake of

simplicity, that satisfies the properties S1–S3, and which is defined by: ∀ω ∈ Ω,

Iπ(ω|φ) = {π(ω|mφ) : π ∈ C(Iπ)} (6.1)

where |m is the min-based conditioning given in Equation (1.29).
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Proof. 1◦. Let us denote the corresponding set-based conditioning by Iπ(.|φ). We need to prove:

— that this closure Iπ(.|φ) satisfies the properties S1–S3, and

— that every operation Iπ(.|1φ) that satisfies the properties S1–S3 coincides with the set-conditioning
Iπ(.|φ).

2◦. One can easily see that the operation Iπ(.|φ) satisfies the properties S1–S2.

3◦. Let us now prove that if an operation Iπ(.|1φ) satisfies the properties S1–S2, then for every Iπ and
φ, we have Iπ(.|φ) ⊆ Iπ(.|1φ).

Then, for every distribution π ∈ C(Iπ), we have {π} ⊆ Iπ and thus, due to the postulate S2, we
have {π}(.|1φ) ⊆ Iπ(.|φ). By the property S1, we have {π}(ω|1φ) = {π(ω|mφ)}. Thus, the above
inclusion means that π(.|mφ) ∈ Iπ(.|1φ).

The set Iπ(ω|1φ) therefore contains all the values π(ω|mφ) corresponding to all possible π ∈ C(Iπ):

{π(ω|mφ) : π ∈ C(Iπ)} ⊆ Iπ(ω|1φ). (6.2)

Thus, we conclude that Iπ(ω|φ) ⊆ Iπ(ω|1φ) for all ω.
The statement is proven.

4◦. We can now prove that Iπ(.|φ) also satisfies the property S3.
Indeed, if there is some other operation |1 that satisfies S1 and S2, and for which Iπ(ω|1φ) ⊆

Iπ(ω|φ) for all ω, then, since we have already proven the opposite inclusion in Part 3 of this proof, we
conclude that Iπ(ω|1φ) = Iπ(ω|φ) for all ω, so indeed no narrower conditioning operation is possible.

5◦. To complete the proof, let us show that if some Iπ(.|1φ) satisfies the properties S1–S3, then it
coincides with Iπ(.|φ).

Indeed, by Part 3 of this proof, we have Iπ(ω|φ) ⊆ Iπ(ω|1φ) for all ω. If we had Iπ(ω|φ) 6=
Iπ(ω|1φ) for some ω and φ, this would contradict the minimality property S3. Thus, indeed, Iπ(.|φ) =
Iπ(.|1φ). Uniqueness is proven, and so is for the theorem.

6.2.2 Analyzing set-based conditioning

Now, we can go one step beyond Theorem 6.1 and provide the exact contents of the conditioned set
Iπ(.|mφ). Let us first start with the following lemma which delimits the set of possible values associated
with models of φ after the conditioning operation.

Lemma 6.2. Let Iπ be a set-valued possibility distribution. Let φ ⊆ Ω. Then ∀ω ∈ Ω,

— If ω 2 φ, Iπ(ω|φ) = {0},

— And if ω � φ, Iπ(ω|φ) ⊆ Iπ(ω)∪{1}.

The proof of this lemma is immediate. Indeed, if π is a standard possibility distribution, then by
definition π(ω|mφ) is either equal to π(ω) or to 1 for models of φ. Hence, the only admissible values
for Iπ(ω|φ) are those in Iπ(ω) and the value 1. For counter-models of φ (namely, ω 2 φ), then clearly
Iπ(ω|φ) = {0} since π(ω|mφ) = 0 for each compatible distributions π.

Given this lemma, we need to answer two questions:

— Under which conditions does the fully possibility degree 1 belong to Iπ(ω|φ)?

— Under which conditions will a given possibility degree a ∈ Iπ(ω) still belong to Iπ(ω|φ)?

The answer to these questions is given in the following proposition:

Proposition 6.3. Let Iπ be a set-valued possibility distribution. Let φ ⊆ Ω.
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Table 6.4 – Set-valued distribution Sπ of Example 6.2 conditioned by φ=¬r.

Iπ(.|φ)
cr {0}
¬cr {0}
c¬r {.2, .3, 1}
¬c¬r {1}

i) 1 ∈ Iπ(ω|φ) if and only if ∀ω′ 6=ω, Iπ(ω) ≥ Iπ(ω′).

ii) Let a ∈ Iπ(ω) (with a 6= 1). Then a ∈ Iπ(ω|φ) if and only if ∃ω′ 6=ω, Iπ(ω′) > a.

Proof. For item (i) assume that 1 ∈ Iπ(ω|φ). This means that there exists a compatible distribution π
of Iπ such that π(ω|mφ) = 1. This also means that ∀ω′ 6= ω, π(ω) ≥ π(ω′). Since, Iπ(ω) ≥ π(ω),
and π(ω′) ≥ Iπ(ω′), hence we have ∀ω′ 6= ω, Iπ(ω) ≥ Iπ(ω′). For the converse, assume that ∀ω′,
Iπ(ω) ≥ Iπ(ω′). Let π be a compatible distribution such that π(ω) = Iπ(ω) and ∀ω′ 6= ω, π(ω′) =
Iπ(ω). Clearly, ∀ω′ 6= ω, π(ω) > π(ω′). Hence π(ω|mφ) = 1 and 1 ∈ Iπ(ω|φ).

For item (ii), let a ∈ Iπ(ω) where a 6= 1. Assume that ∃ω′ 6= ω, such that Iπ(ω′) > a. Consider a
compatible distribution π where π(ω′)=Iπ(ω′) and π(ω)=a. Then clearly, π(ωm|φ)=a ∈ Iπ(ω|φ). For
the converse, assume that a ∈ Iπ(ω|φ) and a 6= 1. This means that there exists a compatible distribution
π such that π(ω|mφ)=a < 1. Hence, ∃ω′, π(ω)=a < π(ω′). Since π(ω′) ≤ Iπ(ω′) this means that
Iπ(ω′) > a.

Example 6.7. In this example, we deal with conditioning a set-valued possibility distribution. Therefore,
let us continue Example 6.2 and assume that the manager of the hotel tells us that the restaurant of the
hotel has closed down definitively a few weeks ago. Then we need to condition with the new piece of
information φ = ¬r. Let us run the conditioning operation step by step. For every interpretation model
of φ,

— For ω = c¬r,

i) since, with ω′ = ¬c¬r, .4 ≥ .4, then 1 ∈ Iπ(c¬r|¬r);

ii) For a = .2, since, Iπ(¬c¬r)=.4 > .2, then .2 ∈ Iπ(c¬r|¬r).
For a = .3, since, Iπ(¬c¬r)=.4 > .2, then .3 ∈ Iπ(c¬r|¬r).
For a = .4, since, Iπ(¬c¬r)=.4 ≯ .4, then .4 6∈ Iπ(c¬r|¬r).

— For the interpretation ω=¬c¬r, we follow the same computation steps.

— For counter-models of ¬r, we have Iπ(ω|φ) = {0}.

Given the distribution in Table 6.2, we sum up the result of conditioning this distribution in Table 6.4.

6.3 A syntactic counterpart of set-valued conditioning

Let us first consider again conditioning a standard possibilistic knowledge base K and rewrite the
result of conditioning K. Recall that K≥a = {ϕ : (ϕ, α) ∈ K and α ≥ a} be a set of propositional
formulas fromK having a weight greater or equal to a. Then, the result of conditioning K by φ, denoted
by Kφ, given by Definition 2.17 can be rewritten as:

Kφ = {(φ, 1)}
∪ {(ϕ, α) : (ϕ, α) ∈ K≥α ∧ φ is consistent }
∪ {(ϕ, 0) : (ϕ, α) ∈ K≥α ∧ φ is inconsistent }.
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The only difference with Definition 2.17 is that ’0’ weighted formulas have been added. This has no
influence thanks to Lemma 2.1. Namely, Kφ is obtained from K by adding φ with a fully certainty
degree and ignore some formulas from K. By ignoring some formulas, we mean the certainty degrees
of these formulas are set to ’0’.

IK
Set-valued possibilistic base

KnK1 K2

K1φ K2φ Knφ

IK ′

Figure 6.1 – Compatible-based conditioning

The aim of this section is to provide syntactic computation of set-valued conditioning when set-
valued possibility distributions are compactly represented by set-valued possibilistic knowledge bases.
As illustrated in Figure 6.1, the input is an initial set-valued knowledge base IK and a formula φ. The
output is a new set-valued knowledge base IK ′ that results from conditioning the set of all compatible
bases of IK with φ. This new set-valued knowledge base IK ′ is obtained by considering the set of all
compatible possibilistic knowledge bases, Ki ∈ C(IK). More precisely, it is done in three steps:

— First, from IK we generate the set of compatible bases K1,K2, ...,Kn

— then, we condition each compatible base Ki with φ. The result is Kiφ and obtained using Defini-
tion 2.17.

— Lastly, we define IK ′ by associating with each formula ϕ of IK the set of degrees present in at
least one conditioned Kiφ .

Namely: IK ′={(ϕ, S) : S=
⋃

{αk : (ϕ, αk)∈Kφ,K∈C(IK)}}.
Hence, a naive algorithm for computing IK ′ is given.
Clearly, this algorithm is not satisfactory since the number of compatible bases may be exponential.
Our aim is then to equivalently compute IK ′ without exploiting the set of all compatible possibilistic

knowledge bases.
It is easy to show that ∀ω ∈ Ω, πK′(ω) = πK(ω|φ). Now, in the set-valued setting, conditioning

IK comes down first to apply standard conditioning on each compatible base then gathering all certainty
degrees. Clearly, IK ′ is obtained from IK by ignoring some weight. The conditions under which a
weight should be ignored is given by the following proposition:

Proposition 6.4. Let IK be a set-valued knowledge base, φ be a propositional formula. Let (γ, S) ∈ IK
and a ∈ S. Let S′ be the new set associated with γ in IK ′. Then:

a ∈ S′ if and only if φ ∧ {ϕ : (ϕ, S) ∈ IK, S ≥ a} ∧ γ is consistent.

Proof. The proof is as follows. Assume that a ∈ S′. This means that there exists a compatible base K
such that (γ, a) ∈ K ′. Since {ϕ : (ϕ, α) ∈ K ′} is consistent, and (γ, a) ∈ K ′ and (φ, 1) ∈ K ′ then
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Algorithm 2 Naive computation of IK ′

Require: IK: a set-valued knowledge base
φ: a propositional formula

Ensure: IK ′: the result of conditioning IK with φ
IK ′ ←− {(φ, 1)}
for (γ, S) ∈ IK do

S′ ←− ∅
for K compatible with IK do

Compute Kφ

S′ ←− S′ ∪ {α : (γ, α) ∈ Kφ}
end for

IK ′ ←− IK ′ ∪ {(γ, S′)}
end for

return IK ′

trivially φ ∧ γ ∧ {ϕ : (ϕ, b) ∈ K ′} is consistent. Hence, φ ∧ γ ∧ {ϕ : (ϕ, b) ∈ K ′, b ≥ a} is consistent
and φ ∧ γ ∧ {ϕ : (ϕ, S) ∈ IK, S ≥ a} is consistent.

Now, assume that φ ∧ γ ∧ {ϕ : (ϕ, S) ∈ IK, S ≥ a} is consistent. Let K be a compatible base,
where each (ϕ, S) such that ϕ 6= γ is replaced by (ϕ, S) and (γ, S) is replaced by (γ, a). Clearly, K is
a compatible. Besides, (γ, a) ∈ K ′ since K≥a ∧ φ is consistent. Hence, a ∈ S′.

Based on the above propositions, we propose an algorithm (Algorithm 3) to compute the result of
conditioning IK with φ. It consists in browsing all the degrees of IK and checking whether each degree
should be replaced by 0 or not.

Algorithm 3 Syntactic set-valued conditioning

Require: IK: a set-valued knowledge base
φ: a propositional formula

Ensure: IK ′: the result of conditioning IK with φ
IK ′ ←− {(φ, 1)}
for (γ, S) ∈ IK do

S′ ←− ∅
for a ∈ S do

if (#) φ ∧ γ ∧ {ϕ : (ϕ, S) ∈ IK, S ≥ a} is consistent then

S′ ←− S′ ∪ {a}
else

S′ ←− S′ ∪ {0}
end if

IK ′ ←− IK ′ ∪ {(γ, S′)}
end for

end for

return IK ′

In Algorithm 3, the costly task is checking consistency of the statement marked by (#). Hence, the
complexity of computing IK ′ is O(|IK| ∗ n ∗ SAT ) where n is the number of different certainty levels
in IK (namely, n = |

⋃

{S : (ϕ, S) ∈ IK}|). This is stated in the following proposition.

Proposition 6.5. Let IK be a set-valued possibilistic knowledge base and φ be the new evidence. Let
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Table 6.5 – Set-valued distribution corresponding to set-valued knowledge base IK ′.

IπIK′

cr {0}
¬cr {0}
c¬r {.2, .3, 1}
¬c¬r {1}

IK ′ be a set-valued possibilistic knowledge base computed using Algorithm 3. Then computing IKφ is

in O(|IK| ∗n∗SAT ) where SAT is a satisfiability test of a set propositional clauses and n is the number

of different weights in IK.

Example 6.8. Let us illustrate Algorithm 3. To do so, we continue Example 6.4 where IK = {(¬c ∨
r, {.4, .7, .8}), (r, {.6})} and with the new information φ = ¬r. For each pair (ϕ, S),

— First let us take (¬c ∨ r, {.4, .7, .8}) then:

— For a = .4, {r,¬c ∨ r} ∧ {¬r} ∧ {¬c ∨ r} is not consistent then, 0 ∈ S′;

— For a = .7, ∅ ∧ {¬r} ∧ {¬c ∨ r} is consistent then, .7 ∈ S′;

— We use the same reasoning for a = .8, then, .8 ∈ S′.

— Now for the second pair (r, {.6})} we have:

— For a = .6, {r} ∧ {¬r} ∧ {r} is not consistent so 0 ∈ S′;

The new base is IK ′ = {(¬r, {1}), (¬c∨r, {0, .7, .8}), (r, {0})}. Thanks to Lemma 6.1, we can exclude
the pair (r, {0}), this is our new base: IK ′ = {(¬r, {1}), (¬c ∨ r, {0, .7, .8})}. The corresponding set-
valued possibility distribution according Definition 6.5 is given in Table 6.5.

6.4 Conclusion

This chapter dealt with representing and reasoning with qualitative information in a possibilistic
setting and it provided three main contributions:

— The first one is a new extension of possibilistic logic called set-valued possibilistic logic particu-
larly suited for reasoning with qualitative and multiple source information. We provided a natural
semantics in terms of compatible possibilistic bases and compatible possibility distributions.

— The second main contribution deals with a generalization of the well-known min-based or qual-
itative conditioning to the new set-valued setting. The chapter proposes three natural postulates
ensuring that any set-valued conditioning satisfying these three postulates is necessarily based on
the set of compatible standard possibility distributions.

— The third main contribution concerns the syntactic characterization of set-valued conditioning.
Efficient procedures are proposed to compute the exact set-valued possibility distributions and their
syntactic counterparts. Interestingly enough, the proposed setting generalizes standard possibilistic
and conditioning does not require extra computational cost with respect to the standard single
valued possibilistic setting. We provide an algorithm which does not generate explicitly the set of
all compatible possibilistic knowledge bases.

Note that the idea of compatible-based conditioning in the interval-based possibilistic setting is some-
how similar to conditioning in credal sets [ACdCT14, Lev80] and credal networks [Coz00] where the
concept of convex set refers to the set of compatible probability distributions composing the credal set.
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Regarding the computational cost, conditioning in credal sets is done on the set of extreme points (edges
of the polytope representing the credal set) but their number can reach N ! where N is the number of
interpretations [Wal07]. In this chapter, our set-valued conditioning operator has a complexity close to
the one of standard possibilistic knowledge base.
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Part III

Analysis of probability-possibility

transformations and MAP queries
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Chapter 7

Property analysis of probability-possibility

transformations

The last three chapters made it clear that possibilistic frameworks have flexible and expressive com-
pact representations and have efficient inference machinery. In order to benefit from such machinery
we need to study, with respect to reasoning tasks, transformations from probabilistic settings to the
possibilistic one. In this chapter, we focus on probability-possibility transformations in the context of
changing operations and graphical models. Existing works mainly propose probability-possibility trans-
formations satisfying some desirable properties. The analysis of the behavior of these transformations
with respect to changing operations (such as conditioning and marginalization) have not been addressed.
This chapter analyses the commutativity of probability-possibility transformations with respect to some
reasoning tasks such as marginalization and conditioning. Another crucial issue addressed in this chapter
is the one of probability-possibility transformations in the context of graphical models.
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7.1 Properties analyzed for probability-possibility transformations

The purpose of this chapter is to study the commutativity of transformations on reasoning tasks such
that conditioning and marginalization. Sudkamp [Sud92] was first to study this question but his focus
was limited to the case where the resulted distributions are identical. He showed that there is no trans-
formation satisfying commutativity of transformations with respect to operations like conditioning and
marginalization. In this chapter, we only focus on the preservation of the ordering between interpreta-
tions. Such study is important especially for handlingMPE andMAP queries for which it is not required
to have real certainty degrees of interpretations but only the ordering between interpretations. Indeed,
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MAP and MPE queries only care for interpretations having the maximum degree (given a particular
configuration, like an evidence). We denote by TR the ordering between interpretations such that TR(p)
is the descending order of interpretations given the degrees in p.

p p′

π = TR(p) π′ = TR(p′)π′′

Changing Operation

Changing Operation

TR?

Figure 7.1 – Preserving the ordering between interpretations

We consider operations on distributions as depicted on Figure 7.1. Let p be a probability distribution.
On one hand, one may obtain a possibility distribution by first applying a changing operation on p (which
leads to p′) then applying a probability-possibility transformation on p′ (which leads to π′). On the other
hand, we may obtain a possibility distribution by first transforming the probability distribution p (with
TR(p)) and then applying the corresponding changing operation which leads to a possibility distribution
(π′′). Our objective is to compare these distributions and see if they encode the same ordering between
every interpretations ω ∈ Ω.

Let us consider TR a probability-possibility transformation procedure that preserves Dubois and
Prade principles(such as the ones presented in Chapter 3 Section 3.1.2: OT,KT, ST and V T ). We try
to answer the following questions:
Normalization condition: Does OT (resp. KT, ST and V T ) transformation gives a normalized possi-
bility distribution? Namely, do we have

ΠOT (Ω) = 1?

ΠKT (Ω) = 1?

ΠST (Ω) = 1?

ΠV T (Ω) = 1?

Plausibility ordering between events: Does TR preserve the plausibility ordering between events?
Namely, let φ and ψ be two events in Ω such that P (φ) < P (ψ), then do we have:

ΠTR(φ) < ΠTR(ψ) ?

Marginalization task: Is the ordering between interpretations in a marginalized probability distribution
the same as the one in a marginalized transformed possibility distribution. More precisely, let p be a
probability distribution over A and B, let pA be the marginalized probability distribution over A and let
a1 and a2 be two worlds of DA such that pA(a1) < pA(a2). Then we have ΠA−TR(a1) < ΠA−TR(a2)
but do we have:

ΠTR(a1) < ΠTR(a2)

where πTR is the transformed possibility distribution of p?
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Conditioning task: Is the ordering between interpretations in a conditioned probability distribution
the same as the one in a conditioned transformed possibility distribution. More precisely, let p be a
probability distribution and let φ be an event. Let ω1 and ω2 be two interpretations of Ω such that
P (ω1|φ) < P (ω2|φ). Then do we have:

ΠTR(ω1|φ) < ΠTR(ω2|φ)

where πTR is the possibility distribution associated with p using TR?

Independence relationships: Let p be a probability distribution over a set of variables V = {X1, ..., Xn}
such that Xi ⊥ Xj (with i 6= j). Let πTR be the possibility distribution transformed by TR. Then do we
have:

∀xi ∈ DXi
, xj ∈ DXj

, ΠTR(xi|xj) = ΠTR(xi)

MPE and MAP queries: Let p be a probability distribution. Is the result of a MPE (resp. MAP ) query
in p the same as the result in πTR?

Namely, let ω∗ be the result of a MPE query in p and let ωTR be the result of the MPE query in πTR
then is ω∗ = ωTR ? In the same way, let ω∗ be the result of a MAP query in p and let ωTR be the result
of the MAP query in πTR then is ω∗ = ωTR ?

The following sections provide answers to each of these questions.

7.2 Preserving normalization

In Chapter 3, we outlined existing works on probability-possibility transformations. It is important
to see if each proposed probability-possibility transformation operation gives a normalized possibility
distribution. This section shows that it is the case for each probability-possibility transformation.

7.2.1 OT transformation

Recall that OT (the optimal transformation) satisfies all the principles defined in Section 3.1.1. We
show that OT also satisfies the normalization principle. Namely, any normalized probability distribution
will give a normalized possibility distribution using OT transformation procedure.

Proposition 7.1. Let p be a probability distribution over Ω. Let πOT be the possibility distribution

resulting from the transformation of p with OT . If p is normalized then πOT is normalized.

Proof. Let p be a normalized probability distribution, then we have:
∑

ωi∈Ω

p(ωi) = 1

Let πOT be the possibility distribution transformed by:

πOT (ωi) =
∑

ωj/p(ωj)≤p(ωi)

p(ωj)

Let us consider ωmax as the configuration having the highest probability degree according to p (i.e.

∀ ωi ∈ Ω, p(ωi) ≤ p(ωmax)). Then,

πOT (ωmax) =
∑

ωj/p(ωj)≤p(ωmax)

p(ωj) =
∑

ωi∈Ω

p(ωi) = 1

The possibility distribution πOT is indeed always normalized.
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We can state the same results for KT, ST and V T respectively.

7.2.2 KT, ST and V T transformations

Proposition 7.2. Let p be a probability distribution over Ω. Let πKT (resp. πST , πV T ) be the possibility

distribution resulting from the transformation of p with KT (resp. ST , V T ). If p is normalized then

πKT (resp. πST , πV T ) is normalized.

Proof. Let us prove for each transformation starting with KT .

— Let p be a probability distribution over Ω ordered such as pi > 0, pi > pi+1 with pn+1 = 0.

π1 =
p1
p1

= 1

The transformed distribution KT is always normalized.

— In the case where TR = ST . Let us recall that the transformation ST is defined by: πi =
∑n

j=1min(pi, pj). Let us note the highest probability pmax, we obtain:

πmax =
n
∑

j=1

min(pmax, pj) =
n
∑

j=1

pj = 1

Therefore, πST is always normalized.

— In the last case, TR = V T . Let us assume that the elements in Ω are ordered such as: ∀ i =
{1..n}, pi > 0, pi ≥ pi+1 with pn+1 = 0, and:

πi = (
pi
p1

)k.(1−pi)

where k is a constant belonging to: 0 ≤ k ≤ log(pn)
(1−pn).log(

pn
p1

)
.

The transformation also gives us a normalized possibility distribution, indeed:

π1 = (
p1
p1

)k.(1−pi) = 1k.(1−pi) = 1

7.3 Preserving plausibility ordering between events

One of the principle of Dubois and Prade requires that the order of interpretations must be preserved
but nothing is said regarding arbitrary events (sets of interpretations). A natural question is therefore to
see if the ordering between arbitrary events is also preserved.

The following example shows that OT transformation does not preserve the plausibility ordering
between events.

Example 7.1. Let us consider a probability distribution over 3 worlds Ω = {ω1, ω2, ω3}. The possibility
distribution of p obtained using OT transformation is depicted in Table 7.1 along with the probability
distribution p and the probability and possibility measures of all events φ ⊆ Ω.

We notice that while the ordering between interpretations is preserved, the plausibility ordering be-
tween events is not guaranteed to be preserved:

P ({ω1, ω2}) > P ({ω1, ω3}) whereas Π({ω1, ω2}) = Π({ω1, ω3}) (7.1)
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φ P (φ) Π(φ)

{ω1} 0.6 1
{ω2} 0.3 0.4
{ω3} 0.1 0.1

{ω1, ω2} 0.9 1
{ω1, ω3} 0.7 1
{ω2, ω3} 0.4 0.4

{ω1, ω2, ω3} 1 1

Table 7.1 – Probability and possibility measure of events 2Ω

Example 7.1 shows that the plausibility ordering between events is not preserved by the OT trans-
formation. The same counter-example can be used to prove that the same goes for KT , ST and V T
transformations.

One question that stands out is to know if there exists a probability-possibility transformation oper-
ation that preserves the principle of consistence, preserves the plausibility ordering between interpreta-
tions and preserves the plausibility ordering between events. Proposition 7.3 shows that it is impossible
to obtain such probability-possibility transformation operation.

Proposition 7.3. Let TR be a probability-possibility transformation. Then there exists a probability

distribution p and π = TR(p) where there exist φ ⊆ Ω, ψ ⊆ Ω, with φ 6= ψ such that

P (φ) < P (ψ) ; Π(φ) < Π(ψ)

Since in probability theory we use the additivity axiom to compute P (φ) and in possibility theory
we use the maxitivity axiom then the strict ordering between events is not always preserved. Example
7.2 provides a counter-example. Note that this result is valid in both the quantitative and the qualitative
settings.

Example 7.2. Let p be a probability distribution on Ω = {ω1, ω2, ω3} and π = TR(p) and let α, β and

γ be probabilities such that

{

α > β > γ
α+ β + γ = 1

ωi p(ωi) π(ωi)

ω1 α 1
ω2 β β1
ω3 γ γ1

Table 7.2 – Example of probability-possibility transformation where the plausibility ordering between
events is not preserved.

In this example, ω1 is the most probable interpretation. Let φ and ψ be two events such that φ = {ω1}
and ψ = {ω1, ω2}. Since ω1 is included in the two events then Π(φ) = Π(ψ) = 1. But P (φ) < P (ψ)
because P (φ) = α and P (ψ) = α+ β.

Now assume that β + γ > α and φ = {ω1} and ψ = {ω2, ω3} then P (φ) < P (ψ) while Π(φ) >
Π(ψ).

This example illustrates that if we have a strict order between two events in the probability distribu-
tion, the possibility measures of these events in the possibility distribution can be equal. It also shows
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that we can have P (φ) < P (ψ) but Π(φ) > Π(ψ). Indeed, the following proposition characterizes such
a situation.

Proposition 7.4. Let TR be a probability-possibility transformation. Let p be a probability distribution

such as p(ωmax) <
∑

ωi 6=ωmax
p(ωi). Let πTR be the possibility distribution obtained by transforming p

by TR procedure and φ = Ω \ {ωmax}. Then

P (φ) > p(ωmax)⇒ ΠTR(φ) < πTR(ωmax) (7.2)

Proof. Let p be a probability distribution over Ω = {ω1, ω2, ω3}. Assume that this distribution is such
as:

{

p(ω1) > p(ω2) > p(ω3)
p(ω1) < p(ω2) + p(ω3)

Table 7.3 depicts p and its transformed possibility distribution πTR.

ωi p(ωi) πTR(ωi)

ω1 0.4 1
ω2 0.35 α
ω3 0.25 β

Table 7.3 – Probability distribution where p(ω1) < p(ω2) + p(ω3) and its transformed possibility distri-
bution

TR procedure transforms p into πTR by preserving the order of interpretations, thus 1 > α > β.
Considering the events φ = {ω2, ω3} and ψ = {ω1}, we have Π(φ) < Π(ψ) and P (φ) > P (ψ).

We therefore distinguish two different cases:

i) ωmax >
∑

ωi∈Ω, ωi 6=ωmax
p(ωi) (i.e. ωmax > 0.5), we lose the strict order.

ii) ωmax < 0.5 then it exists at least one event φ such as P (φ) > P ({ωmax}) but Π(φ) < Π({ωmax})

As said previously, this result is due to the additivity axiom against the maxitivity axiom. We are
now interested in preserving the ordering between interpretations during the operation of marginalization.
We can expect the result to be the same as this one since both probability and possibility marginalization
operations are based on the same axioms than for the computations of P (φ) and Π(φ).

7.4 Preserving the ordering between interpretations after marginaliza-

tion

This subsection analyzes the preservation of the ordering between interpretations during marginal-
ization procedure. Let us first illustrate with OT transformation. Let p be a probability distribution over
3 binary variables A,B and C.

Table 7.4 represents the probability distribution and its transformed possibility distribution by OT ,
and Table 7.5 represents the marginalized distribution of Table 7.4 on variable C.

The transformation by OT of the distribution p(A,B) of Table 7.5 is depicted by Table 7.6.
Note that the ordering between interpretations is not preserved in this example. Indeed, the operation

of marginalization on C comes down to compute the probability measure of the events: {abc, abc},
{abc, abc}, {abc, abc}, {abc, abc}. And we have seen with Proposition 7.3, that the order of events
is not necessarily preserved. We can conclude that OT transformation does not preserve the ordering
between interpretations after applying marginalization operation. This result applies also for KT , ST
and V T transformations.
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A B C p(A,B,C) πOT (A,B,C)

a b c 0.09 0.292
a b c 0.09 0.292

a b c 0.21 0.712

a b c 0.21 0.712
a b c 0.288 1
a b c 0.032 0.04

a b c 0.072 0.112

a b c 0.008 0.008

Table 7.4 – Probability distribution and possibility distribution transformed by OT

A B p(A,B) πOT (A,B)

a b 0.18 0.292

a b 0.42 0.712
a b 0.32 1

a b 0.08 0.112

Table 7.5 – Marginalization of Table 7.4 on
variable C

A B πOT (A,B)

a b 0.26

a b 1
a b 0.58

a b 0.08

Table 7.6 – Transformation of p(A,B) of Ta-
ble 7.5 by OT

Proposition 7.5. Let TR be a probability-possibility transformation operation (or function). Then there

exists a probability distribution p over V = {X1, .., Xn} and π = TR(p). Let p′ be the marginal

distribution of p on the set V ′ ⊆ {X1, .., Xn} with its domain DV ′ , π′′ is the marginal distribution of π
on X ′ and π′ = TR(p′). Then there exist two values xi, xj ∈ DV ′ such that i 6= j,

π′′(xi) < π′′(xj) holds but π′(xi) < π′(xj) does not hold.

It is easy to show that the two resulting distributions do not encode the same ordering, as it is shown
in the following counter-example.

Counter-example 7.1. The following table gives an example of probability distribution and the resulting
possibility distribution using TR transformation.

A B p(A,B) π(A,B)

a b 0.4 1
a b 0.1 α3

a b 0.3 α1

a b 0.2 α2

In this example 1 > α1 > α2 > α3 (this is given by the preference preservation principle). Let
π′ be the possibility distribution obtained by applying marginalization then transformation TR and let
π′′ be the possibility distribution obtained by transformation TR and then application of marginalization
operation. Then:

— p(a) = 0.5 and p(a) = 0.5

— π′(a) = 1 and π′(a) = 1

— π′′(a) = 1 and π′′(a) = max(α1, α2)
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Consequently π′(a) = π′(a) unlike π′′(a) > π′′(a), which means that transforming using TR does not
preserve the order. �

The general observation about marginalization is that there is no transformation that can preserve the
ordering between interpretations.

Given a new piece of information to be taken into account, the question is: Does conditioning before
the transformation or after change the ordering in the resulted possibility distributions. More precisely, in
the next section, we compare the ordering between interpretations of the conditioned distributions. This
is done using both conditioning rules (quantitative and qualitative) but also under soft evidence (Jeffrey’s
conditioning rules).

7.5 Preserving the ordering between interpretations after a conditioning

operation

Let φ be an evidence. Let p be a probability distribution. Let p′ be the probability distribution p
conditioned with φ. Let π = TR(p) and π′ = TR(p′) the associate possibility distributions of p and p′

using TR transformation. Let π′′ be the possibility distribution π conditioned with φ. In this section,
we answer the following question: Does π′ encode the same ordering between interpretations than π′′?
More formally, is the following equation valid?

⊲ (π′) =⊲ (π′′) (7.3)

7.5.1 Quantitative possibilistic setting

Recall that conditioning in probability and conditioning in quantitative possibilistic setting with a
certain piece of information φ ⊆ Ω, is done the same way. Since TR transformation preserves the order
of interpretations, we can assume that the order in the conditioned probability distribution and the one
after transformation will be the same.

Proposition 7.6. Let φ ⊆ Ω be an observation. Let p be a probability distribution and π = TR(p). Let

π′′ be a distribution obtained by conditioning π (using the quantitative conditioning rule) with φ. Let

π′ be the distribution obtained by conditioning p (in the probabilistic setting) with φ then transforming

using TR transformation.

∀ωi, ωj ∈ Ω, π′′(ωi | φ) < π′′(ωj | φ)⇒ π′(ωi |p φ) < π′(ωj |p φ) (7.4)

The idea of this proposition is that if we first transform using a probability-possibility transformation
TR then apply conditioning, then the ordering between interpretations ωi ∈ Ω will be the same than the
one if we condition first and transform after.

Proof. Given the evidence φ ⊆ Ω. Let ωi, ωj ∈ Ω2 and p(ωi) > p(ωj). If ωi ∈ φ and ωj ∈ Ω, then

p(ωi)

P (φ)
>
p(ωj)

P (φ)
⇒ p(ωi | φ) > p(ωj | φ)

Since TR is a transformation that preserves the order of interpretations, we can state that π′(ωi | φ) >
π′(ωj | φ). On the other hand, we have p(ωi) > p(ωj)⇒ π(ωi) > π(ωj). And by conditioning with the
quantitative rule with φ, we have:

π(ωi) > π(ωj)⇒
π(ωi)

Π(φ)
>
π(ωj)

Π(φ)
⇒ π′′(ωi | φ) > π′′(ωj | φ)
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The other cases ωi ∈ φ, ωj 6∈ φ and ωi 6∈ φ, ωj 6∈ φ are trivial. Indeed, by conditioning with φ, every
interpretation that does not belong to the event φ are no longer taken into account.

7.5.2 Qualitative possibilistic setting

Recall that qualitative conditioning is defined as:

π(ωi |m φ) =







1 if π(ωi) = Π(φ) and ωi ∈ φ
π(ω) if π(ωi) < Π(φ) and ωi ∈ φ

0 otherwise.

Qualitative conditioning can be seen as the following computation: min(π(ωi),Π(φ)) when the
world ωi belongs to the event φ. This conditioning also guarantees that the order is preserved. Therefore,
Proposition 7.7 shows that the ordering encoded in the possibility distribution obtained from conditioning
then transformation and the ordering encoded in the possibility distribution obtained from transformation
then conditioning are the same.

Proposition 7.7. Let φ ⊆ Ω be an observation. Let p be a probability distribution and π = TR(p).
Let π′′ be a distribution obtained by conditioning π (using the qualitative conditioning rule) with φ. Let

π′ be the distribution obtained by conditioning p (in the probabilistic setting) with φ then transforming

using TR transformation.

∀ωi, ωj ∈ Ω, π′′(ωi | φ) < π′′(ωj | φ)⇒ π′(ωi |m φ) < π′(ωj |m φ) (7.5)

Proof. Given the evidence φ ⊆ Ω. As in the quantitative setting, we discard every interpretation that
does not belong to the event φ. Let ωi, ωj ∈ φ with p(ωi) > p(ωj) then p(ωi | φ) > p(ωj | φ). Since
TR is a transformation that preserves the order, we state that π′(ωi | φ) > π′(ωj | φ). On the other side,
we have p(ωi) > p(ωj)⇒ π(ωi) > π(ωj). By conditioning with the qualitative rule with φ, we have:

π(ωi) > π(ωj)⇒ min(π(ωi),Π(φ)) > min(π(ωj),Π(φ))⇒ π′′(ωi | φ) > π′′(ωj | φ)

Also, note that if ωi ∈ φ then π(ωi) ≤ Π(φ).

Since both conditioning rules (quantitative and qualitative) preserve the ordering between interpre-
tations, and since probability-possibility transformations (seen in Chapter 3) satisfy Dubois and Prade
principles, hence:

Corollary 7.1. Let TR ∈ {OT,KT, ST, V T}. Let π′′ be a possibility distribution obtained with TR then
conditioned with φ. Let π′ be the possibility distribution obtained by conditioning (in the probabilistic
setting) then transformed with TR.

∀φ ⊆ Ω, argmaxωi∈Ω(π
′′(ωi | φ)) = argmaxωi

(π′(ωi | φ)) (7.6)

7.5.3 Preserving conditioning under uncertain information

Let us focus now on conditioning with uncertain information. We need to compare the distribution
built by conditioning the transformed possibility distribution and the distribution transformed from the
conditioned probability one. This has never been investigated before. Therefore, we are interested in
two problems, the first one is about finding if the two distributions are equivalent. The second issue is to
know if the order of interpretations is the same in both conditioned distributions. Let us first start with
an example.
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A B p(A,B)

a b 0.4

a b 0.1
a b 0.2

a b 0.3

Table 7.7 – Probability distribution on A and
B

A B p′(A,B)

a b 0.56

a b 0.14
a b 0.12

a b 0.18

Table 7.8 – Revised probability distribution of p

Example 7.3. Given two variables A and B, with domains DA = {a, a} and DB = {b, b}. Let p
(Table 7.7) be a probability distribution over A and B.

From Table 7.7, we have P ({A = a}) = 0.5. Now, let us consider the new information P ′({A =
a}) = 0.7. Then the revised distribution of p with φ is given by Table 7.8. Now, let us transform these
distributions with OT , this gives Tables 7.7 and 7.8.

A B πOT (A,B)

a b 1

a b 0.1
a b 0.3

a b 0.6

Table 7.9 – Transformed possibility distribu-
tion of p with OT

A B π′(A,B)

a b 1

a b 0.26
a b 0.12

a b 0.44

Table 7.10 – Transformed possibility distribu-
tion of p′ with OT

In order to compare the revised distributions, we need to revise in the possibilistic setting (here we
have chosen the quantitative conditioning rule). In the revised Table 7.11, the conditioning operation is
done using the possibility distribution Π′({A = a}) = 1 and Π′({A = a}) = 0.3 (i.e. the transformed
distribution by OT of the probability distribution used to condition in the probabilistic setting).

A B π′′(A,B)

a b 1

a b 0.1
a b 0.15

a b 0.3

Table 7.11 – Possibility distribution πOT revised using Equation (1.30)

From Tables 7.10 and 7.11 we note that π′′(ab) > π′′(ab) whereas in π′(ab) < π′(ab). We conclude
that when a new information is not precise, then using OT transformation procedure does not guarantee
that the ordering between interpretations will be the same.

More precisely, let OT be the optimal probability-possibility transformation defined in Subsection
3.1.2. Then there exists a probability distribution p and π = OT (p) such that there exist two values xi,
xj ∈ Ω, with i 6= j, and

π′′(xi) < π′′(xj) holds but π′(xi) < π′(xj) does not hold.

Where π′′ is a distribution obtained with OT then revised (using Jeffrey’s rule of conditioning of Equa-
tion (1.30)). And π′ is the distribution revised then transformed with OT .
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We have shown for OT transformation which is the optimal transformation. We now investigate
the case of any transformation TR satisfying Dubois and Prade principles. More precisely, let TR be a
probability-possibility transformation operation (or function). Then there exists a probability distribution
p and π = TR(p) such that there exist two values xi, xj ∈ Ω with i 6= j, and

π′′(xi|φ) < π′′(xj |φ) holds but π′(xi|φ) < π′(xj |φ) does not hold.

Where p′ is the probability distribution revised with the imperfect information φ. And π′ = TR(p′) is
the possibility distribution transformed by TR, and π′′ is a possibility distribution π revised with φ.

Proof. The aim is, here, to prove that conditioning with uncertain information then transforming gives
neither the same distributions, nor encodes the same ordering between interpretations than transforming
first and then revising. The above proposition holds in both quantitative and qualitative case. First, let us
tackle the quantitative case.

Consider the following probability distribution of Table 7.12, with P (a) = α1 + α2 and P (a) =
α2 + α2 and α1 > α2, We want to revise our distribution p(A,B) by taking into account that p(A) now
depicts total ignorance. The distribution p′(A,B) of Table 7.12 defines the conditioning of p(A,B) by
the equiprobable distribution P ′(a) = 0.5 and P ′(a) = 0.5.

A B p(A,B) p′(A,B)

a b α1
α1

α1+α2
× 0.5

a b α2
α2

α1+α2
× 0.5

a b α2 0.25

a b α2 0.25

Table 7.12 – Probability distribution and its re-
vised with uncertain information

A B πTR(A,B)

a b 1

a b β
a b β

a b β

Table 7.13 – Transformed distribution of Ta-
ble 7.12 by TR

Table 7.14 depicts the transformed distribution of Table 7.12 and Table 7.15 depicts the revised
distribution of π(A,B) of Table 7.13. We revise Table 7.13 using the possibility distribution Π′(a) = 1
and Π′(a) = 1. From Table 7.14 we have γ1 < γ2.

A B π′(A,B)

a b 1

a b γ1
a b γ2
a b γ2

Table 7.14 – Probability distribution p′(A,B)
of Table 7.12 transformed by any transforma-
tion TR

A B π′′(A,B)

a b 1

a b β
a b 1

a b 1

Table 7.15 – Possibility distribution of Ta-
ble 7.13 conditioned using (1.30)

Without necessarily knowing the ordering between interpretations represented by unknown variables,
we can still notice that the order is not preserved given that in Table 7.15, three interpretations are at the
same level (π′(ab) = π′(ab) = π′(ab) = 1). And in Table 7.14, only one interpretation gives a possibil-
ity degree of 1.

Let us show the same for the qualitative setting, meaning that instead of conditioning with Equa-
tion (1.30), we revise with Equation (1.32), which gives us Table 7.16. Let us note that it is exactly the
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A B π′(A,B)

a b 1

a b β
a b 1

a b 1

Table 7.16 – Possibility distribution of Table 7.13 revised using Equation (1.32)

same table as the one we have revised in the quantitative setting (Table 7.15), which allows us to derive
the same conclusions as in the quantitative setting.

To summarize, conditioning with uncertain information (in quantitative and qualitative setting) does
not guarantee to preserve the ordering between interpretations and therefore does not give the same
distributions.

So far, we analyzed the preservation of the ordering between interpretations with respect to marginal-
ization and conditioning. This two different operations are indeed necessary to compute certain types
of queries like MPE and MAP queries. We now investigate the consequences of our first results on the
preservation of the results of MPE and MAP queries.

7.6 Preserving MPE and MAP queries

The results expected when dealing with MPE queries are not degrees but configurations having a
certainty degree. Therefore, the question we need to answer is whether the result of an MPE query
derived from a probability distribution is the same as the one derived from the transformed possibility
distribution.

Proposition 7.8. Let p be a probability distribution and πTR be a transformation preserving the order of

interpretations. Then

∀ φ ⊆ Ω, argmaxωi∈Ω(p(ωi|φ)) = argmaxωi∈Ω(π(ωi|φ)) (7.7)

Proof. The proof of Proposition 7.8 is quite trivial. Let us consider the order over Ω = {ω1, ..., ωn} as
the following: p(ω1) > p(ω2) > ... > p(ωn). If the transformation TR preserves the ordering between
interpretations, then: π(ω1) > π(ω2) > ... > π(ωn).

Computing argmaxωi∈Ω(p(ωi|φ)), comes down to computing the configuration having the highest
probability among the configurations belonging to the event φ. Let ωj = argmaxωi∈Ω(p(ωi, φ)) then

∀ ωi ∈ φ, such as ωj 6= ωi, p(ωj) > p(ωi)

Since the order of interpretations is preserved then,

∀ ωi ∈ φ, such as ωj 6= ωi, πTR(ωj) > πTR(ωi)

Thus, ωj = argmaxωi∈Ω(πTR(ωi, φ)). The answer of the MPE query is the same in both distributions.

As the probability-possibility transformations OT,KT, ST and V T preserve the ordering between
interpretations, we have the following corollary.
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Corollary 7.2. Let TR ∈ {OT,KT, ST, V T}. Let p be a probability distribution and πTR be the possi-
bility distribution resulting using TR.

∀ φ ⊆ Ω, argmaxωi∈Ω(p(ωi, φ)) = argmaxωi∈Ω(πTR(ωi, φ))

Let us consider MAP queries that search for the most plausible configuration of a subset of variables
given an evidence.

Given the following universe of discourse Ω = DX1
∗...∗DXn (with the variables V = {X1, ..., Xn}),

let V ′ ⊆ V be a subset of variables.

Proposition 7.9. Let TR be a probability-possibility distribution. There exists a probability distribution

p and πTR = TR(p) such that there exists φ a sure piece of information and

argmaxx′∈DV ′ (p(x
′ | φ)) 6= argmaxx′∈DV ′ (πTR(x

′ | φ)) (7.8)

Proof. The proof of this proposition is easy. Using Proposition 7.5, since marginalization does not
always preserve the ordering between interpretations, then it is not guaranteed that the interpretation
having the maximum degree given the evidence will be the same in the probability distribution and in the
possibility distribution.

We have seen that in the case where the evidence is sure then the ordering between interpretations
is preserved during conditioning, however marginalization cannot ensure the same ordering. Therefore,
the following corollary states that:

Corollary 7.3. Let TR ∈ {OT,KT, ST, V T}. There exists p a probability distribution and πTR is the
possibility distribution transformed with TR such that there exists φ be a sure new piece of information
and

argmaxx′∈DV ′ (p(x
′ | φ)) 6= argmaxx′∈DV ′ (πTR(x

′ | φ))

In the case where the observation is no longer a sure piece of information, and that we deal with Jef-
frey rule of conditioning, we have seen that the ordering between interpretation is not always preserved,
adding to it the result of the ordering between interpretations with respect to marginalization, we have:

Corollary 7.4. Let TR ∈ {OT,KT, ST, V T}. There exists p a probability distribution and πTR =
TR(p) such that there exists φ a uncertain piece of information and

argmaxx′∈DV ′ (p(x
′ | φ)) 6= argmaxx′∈DV ′ (πTR(x

′ | φ))

This first part of the chapter analyzes the commutativity of reasoning tasks with respect to transfor-
mations from the literature but also for any probability-possibility transformation preserving Dubois and
Prade consistency principles. In particular, we were interested in the ordering between interpretations. In
the following, we analyze properties preserved by transformations in graphical models. Indeed, graphi-
cal models compactly encode distributions using the notion of independence relations and we first study
the preservation of independence relations in distributions. The second part concerns the preservation of
the ordering between interpretations in the joint distribution before and after the transformation of the
network.
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7.7 Preserving independence relations

The first sections of this chapter clearly showed that transformations may induce a loss of information
when moving from a probability distribution to a possibility distribution. We are now interested in
independence relations. This notion is important as it plays a key role in the building of graphical models.
As a first step, let us focus on existing probability-possibility transformation procedures (OT, KT, ST
and V T ).

7.7.1 OT transformation

Let Ip (resp. Iπ) denotes the set of independence relations described in p (resp. π). Let OT be the
probability-possibility distribution. Then there exists p a probability distribution and πOT = OT (p) such
that there exists an independence relation I and

I ∈ Ip but I 6∈ Iπ (7.9)

The following counter-example shows that OT transformation is not guaranteed to preserve inde-
pendence relations.

Counter-example 7.2. From Table 7.17, we have B⊥C|A. Tables 7.18 and 7.19 depict ΠOT (B|AC)
and ΠOT (B|A). We need to verify that π describes also B⊥C|A.

A B C p(A,B,C) πOT (A,B,C)

a b c 0.09 0.292
a b c 0.09 0.292
a b c 0.21 0.712
a b c 0.21 0.712
a b c 0.288 1
a b c 0.032 0.04
a b c 0.072 0.112
a b c 0.008 0.008

Table 7.17 – Probability distribution and its transformed possibility distribution by OT

A B C πOT (B|pAC) πOT (B|mAC)
a b c 0.41 0.292
a b c 0.41 0.292
a b c 1 1
a b c 1 1
a b c 1 1
a b c 1 1
a b c 0.112 0.112
a b c 0.2 0.008

Table 7.18 – Possibility distribution ofB given
AC

A B πOT (B|pA) πOT (B|mA)
a b 0.41 0.292
a b 1 1
a b 1 1
a b 0.112 0.112

Table 7.19 – Possibility distribution ofB given
A
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Tables 7.18 and 7.19 show thatB andC are no longer independent givenA (nor using the quantitative
conditioning, nor the quantitative conditioning). Indeed, in the quantitative setting:

π(b|pac) = 0.2

π(b|pa) = 0.112

}

therefore π(b|pac) 6= π(b|pa)

And in the qualitative setting:

π(b|mac) = 0.008

π(b|ma) = 0.112

}

therefore π(b|mac) 6= π(b|ma)

Therefore π(b|ac) 6= π(b|a), meaning that B 6⊥ C | A. �

We now provide the same analysis for KT, ST and V T .

7.7.2 KT, ST and V T transformations

Let Ip (resp. Iπ) denotes the set of independence relations described in p (resp. π). Let TR ∈
{KT, ST, V T} be the probability-possibility distribution. Then there exists p a probability distribution
and πTR = TR(p) with TR ∈ {KT, ST, V T} such that there exists an independence relation I and

I ∈ Ip but I 6∈ Iπ (7.10)

As for OT , we show that there exists a probability distribution p such that transforming using KT
may induce the loss of some independence relations.

Counter-example 7.3. Table 7.20 depicts the probability distribution and its transformation by KT .

A B C p(A,B,C) πKT (A,B,C)

a b c 0.054 0.2
a b c 0.032 0.12
a b c 0.006 0.02
a b c 0.008 0.03
a b c 0.27 1
a b c 0.144 0.53
a b c 0.27 1
a b c 0.216 0.8

Table 7.20 – Probability distribution and its transformed possibility distribution by KT

The independence relation described in the above table is: A⊥C. Using Tables 7.21 and 7.22 we can
clearly see that in πKT we do not have A⊥C.

Indeed, in the quantitative setting we have:

π(a|pc) = 0.148
π(a) = 0.2

}

therefore π(a|pc) 6= π(a)

And in the qualitative setting:

π(a|mc) = 0.12
π(a) = 0.2

}

therefore π(a|mc) 6= π(a)

Therefore π(a|mc) 6= π(a) and A 6⊥ C. �
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A C πKT (A|pC) πKT (A|mC)
a c 0.2 0.2
a c 0.148 0.12
a c 1 1
a c 1 1

Table 7.21 – Possibility distribution ofA given
C

A πKT (A)

a 0.2
a 1

Table 7.22 – Possibility distribution of A

In the following counter-example, we show that ST do not necessarily preserve all of the indepen-
dence relations.

Counter-example 7.4. In the probability distribution of Table 7.23, B⊥C|A. Let us check that by
transforming with ST , we preserve the independence relation.

A B C p(A,B,C) πST (A,B,C)

a b c 0.09 0.562
a b c 0.09 0.562
a b c 0.21 0.922
a b c 0.21 0.922
a b c 0.288 1
a b c 0.032 0.232
a b c 0.072 0.472
a b c 0.008 0.064

Table 7.23 – Probability distribution and its transformed possibility distribution by ST

The computations in the quantitative setting show that:

π(b|pac) = 0.28

π(b|pa) = 0.472

}

therefore π(b|pac) 6= π(b|pa)

And in the qualitative case:

π(b|mac) = 0.064

π(b|ma) = 0.472

}

therefore π(b|mac) 6= π(b|ma)

Therefore π(b|ac) 6= π(b|a), and B 6⊥ C | A. �

Lastly, we transform with V T transformation and check if the independence relations are preserved
in the resulting possibility distribution.

Counter-example 7.5. Let A, B and C be 3 boolean variables. The set Ω is the Cartesian product of
their domains. The constant k used in V T transformation is defined as [MSMR06]:

0 ≤ k ≤
log(pn)

(1− pn).log(
pn
p1
)

The constant k should be chosen between 0 and log(pn)
(1−pn).log(

pn
p1

)
≈ 1.35, here we have chosen for the

counter-example k = 1 in order to simplify the computations.
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A B C p(A,B,C) πV T (A,B,C)

a b c 0.09 0.35
a b c 0.09 0.35
a b c 0.21 0.78
a b c 0.21 0.78
a b c 0.288 1
a b c 0.032 0.12
a b c 0.072 0.28
a b c 0.008 0.03

Table 7.24 – Probability distribution and its transformed possibility distribution by V T

It is important to note that it does not exist a k that ensures the preservation of all independence
relations. Table 7.24 entails the following independence relation (in the probabilistic setting): B⊥C|A.
Let us verify that after the transformation, we retrieve the same independence, in both quantitative and
qualitative case. Therefore we compute ΠV T (B|AC) and ΠV T (B|A).

In the quantitative setting:

π(b|pac) = 0.24

π(b|pa) = 0.28

}

therefore π(b|pac) 6= π(b|pa)

And in the qualitative setting:

π(b|mac) = 0.03

π(b|ma) = 0.28

}

therefore π(b|mac) 6= π(b|ma)

Thus π(b|ac) 6= π(b|a), and B 6⊥ C | A. �

We have shown that transformations OT, KT, ST and V T are not guaranteed to preserve all of the
independence relations. Can it exist a transformation that preserves all of the independence relations by

going from p to π ? The following section deals with these questions.

7.7.3 Preserving independence relations in the general case

We have shown in Section 7.3 that the plausibility ordering between events is not always preserved
using any probability-possibility transformation. We are now interested in preserving independence
relations.

Preserving independence relations in the qualitative case

We first study this matter in the qualitative case.

Proposition 7.10. Let TR be a probability-possibility transformation. There exists p a probability dis-

tribution and πTR = TR(p) where one can have three events φ, ψ and α ⊆ Ω,

P (φ | ψ ∪ α) = P (φ | α) holds but ΠTR(φ |min ψ ∪ α) = ΠTR(φ |min α) does not hold (7.11)

Proof. Let a probability distribution p describing A and B as independent. And given the following
order 1 > α1 > α2 > α3 > α4 > 0 with α1 + α2 + α3 + α4 = 1.

Since the transformation preserves the ordering between interpretations, we have 1 > β2 > β3 > β4.
To retrieve the independence between A and B, we should have Π(a|minb) = Π(a) i.e. β4 = β3 yet
β4 < β3 so A and B are not independent in πTR.
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A B p(A,B) π(A,B)

a b α4 TR(α4) = β4
a b α3 TR(α3) = β3
a b α2 TR(α2) = β2
a b α1 TR(α1) = 1

Table 7.25 – Probability distribution and its transformed possibility distribution

In general, for the qualitative setting, we just proved that no probability-possibility transformation
can ensure that all of the independence relations between events described in the probabilistic setting are
preserved in the possibilistic setting. However, we are able to characterize particular cases where the
independence relations will be preserved.

Indeed, we have noticed that when interpretations having the maximum probability degree belong to
the intersection of events, the independence relation is preserved. This is illustrated by Figure 7.2.

α φ

ψ

ωmax•

Figure 7.2 – Representation of the events φ, ψ and α where ωmax ∈ φ ∩ ψ ∩ α

This allows us to write Proposition 7.11.

Proposition 7.11. Let p be a probability distribution and πTR = TR(p). Let φ, ψ and α ⊆ Ω be three

events such that φ⊥ψ | α is true in p. Let ωmax be the most probable world in φ ∪ ψ ∪ α.

If ωmax ∈ α ∩ ψ ∩ φ then ΠTR(φ | ψ ∪ α) = ΠTR(φ | α) (7.12)

Proof. Let p be a probability distribution. Let Ω be the universe of discourse and given the 3 events φ, ψ
and α ⊆ Ω.

Given that φ⊥ψ | α in p, and that πTR is obtained by transforming p using TR which preserves the
order of interpretations, we already showed that the following equality is not always verified.

Π(φ | ψα) = Π(φ | α)

However, let ωmax be the most probable (and therefore the most possible) in φ ∪ ψ ∪ α, then if
ωmax ∈ φ ∩ ψ ∩ α:

Π(φ | ψα) = Π(φ | α) since min(π(ωmax), π(ωmax)) = min(π(ωmax), π(ωmax)

In this particular case, in both quantitative and qualitative possibilistic settings, we can state that the
independence relations between events are preserved given any transformation.
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Consequences on the preservation of independence relations between variables

We have just shown, in the qualitative case in particular, that the independence relations between
events are not always preserved. The following Corollary 7.5 therefore states that the same result can be
applied to variables.

Corollary 7.5. Since the independence relations between events are not necessarily preserved, then the
independence relations between variables is not always preserved.

Proof sketch. Checking that two (or more) variables are independent comes down to check the indepen-
dence relations of events where an event is the set of values of the variable’s domain. Since the indepen-
dence relations of events is not always preserved, then the independence relations between variables is
not always preserved either.

Our work on preserving independence relations between variables showed that when transforming
from probability to possibility we are not guaranteed to keep the independence relations. But we noticed
that probability-possibility transformations can also create independence relations. Let us see an example
with KT transformation.

Example 7.4. Table 7.26 depicts a probability distribution and its transformation by KT .

A B C p(A,B,C) πKT (A,B,C)

a b c 0.012 0.036
a b c 0.096 0.286
a b c 0.048 0.143
a b c 0.144 0.429
a b c 0.07 0.208
a b c 0.224 0.667
a b c 0.07 0.208
a b c 0.336 1

Table 7.26 – Probability distribution and its transformation by KT

From p we have the independence relation A⊥C. Considering Tables 7.27 and 7.28 we can clearly
see the loss of the independence relation betweenA and C. But we also find a new independence relation
in the transformed distribution πKT , indeed we have A⊥B.

A B πKT (A|pB)

a b 0.429
a b 0.429
a b 1
a b 1

Table 7.27 – Possibility distribution ofA given
B

A πKT (A)

a 0.429
a 1

Table 7.28 – Possibility distribution of A

These results on preserving independence relations are easily overcome if one applies transforma-
tions to graphical models. This is the purpose of the next section.
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7.8 Transforming a Bayesian network into a possibilistic network

This section first recalls how to transform a graphical model from one setting to another. Then we
study the ordering between interpretations in the joint distributions.

7.8.1 Definition of graphical transformation

The definition of a transformation in graphical models is quite simple and natural. The goal is to
keep the same structure of the graph and to transform the local distributions. Hence, graphical models
transformation is defined as:

Definition 7.1 (Graphical models transformation). LetN a network with G is graph structure, thenNTR
is a transformed network by TR composed of:

— a graphical component which is the same graph structure G as N

— a numerical component which is the set of local distributions of N transformed by TR

For instance, we can adapt this definition to probability-possibility transformation or even from im-
precise probability to possibility transformation by defining transformation from Bayesian networks to
possibilistic networks or respectively from credal networks to possibilistic networks. In this chapter we
focus on transformation from Bayesian networks to possibilistic networks.

A direct result from graphical models transformations is that it ensure the preservation of indepen-
dence relations between variables. Let us denote IBN the set of independence relations in a Bayesian
network BN and IPNTR

the set of independence relations of the possibilistic network transformed by
TR.

Proposition 7.12. Let BN be a Bayesian network and PN TR be the possibilistic network transformed

by TR. Then,

∀I ∈ IBN , I ∈ IPNTR
(7.13)

This is easily proved since the graph structure is the same and thus encodes the same independence
relations. Another advantage of graphical models transformations is computationally it is less consuming
to transform a set of local tables than a whole joint distribution.

The problem now is that there is no guarantee that the order of interpretations and events is preserved
in the obtained possibilistic network and its underlying joint distribution. Figure 7.3 illustrates the is-
sue preserving the ordering between the interpretations in the joint distributions when transforming a
Bayesian network into a possibilistic one.

For the sake of clarity we will denote π′′ the joint distribution from the Bayesian network BN trans-
formed by TR, and π′∗ (resp. π′m) the joint distribution of the possibilistic network PN TR transformed
from the Bayesian network obtained using the quantitative (resp. qualitative) chain rule.

We start by checking with the existing transformation OT .

Example 7.5. Let us consider the Bayesian network over 3 boolean variables of Figure 7.4 with the
associated local distributions transformed by OT transformation.

Using the possibilistic chain rules in both setting, the joint distributions, of Figure 7.4, are depicted
in Table 7.29.
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Bayesian Network BN

A

B

C

Probabilistic
chain rule

p(A,B,C)

-
-

TR

TR
π′′(A,B,C)

-
-

?

Possibilistic Network PN

A

B

C

Possibilistic
chain rule

π′(A,B,C)

-
-

Figure 7.3 – Belief graphical models transformation

A

B

C
A p(A) πOT (A)

a 0.1 0.1
a 0.9 1

C p(C) πOT (C)

c 0.6 1
c 0.4 0.4

B A C p(B | AC) πOT (B | AC)

b a c 0.2 0.2
b a c 0.8 1
b a c 0.7 1
b a c 0.3 0.3
b a c 0.5 1
b a c 0.5 1
b a c 0.4 0.4
b a c 0.6 1

Figure 7.4 – Bayesian network and its associated possibilistic network using OT

A B C p(A,B,C) π′′(A,B,C) π′∗(A,B,C) π′m(A,B,C)

a b c 0.216 0.46 0.4 0.4
a b c 0.27 1 1 1
a b c 0.144 0.244 0.16 0.4
a b c 0.27 1 1 1
a b c 0.012 0.024 0.012 0.1
a b c 0.048 0.1 0.1 0.1
a b c 0.028 0.052 0.04 0.1
a b c 0.012 0.024 0.02 0.1

Table 7.29 – Comparison of joint distributions derived from Figure 7.4

One problem here is that the order of interpretation is modified. For instance, we have π′′(abc) =
π′′(abc) whereas in the distribution π′∗ computed from the chain rule (2.5), π′∗(abc) < π′∗(abc). In the
qualitative setting, we have π′′(abc) > π′′(abc) whereas π′m(abc) = π′m(abc).

We now consider TR a probability-possibility transformation that satisfies consistency principle of
Dubois and Prade. We are interested in the ordering induced in the joint distributions by the Bayesian
network and by the possibilistic network transformed using TR procedure. First, let us deal with the
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qualitative case.

7.8.2 Preserving joint distributions in the qualitative case

Let us now check if the ordering between interpretations induced by pBN (the joint distribution
encoded by the Bayesian network BN ) is preserved in the obtained joint possibility distribution πPN

(the joint distribution encoded by the possibilistic network PN ). Proposition 7.14 answers this question.

Proposition 7.13. Let TR be a probability-possibility transformation. Then there exist a Bayesian net-

work BN , ω1 ∈ Ω and ω2 ∈ Ω where:

π′′(ω1) < π′′(ω2) does not imply π′(ω1) < π′(ω2) (7.14)

with i) π′′(ω) = TR(p(ω)) and p is the joint distribution induced by BN and ii) π′ is the joint distribution

induced by PN using Definition 7.1.

Proof. Given a Bayesian over two variables A and B. Here, A⊥B and A and B have the same distribu-
tion (here, α1 > α2).

A B

A p(A)
a α1

a α2

B p(B)
b α1

b α2

The joint distribution p(A,B) of the Bayesian network BN is given by the following table.

A B p(A,B) π′′(A,B)

a b α2
1 γ1

a b α1 ∗ α2 γ2
a b α1 ∗ α2 γ2
a b α2

2 γ3

A B π′m(A,B)

a b 1
a b β
a b β

a b β

Table 7.30 – The joint distributions derived from the Bayesian network and the associated possibilistic
network using TR

Clearly, π′′(ab) > π′′(ab) = π′′(ab) > π′′(ab). And from π′m, π′m(ab) > π′m(ab) = π′m(ab) =
π′m(ab).

On this example, whatever the probability-possibility transformation used, we may lose the strict
order in the joint distribution after the transformation of the Bayesian network.

This proof states that the strict order is not guaranteed to be preserved. The question now is to know
given an order over π′′ such as π′′(ωi) > π′′(ωj), can we have π′m(ωi) < π′m(ωj)? Let us take a look at
a probability-possibility transformation from the literature with ST transformation.

Example 7.6. Figure 7.5 represents a Bayesian network and its transformation with ST , then the two
joint distributions induced from the network are described in Table 7.31.

Table 7.32 is the transformed possibility distribution of p(A,B). At first sight, we notice that the
two distributions are not identical. But in Table 7.31, we have πRP−min(a1b2) < πRP−min(a2b2) and
in Table 7.32, we have πRB−ST (a1b2) > πRB−ST (a2b2). Thus, the order of these two interpretations is
reverse. We observe the same phenomenon with V T transformation using the same Bayesian network.
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A

B

A p(A) πST (A)
a1 0.6 1
a2 0.4 0.8

A B p(B | A) πST (B | A)
a1 b1 0.6 1
a1 b2 0.3 0.7
a1 b3 0.1 0.3
a2 b1 0.5 1
a2 b2 0.3 0.8
a2 b3 0.2 0.6

Figure 7.5 – Bayesian network and its transformed possibilistic network with ST

A B p(A,B) π′m(A,B)

a1 b1 0.36 1
a1 b2 0.18 0.7
a1 b3 0.06 0.3
a2 b1 0.2 0.8
a2 b2 0.12 0.8
a2 b3 0.08 0.6

Table 7.31 – Probability and possibility distri-
butions induced from Figure 7.5

A B π′′(A,B)

a1 b1 1
a1 b2 0.8
a1 b3 0.36
a2 b1 0.84
a2 b2 0.62
a2 b3 0.46

Table 7.32 – Possibility distribution trans-
formed with ST

The following proposition generalizes the above observation to any probability-possibility transfor-
mation TR.

Proposition 7.14. Let TR be a probability-possibility transformation. Then there exists a Bayesian

network BN such ∃ω1 ∈ Ω, ∃ω2 ∈ Ω where:

π′′(ω1) < π′′(ω2) does not imply π′m(ω1) < π′m(ω2)

where: i) π′′(ω) = TR(p(ω)) and p is the joint distribution induced by BN and ii) π′m is the joint

distribution induced by PN .

The following counter-example proves Proposition 7.14 in the qualitative setting.

Counter-example 7.6. LetBN be the Bayesian network of Figure 7.6 over two disconnected variablesA
andB. Note that the probability distribution p(A) in BN is a permutation 6 of the probability distribution
p(B). Hence, the transformation of p(A) and p(B) by TR gives π(A) and π(B) where π(B) is also a
permutation of π(A). In this example, since TR is assumed to preserve the order of interpretations, we
have 1> α1 > α2 > α3.

The probability and possibility degrees of interpretations a1b1 and a2b2 are

— p(a1b1) = 0.4 ∗ 0.15 = 0.06

— p(a2b2) = 0.2 ∗ 0.2 = 0.04 then, p(a1b1) > p(a2b2) and π′′(a1b1) > π′′(a2b2) (a)

— π(a1b1) = α3

6. The permutation property of probability-possibility transformations is discussed in [Sud92].
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A B

A p(A) π(A)
a1 0.4 1
a2 0.2 α2

a3 0.25 α1

a4 0.15 α3

B p(B) π(B)
b1 0.15 α3

b2 0.2 α2

b3 0.25 α1

b4 0.4 1

Figure 7.6 – Bayesian-possibilistic network transformation

— π(a2b2) = α2 then, π′m(a1b1) < π′m(a2b2) (b)

From (a) and (b) one can see that the relative order of interpretations is reversed whatever is the used
transformation in the ordinal setting. In the same way, in the quantitative setting, the relative order of
interpretations can not be preserved by any transformation. �

We proved that any probability-possibility transformation TR, that preserves consistency principles,
when used in graphical models does not ensure to give the same ordering between interpretations in the
joint distributions. These results are valid for the qualitative possibilistic setting. We are now interested
in the quantitative possibilistic setting.

7.8.3 Preserving joint distributions in the quantitative case

In the quantitative case, we show that probability-possibility transformations defined in the Chap-
ter 3 does not, as in the qualitative case, always preserved the ordering between interpretations when
transforming from a Bayesian network to a possibilistic one. For instance, let us illustrate with OT
transformation.

Example 7.7. Let us take the following network (Figure 7.5), and its transformation by OT .

A

B

A p(A) πOT (A)
a1 0.6 1
a2 0.4 0.4

A B p(B | A) πOT (B | A)
a1 b1 0.6 1
a1 b2 0.3 0.4
a1 b3 0.1 0.1
a2 b1 0.5 1
a2 b2 0.3 0.5
a2 b3 0.2 0.2

Figure 7.7 – Bayesian network with local distributions transformed by OT

As in the qualitative case, we notice that the order between two interpretations is inverted. Indeed, in
Table 7.33 we have πRP−∗(a2b3) < πRP−∗(a1b3) but in Table 7.34, we actually have πRB−OT (a2b3) >
πRB−OT (a1b3).

In the qualitative possibilistic setting, we generalized this result to any probability-possibility trans-
formation. However, due to the characteristics of quantitative possibilistic chain rule (using the product
operator) it is difficult to prove that it does not always preserve the ordering between interpretations in
the joint distributions. This can be explained by the incomparability of the results of two products of real
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A B p(A,B) π′∗(A,B)

a1 b1 0.36 1
a1 b2 0.18 0.4
a1 b3 0.06 0.1
a2 b1 0.2 0.4
a2 b2 0.12 0.2
a2 b3 0.08 0.08

Table 7.33 – Joint distributions induced from
the network of Figure 7.7

A B πRB−OT (A,B)

a1 b1 1
a1 b2 0.44
a1 b3 0.06
a2 b1 0.64
a2 b2 0.26
a2 b3 0.14

Table 7.34 – Possibility distribution trans-
formed by OT

numbers. Meaning that when we have two probability degrees denoted by β1 and β2 and two possibility
degrees α1 and α2 with β1 < β2 and α1 < α2 then one cannot state for sure that

α1 ∗ α2 < β1 ∗ β2 nor α1 ∗ α2 > β1 ∗ β2

7.9 Conclusion

This chapter dealt with analysis properties of probability-possibility transformations.We showed that
probability-possibility transformations that preserve consistency principles of Dubois and Prade pre-
serve the normalization condition, preserve also the ordering between interpretations after conditioning.
Therefore, TR procedure preserves the results of MPE queries. Considering marginalization operation,
we showed that there is no transformation that can guarantee the preservation of the plausibility ordering
between arbitrary events.

An interesting question is therefore whether there exist particular probability distributions p such that
the transformation operation TR preserves the relative ordering between interpretations after marginal-
ization. A first natural idea is uniform probability distributions. Any transformation TR should preserve
normalization which results in an uniform possibility distribution (where each state is associated to the
possibility’s degree of 1). Consequently, any event will have a possibility degree of 1, meaning that there
will not be a reversal in the order of interpretation on marginals distributions for example. Another kind
of probability distributions is called ”atomic bond system” [Sno96] or big-stepped [DFP04, BDP99] or
lexicographic probability distributions p defined by: ∀ωi ∈ Ω, p(ωi) >

∑

{p(ωj) : ωj ∈ Ω and p(ωj) <
p(ωi)}. Clearly, if p is a big-stepped distribution then the transformation TR preserves the ordering be-
tween events after marginalisation. Note however that for both particular cases (uniform and big-stepped
distribution) the ordering between non-elementary events is not preserved.

It is known and this chapter enhanced that probability-possibility transformations suffer from loss of
information as we move from an additive framework to a qualitative or semi-qualitative framework. But
this does not mean we can do useful tasks with transformations. Next chapter uses probability-possibility
transformations to study MAP inference in credal networks. MAP infence based on sets of probabilities
is known for their high computational complexity in comparison to Bayesian or possibilistic networks.
We provide approximation methods for MAP inference, using probability-possibility transformations,
with a better computational cost.
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Chapter 8

Approximation of Map Inference in

Credal Networks

This chapter focuses on belief graphical models and provides an efficient approximation of MAP
inference in credal networks using probability-possibility transformations. We first recall two transfor-
mations from credal networks to possibilistic ones that are suitable for MAP inference in credal net-
works. Then we provide experimental studies that compare our approach with both standard exact and
approximate MAP inference in credal networks. This chapter also provides an analysis of MAP infer-
ence complexity using possibilistic networks and the results definitely open new perspectives for MAP
inference in credal networks.

In the second part of this chapter, we apply imprecise probability to possibility transformation to
learning process. Indeed, we compare learning possibilistic network from imperfect or imprecise in-
formation to learning a credal network that we transform into a possibilistic one. We also conduct an
experimental study to evaluate the predictive power of possibilistic classifiers given the two approaches.
Contents
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8.1 Brief recall on imprecise probability and possibility transformation

In this chapter, we used the two transformations from imprecise probability to possibility presented
in Chapter 3, Section 3.2. Here is a quick reminder:

— the first one MD is from Masson and Denoeux [MD06], is given by:

π(ωi) = max
Cl∈C

(πCl(ωi))

where πCl is given by Equation (3.13) in Chapter 3.
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— the second one CD based on cumulative distributions is given by:

πF (ωi) = 1−max{F (ωj) < F (ωi) : j = 0..n}

πF (ωi) = F (ωi)

These two equations πF and πF are written as they have been defined in [DDC08] and in Equations
(3.15) and (3.16). But as for the use of πF , we will simply consider as a possibility distribution, the lower
generalized cumulative distribution πF (ωi) = F (ωi) and we normalize it.

The first concern we study is as for the previous chapter, the commutativity of these transformations.

8.2 Commutativity of marginalization and conditioning

This section checks whether the interval-based probability-possibility transformations are commuta-
tive with respect to two major change operations that are marginalization and conditioning. Namely, the
question dealt with here is: Given an imprecise probability distribution IP , do we get exactly the same
results when i) we first transform IP into a possibility distribution π then apply the change operation in
the possibilistic setting and when ii) we first apply the change operation in the interval-based setting then
transform the result into a possibility distribution.

Let us first recall that TR denotes an interval-based probability-possibility transformation satisfying
the following principles:

— Dominance: The possibility distribution π obtained from the IPD IP by TR dominates every
probability distribution p compatible with IP , namely ∀φ ⊆ Ω, π(φ) ≥ p(φ).

— Order preservation: Given two interpretations ωi ∈ Ω and ωj ∈ Ω, π(ωi) < π(ωj) if and only if
IP (ωi) < IP (ωj).

Regarding the commutativity of transformations with respect to change operations like marginaliza-
tion and conditioning used to answer MAP queries, since probability distributions are special cases of
imprecise probability distributions, it can be expected that for the commutativity issue, the transforma-
tions exhibit the same properties.

8.2.1 Commutativity with respect to marginalization

Proposition 8.1 provides the answer for marginalization :

Proposition 8.1. Let TR be an interval-based probability-possibility transformation. Then there exists

an imprecise probability distribution IP , two events φ ⊆ Ω, ψ ⊆ Ω with φ 6= ψ, and π = TR(IP ) such

that IP (φ) < IP (ψ) but Π(φ) > Π(ψ).

Proposition 8.1 asserts that no interval-based probability-possibility transformation can guarantee the
preservation of the order of events as shown in the following example.

Example 8.1. Let IP be an imprecise probability distribution of Table 8.1 where Ω = {ω1, ω2, ω3, ω4}
and π = TR(IP ).

In this example, α1, α2 and α3 are possibility degrees such that 1 > α1 > α2 > α3 in order to
satisfy the preference preservation principle.

Now, let φ and ψ be two events such that φ = {ω1} and ψ = {ω2, ω3}. We have Π(φ) = 1 >
Π(ψ) = max(α1, α2) while IP (φ) = .4 < IP (ψ) = .6.
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ωi IP (ωi) π(ωi)

ω1 [.36, .4] 1
ω2 [.35, .35] α1

ω3 [.25, .25] α2

ω4 [0, .04] α3

Table 8.1 – Example showing the loss of the order of events.

As shown in Example 8.1, the strict order of events is not preserved by TR because of the different
behavior of the additivity axiom in the probabilistic setting and the maxitivity axiom of the possibilistic
setting used by the marginalization operation.

As a consequence of Proposition 8.1, we have the following Lemma:

Lemma 8.1. Let TR be an interval-based probability-possibility transformation. Then there exists an
imprecise probability distribution IP over Ω = {ω1, ω2, .., ωn} and a partition Ω′ = {W1,W2...Wk} of
Ω with k < n. Let π = TR(IP ), IP ′ is obtained by marginalizing IP on Ω′ according to Equation (1.40)
and π′ is obtained by marginalizing π on Ω′ in the possibilistic setting. Then there may exist an event
Wi ∈ Ω′ such that

π(Wi) 6= π′(Wi). (8.1)

Proof sketch. The proof follows from Proposition 8.1 since if the order of events is not preserved then
the underlying marginalized distributions must be different.

8.2.2 Commutativity with respect to conditioning

Let us now check the commutativity issue with respect to conditioning. For standard probability
distributions, we have the following finding [BLT15a]:

Proposition 8.2. Let p be a probability distribution over Ω and let φ ⊆ Ω be an evidence. Let TR be

a probability-possibility transformation, p′ be a probability distribution obtained by conditioning p by

φ, π′′ = TR(p′) and π′ is the possibility distribution obtained by conditioning π = TR(p) by φ. Then,

∀ωi, ωj ∈ Ω,

π′(ωi) < π′(ωj) if and only if π′′(ωi) < π′′(ωj).

Note that Proposition 8.2 is valid in both the product and the min-based possibilistic settings and it
states that the order of interpretations is not affected by the order of applying the transformation and the
conditioning operation. For imprecise probability distributions, the following proposition states that the
partial order encoded by IP after conditioning is preserved in the (complete) order induced by π after
conditioning on the same evidence.

Proposition 8.3. Let IP be an imprecise probability distribution over Ω and let φ ⊆ Ω be an evidence.

Let TR be an interval-based probability-possibility transformation, IP ′ = IP (.|φ) be a posterior prob-

ability distribution obtained by conditioning IP by φ, π′′ = TR(IP ′) and π′ = π(.|φ) is the possibility

distribution obtained by conditioning π = TR(IP ) by φ. Then,

∀ωi, ωj ∈ Ω, π′(ωi) < π′(ωj) if and only if π′′(ωi) < π′′(ωj).
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Proof sketch. The idea of the proof is that since conditioning in both the probabilistic and possibilistic
settings consists in discarding the worlds that are not models of the evidence φ (by assigning them a 0
probability/possibility degree) then renormalizing the obtained distribution. Hence, the order of inter-
pretations that are models of φ is not affected by the order of application of transformation/conditioning
operations.

8.3 Experimental studies on MAP inference

In this section, we give the results of our experimental studies where we have used different criteria
to assess MAP queries accuracy in credal networks.

8.3.1 Experimentation setup

Before giving a detailed record of what we have implemented for the experimental study, let us recall
that there exists no platform or implemented algorithm that can compute MAP inference in possibilistic
networks. Furthermore, there is also no platform that computes MAP inference in credal networks. Yet,
there exist packages to perform some inference tasks. Precisely, those packages return the probability
degrees or intervals of a variable given an evidence. We implemented:

— the algorithm to transform a credal network into a possibilistic network,

— the algorithm to perform inference in possibilistic networks,

— the algorithm to compute MAP results from the results of the inference algorithm in credal net-
works and possibilistic networks. Precisely, using the criteria on the imprecise probability distri-
bution and for possibility distribution, it is done by capturing the world with the maximum degree,
which if the distribution is normalized, is 1.

As stated above, the first part was to develop the transformation of a credal network into a possi-
bilistic network. This program computes for every linear extension the Equation (3.13) using the linear
programming solver GLPK, and returns a new BIF file (adapted to possibilistic networks purposes). This
is for the first transformation of Masson and Denoeux, for the CM transformation, we simply program
Equations (3.15) and (3.16) using one linear extension instead of the whole set. The one we are choosing
for this transformation is driven by the format of the file used to represent the credal network. Indeed,
JavaBayes uses a format called BIF (Bayesian Interchange Format) that stores the credal set of a variable
as a set of extreme points. We can easily translate the set of extreme points to an imprecise probability
distribution by setting the lower endpoints of an interpretation as the minimum of the set of extreme
points for this interpretation and setting the upper endpoints as the maximum. In our case, to choose the
linear extension, we simply take the order given by the average of all the extreme points. It is a natural
assumption. Both of the obtained distributions are possibility distributions surrounding the imprecise
probability distribution [DDC07].

The second part of the implementation was to develop a program that solves the inference problem
in possibilistic networks. We used JavaBayes as a base to develop this part especially since probability
theory and quantitative possibility theory have a lot in common. Thus, the part that uses the chain rule
does not change (it is for both the product-based chain rule), and the only modification refers to the
computation of the possibility degree of two events. In probability, it is done using the additivity axiom
whereas in possibility theory it is done using the maxitivity axiom.

To program the MAP answering from the distribution of the requested variables, we need first to
choose which criteria to use. Therefore, this part of the program returns all interpretations that have the
maximum degree according to the used criterion.

The rest of the script is described with the following Algorithm 4.
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Algorithm 4 Script of the experimental study

Require: A BIF File representing a credal network CN
Ensure: Precision of the MAP Inference
PNMD =MD(CN )
PNCD = CD(CN )
for i = 1 to i = n do

Create the new file altered with a new variable resulting in the conjunction of the i variables (if
i 6= 1)
Apply JavaBayes on IPjb = TR(CN )
Apply GL2U on IPgl = TR(CN )
Apply JavaPoss on PNMD and PNCD results in πMD and πCD
Sgl−id = Interval-dominance(IPgl)
Sjb−id = Interval-dominance(IPjb)
Smax = Maximax(IPjb)
Smin = Maximin(IPjb)
Shur = Hurwicz(IPjb)
SMD =MAPPoss(πMD)
SCD =MAPPoss(πCD)

end for

8.3.2 Evaluation criteria

The benchmarks used in the current work are presented in Table 8.2.

Networks Topology #Nodes max |domain|
Alarm Multiply-connected 37 4
Insurance Multiply-connected 27 5
Poly Polytree 10 4
Multi Multiply-connected 6 4

Table 8.2 – Credal networks used in the experimentations.

In order to compare the results of MAP inference in credal networks and their possibilistic counter-
parts, each query Q is submitted to a credal network CN (using JavaBayes) then to the corresponding
possibilistic network PN obtained from CN . And in the same way, Q is submitted to a credal network
through JavaBayes and to the same credal network using GL2U. The results are compared through the
accuracy criterion defined as follows:

accuracy(Q1, Q2...Qn) =
1

n

∑

i:1..n

|CNMAP (Qi) ∩ PNMAP (Qi)|

|CNMAP (Qi) ∪ PNMAP (Qi)|
, (8.2)

where CNMAP (Qi) (resp. PNMAP (Qi)) denotes the results of the query Qi submitted to the network
CN (resp. PN ). This criterion evaluates the agreement between the results of CN to the MAP queries
and the ones of PN .

Thus, the experiment provides:

— Accuracy rates compared to the exact algorithm implemented in JavaBayes software:

— The accuracy of the approximate inference algorithm used in GL2U software.
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— The accuracy of MAP queries using possibilistic networks obtained by transforming the
credal network using MD and the accuracy using CD transformation.

— Inclusion rates: we compute the proportion of results returned by approximate algorithm that are
included in the exact one.

— Accuracy and inclusion rates for each algorithm using the four criterion on the results of the exact
approach (JavaBayes).

— Proportion of results: we compare the number of outputs to the number of possible outcomes in
order to highlight the confusion level of the algorithm.

— Results on different numbers of query variables: we vary the number of query variables between
1 to 5. For each case, we tested around 200 networks.

8.3.3 Results

This subsection can be divided into two types of results, quantitative ones and qualitative ones.

Quantitative results

This represents the significant part of this experiment in terms of the size of the networks handled
and the size of queries. One of the main objectives of this experiment was to show that our approach
could considerably reduce the time complexity of MAP inference and this is what we expose in Table
8.3. Indeed, this table shows the number of files answered by all of the approaches. And especially,
we can notice that GL, in terms of number of query variables, can not handle more that 3 variables.
Therefore, this approach is very limited. On the contrary, our approach based on the transformations is
always better in terms of the number of networks answered and also does not differ from 1 to 5 or more
query variables. For the number of query variables 5, and especially for the type of network multi, we

# query vars 1 2 3 4 5

Algorithm MD CD GL MD CD GL MD CD GL MD CD GL MD CD GL

Alarm 187 187 143 149 149 149 77 77 68 63 63 0 43 43 0

Insurance 180 180 164 152 152 152 116 116 52 55 55 0 _ _ _
Poly 200 200 140 200 200 190 200 200 180 200 200 0 180 180 0

Multi 200 200 110 200 200 200 200 200 120 200 200 0 _ _ _

Table 8.3 – Number of files answered by algorithms.

don’t have any results due to the number of variables in the network (we have 6 variables, of which 5 are
requested). Since we force at least one observation.

Qualitative results

We have shown that our approach outperforms the other approximate approach in terms of rapidity
of execution. So a natural question is about the actual quality of the results. How good are the results?
To answer this question, we provide in the table 8.4 some information about the number of outputs
returned over the number of possible outcomes. But also the percentage of configurations returned that
are included in the exact set of answers where the exact set of answers is given by JavaBayes 7.

In Table 8.4, there are three different results that support our method:

7. Those depicts the results over poly networks and with 1 query variable
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Criterion MD CD GL
.794 .685 .36 .88 % answers/all
Inter-dom .967 1 .891 % Inclusion

.36 .685 .36 .88 % answers/all
Maximax .546 .74 .629 % Inclusion

Table 8.4 – Proportion of returned answers over all possible outcomes vs Proportion of included answer
sets

i) When using Interval-dominance criterion, the number of configurations returned by JavaBayes as
the result of MAP inference is around 80% of possible responses. This number clearly shows a lot
of confusion and in order to make decisions, one can ask about the relevance of all these results.
On the other hand, with Maximax criterion we observe, with a proportion of .36, more pruned
results. And note that in this case, the method using CD transformation gives a similar number of
configurations.

ii) Regarding the transformationMD and the preservation of information, if we look at the proportion
of returned answers combined to the proportion of included answers, we can see that MD is the
transformation that will preserve the information the better. As recalled in 3.2.1, this transforma-
tion comes down to the optimal transformation when considering standard probability measures
instead of an interval. These results hold when considering Interval-dominance criterion, indeed
by transforming with MD, we also increase the imprecision so having a high number of results
allows to keep good results withMD in terms of included answers and without returning too much
of the possible configurations. Comparing the proportion of returned answers for MD transfor-
mation, we notice that this transformation gives the closest network in respect with the credal
network.

iii) The table finally shows that the approximate approach GL generally gives sets of results larger
than the exact approach. And even more, as the number of requested variables increases, GL tends
to return all possible outcomes.

In the following, we expose through graphics the accuracy of each method MD, CD and GL. The
axis x must be read as A# for Alarm file and P# for Poly file with # is the number of requested variables.
We present the results of two types of files, polytrees and multiply-connected networks, and with three
different criteria, Interval-dominance, Maximax and Hurwicz. Indeed, we forget in this part Maximin

criterion due to the similarity in the accuracy with Maximax and Hurwicz criteria.
On Figure 8.1, the approximate method GL gives better results for both types of networks. Except

beyond 4 query variables where it can no longer return answers. This problem can be explained by the
fact that the variables are chosen randomly and it can affect the difficulty of theMAP inference algorithm
implemented. So from this graphic, we can conclude that using interval-dominance criterion will favor
the GL method when having small networks with small amount of query variables. The results for GL
are easily explained and echoed the previous results presented in Table 8.4. Indeed, by the fact that this
method returns around 88% of the configurations, it is more likely to be in the 79% of the results returned
by the exact method. So this method, if decision is not the end goal, can be chosen.

As for the approximate approach using MD transformation, if we correlate the accuracy results ob-
served in the graphics, with the proportion given in Table 8.4, thenMD is slightly better thanGL. Indeed,
by returning less configurations than the exact approach and having a better proportion of included an-
swers, it balances the accuracy rate which is still better that CD. As well, this approach is not bounded
by the size of the network nor the size of the query variable set.

CD in that case should be used whenMAP inference is done in order to make a decision, for example,
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Figure 8.1 – Comparison between MD, CD and GL using Interval-dominance criterion

in case of classification [HLLT17] since it returns less answers than the exact approach but still all of
these answers are included in the set of answers of the exact approach.
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Figure 8.2 – Comparison between MD, CD and GL using Maximax criterion

Now, considering Maximax criterion which we chose to prune the results from the exact method, we
observe on Figure 8.2 that CD gives the best results in terms of accuracy but also in terms of inclusion
(cf. Table 8.4). Still, the accuracy decreases when the number of requested variables increases. This
criterion being more restrictive, it obviously leads to more imprecise results.

In order to not favor optimistic or pessimistic evaluation, we also conducted our experiment using
Hurwicz criterion with the 0.5 degree associated to each evaluation. In terms of results (Figure 8.3), they
are more or less the same as Maximax criterion. This is why, in the last graphic (Figure 8.4), we compare
those 3 criteria with CD method.

What we can see from Figure 8.4 is that the three criteria mostly behave the same way. We can con-
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Figure 8.3 – Comparison between MD, CD and GL using Hurwicz criterion
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Figure 8.4 – Comparison between Maximax, Maximin, Hurwicz criteria for CD method

clude, from this, that from those three criteria, one should choose Hurwicz criterion, and if we would like
to favor an optimistic (resp. pessimistic) evaluation, we could increase the degree of Hurwicz criterion
(resp. decrease) on the first part of the degree α (see Definition 2.16).

Overall, the three approximate algorithms show the same behavior towards the number of requested
variables, the accuracy rates all decrease as the number of variables increases. There are a numerous and
various criteria to be taken into account in MAP inference. Variables, whether it is evidence variables or
query variables are chosen randomly, which in some cases may make the process more difficult. We can
now provide an overview of what to use in what context.

� When there is a need to take into account any possible configuration that can be a result of MAP
inference, it is better to useGLwith Interval-dominance criterion orMD if you have large network
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and a lot of query variables.

� When there is a need to make a decision with the results and thus, need a more pruned set, it is
preferable to use CD method with Hurwicz criterion where where it is possible to play with the
degree α to favor an optimistic or a pessimistic approach.

This section shows empirically that possibilistic networks ensure an interesting trade-off in terms of
accuracy and computational time. This led us to start investigating the issue of computational complexity
in possibilistic networks. The following section provides some preliminary findings.

8.4 On the complexity of inference in possibilistic networks

There is no systematic study of complexity issues for inference in possibilistic networks and most
of the works assume that the same complexity results in Bayesian networks still hold in the possibilistic
setting. This section briefly shows that inference in possibilistic networks is less costly that in Bayesian
networks.

8.4.1 Notations and preliminaries

We will use the following notations:

— PN a possibilistic network over a set of variables V = {V1, V2, .., Vn}.

— X1, .., Xn is a set of boolean variables. xi denotes the truth assignment Xi = true while xi the
truth assignment Xi = false.

— ψ(X1, X2, .., Xn) is a 3-CNF formula encoding a 3-SAT satisfiability problem. A CNF is conjunc-
tion of clauses where a clause is a disjunction of literals and a literal is either a boolean variable
Xi or its negation Xi.

— SAT (Satisfiability problem): Given a CNF, the question is to know whether there is a truth as-
signment x of X making ψ true. If the CNF of the SAT problem contains at least three literals
per clause, then the problem is known to be NP -Complete [Coo]. This is the class of problems
needing to search a solution in a search space exponential in the size of the problem (here, the
number of boolean variables) but it is easy to check if a given instantiation x is a solution.

Recall that in the literature, there are typically three types of queries that one would need when
reasoning with belief graphical models. In possibilistic networks, these queries can be stated as follows:

— Computing the possibility degree of an event (Po): This problem consists in computing the degree
Π(q|φ) for an event q of interest given an evidence φ.

— Computing the most plausible explanation (MPE). Given an evidence φ of some variables O,
the objective is to compute the most plausible instantiation q of all the remaining (unobserved)

variables Q. Note that here O ∪Q = V and Q ∩O = ∅.

— Computing the maximum a posteriori (MAP ). Given some evidence φ, the objective is to compute
the most plausible instantiation q of the query variables Q. In MAP queries, Q∩O=∅. Note that
when Q and O span over all variables, the problem is known as the most plausible explanation
(MPE).

8.4.2 Complexity analysis

Let us start with analyzing MPE queries. The decision problem corresponding to such queries can
be formally stated as follows:
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Definition 8.1. Let PN be a multiply-connected possibilistic network and φ be an evidence. Let D-

MPE be the decision problem: Is there an instantiation q of all non observed variables Q such that
Π(q, φ) > t? with t ∈ [0, 1].

Recall that in MPE queries, Q = X \ E. Intuitively, the decision problem for computing the most
plausible configuration q given the evidence φ comes down to answering whether the degree Π(q, φ) is
greater than a rational number t.

Theorem 8.1. D-MPE is NP-complete.

Proof. We need to prove the membership and the hardness of the complexity:

— Membership (D-MPE is in NP ): Given an instance q, it is easy to check if Π(q, φ) > t. Indeed,
x = (q, φ) is a complete instantiation of the network variables, hence the possibility degree Π(q, φ)
is computed in polynomial time (more precisely, in linear time) in the size of the network (number
of variables) using the chain rule (namely, Π(X1, .., Xn) =

∏n
i=1 π(Xi|par(Xi))).

— Hardness: This is done by reducing the 3-SAT problem to D-MPE in possibilistic networks
(similar to reducing the 3-SAT problem to D-MPE problem in Bayesian networks [Dar09]).
Given a 3-CNF ψ(X1, X2, .., Xn) over a set of n boolean variables, the query is whether there
exists a truth assignment x = (x1, x2, .., xn) making ψ true. The reduction from 3-CNF to a
possibilistic network PNψ is done as follows:

— If ψ involves a unique variable Xi then PNψ is composed of only one node Xi with π(xi) =
1 and π(xi) = 1 (attaching a possibility degree of 1 to both xi and xi aims to allow both
them to be fully possible).

— If ψ is in the form ¬µ then add a boolean variable Xψ as a child of Xµ with (π(xψ|xµ) = 0
et π(xψ|xµ) = 1).

— If ψ is in the form µ ∨ ϕ then add a boolean variable Xψ as a child of variables Xµ and Xϕ

with (π(xψ|xµ, xϕ) = 1, π(xψ|xµ, xϕ) = 1, π(xψ|xµ, xϕ) = 1 and π(xψ|xµ, xϕ) = 0.

— If ψ is in the form µ ∧ ϕ then add a boolean variable Xψ as a child of variables Xµ and Xϕ

with (π(xψ|xµ, xϕ) = 1, π(xψ|xµ, xϕ) = 0, π(xψ|xµ, xϕ) = 0 and π(xψ|xµ, xϕ) = 0.

The main idea of this reduction is to introduce three kinds of nodes: i) nodes for the boolean
variables X1..Xn of the 3-CNF formula ψ, ii) nodes for encoding the logical gates that can be
found in a CNF formula, namely (negation, disjunction and conjunction) and iii) a final node
representing the whole 3-CNF formula ψ. It is clear that the size of the network is polynomial in
the number of variables and clauses of the 3-CNF formula.
Now, let ψ be a 3-CNF formula and PNψ be the possibilistic network built from ψ. Let Lψ be the
only leaf of this network. Then

Π(x1, .., xn, lψ = 1) =

{

1 if and only if x1, .., xn |= ψ
0 if and only if x1, .., xn |= ¬ψ

(8.3)

It is clear that by construction if a full truth assignment (x1, .., xn, lψ = 1) of the possibilistic network
has a possibility degree of 1 if and only if (x1, .., xn) is a model of ψ. Finding a full assignment of
nodes X1,..Xn ensuring Π(x1, .., xn, lψ = 1) = 1 comes down to solving the 3-SAT problem which is
NP-complete.

The MPE problem was firstly shown to be NP-complete in multiply-connected Bayesian networks
in [Shi94].

In order to show the complexity of MAP queries, we need first to show the one of computing the
possibility degree of an event of interest q given an evidence φ.
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Definition 8.2. Let PN be a multiply-connected possibilistic network and φ be an evidence and q an
instantiation of non observed variablesQ. D-Po is the decision problem: Does the statement Π(q, φ) > t
hold? (with t ∈ [0, 1]).

Contrary to Bayesian networks where computing P (q, φ) from a Bayesian network is a count-
ing problem (marginalization computations need product and summation operations) and it is PP -
Complete [Rot96], the decision problem corresponding to computing Π(q, φ) from a possibilistic net-
work comes down to answer the statement: Is there a full instantiation (x1, .., xn) of the network vari-

ables (X1, .., Xn) that is compatible with q and φ and such that Π(x1, .., xn) > t. Indeed, Π(q, φ) > t
means that maxx∈Ω∩q∩φΠ(x) > t. This is due to the fact possibility theory is maxitive while probability
theory is additive. The maxitivity property makes the problem of computing a possibility degree less
computationally expensive than computing a probability in Bayesian networks.
Clearly D-Po is a search problem and the same reduction form 3-SAT to D −MPE can be adapted for
D-Po. Hence the following corollary:

Corollary 8.1. D-Po is NP-complete.

The proof is the same as for Theorem 8.1.
Same reasoning holds for MAP queries. Searching for the most plausible instantiation of query

variables Q given an evidence φ comes down to a search problem. More formally,

Definition 8.3. Let PN be a multiply-connected possibilistic network and φ be an evidence. D-MAP
be the decision problem: Is there an instantiation q of non observed variables Q such that Π(q, φ) > t?
(where t ∈ [0, 1]).

Intuitively, the decision problem for computing the a posteriori most plausible configuration q given
the evidence φ is answering whether the Π(q, φ) is greater that a rational number t. Please recall that in
MAP queries,Q ⊆ X \E. As forMPE queries, answeringMAP queries in possibilistic networks comes
down to answer whether the statement: is there an instantiation (x1, .., xn) of the network variables
(X1, .., Xn) that is compatible with q and e and such that Π(x1, .., xn) > t. As a consequence, D-

MAP has the same complexity as D-Po and D-MPE , namely NP -complete as stated by the following
corollary:

Theorem 8.2. D-MAP is NP -complete.

The proof is also the same as for Theorem 8.1. In Bayesian networks, this problem is shown to be
NPPP -complete [PD04].

To conclude on the complexity ofMAP inference in possibilistic networks, given a multiply-connected
network, we reduce the complexity from NPPP -complete to NP -complete.

We provided a new approach to perform MAP inference in credal network using possibilistic net-
work. Classification in this respect is an application of MAP inference and we are interested in a com-
parison between learning a possibilistic network from uncertain data and learning a credal network then
transform it into a possibilistic one.

8.5 Learning possibilistic network parameters from imprecise data: ap-

plication of MAP inference

In this section, we are interested in learning belief graphical models, the evaluation is generally done
by comparing reference networks with the learned ones. Reference networks are graphical models that
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are either chosen by an expert or randomly generated. From the reference model, a dataset is generated
following the distribution encoded by the reference model. This dataset is then used to learn models
using the approach to be evaluated. The problem then comes down to compare the learn model with the
reference one. A comparison may take into account only the joint measures encoded by the learned and
the reference models. In addition, one may want also to take into account the structure of the learned and
reference models.

Given that we are only interested in comparing possibilistic networks with same structure, there is no
need to consider the graphical component in our comparisons. One simple but costly way of comparing
the reference network with the learned one is to compare only the joint distribution encoded by the
reference model with the learned model distribution. An example of similarity measure for possibility
distributions is information affinity [JAE+07]. However the size of the distribution may be very huge (it
fact, it is exponential in the number of variables of the network) making it impossible to compare joint
possibility distributions. We propose a heuristic method that compares the networks local distributions
locally and aggregates the results to provide an overall similarity score of two possibilistic networks.

8.5.1 Similarity of two possibility distributions

Many measures were proposed for assessing the similarity between two possibility distributions π1
and π2 over the same universe of discourse Ω. Among such measures, information affinity [JAE+07], is
defined as follows:

InfoAff(π1, π2) = 1−
d(π1, π2) + Inc(π1, π2)

2
(8.4)

where d(π1, π2) represents the mean Manhattan distance between possibility distributions π1 and π2 and
it is defined as follows:

d(π1, π2) =
1
N

∑N
i=1 |π1(ωi)− π2(ωi)|.

As for Inc(π1, π2), it is a measure of inconsistency and it assesses the conflict degree between π1 and
π2. Namely,

Inc(π1, π2) = 1−max
ωi∈Ω

(π1(ωi) ∧ π2(ωi)) where π1(ωi) ∧ π2(ωi) (8.5)

denotes a combination operation of two possibility distributions. In [JAE+07] , the min operator is used
in a qualitative setting. In a quantitative setting, a product operator can be used as well.

Example 8.2. Let Ω = {ω1, ω2, ω3, ω4} and let π1 and π2 be two possibility distributions such that
π1 = (1, .8, .4, 0) and π2 = (.9, 1, .2, .2). Then InfoAff(π1, π2) = 1 − d(π1,π2)+Inc(π1,π2)

2 = 1 −
(0.175+0.1)

2 = 0.8625.

The measure of Equation (8.4) satisfies the following natural properties:

— (P1) Non-negativity: InfoAff(π1, π2) ≥ 0.

— (P2) Symmetry: InfoAff(π1, π2) = InfoAff(π2, π1).

— (P3) Upper bound and Non-degeneracy: InfoAff(π1, π2) is maximal if and only if π1 and π2
are identical. Namely, InfoAff(π1, π2) = 1 if and only if ∀ω ∈ Ω, π1(ω) = π2(ω).

— (P4) Lower bound: InfoAff(π1, π2) is minimal if and only if π1 and π2 contain maximally con-
tradictory possibility distributions. Namely, InfoAff(π1, π2) = 0 if and only if

i) ∀ω ∈ Ω, π1(ω) ∈ {0, 1} and π2(ω) ∈ {0, 1}, and

ii) π1(ω) = 1− π2(ω)
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— (P5) Inclusion: If π1, π2 and π3 are three possibility distributions over the same universe of
discourse Ω and ∀ω ∈ Ω, π1(ω) ≤ π2(ω) ≤ π3(ω) then InfoAff(π1, π2) ≥ InfoAff(π1, π3).

— (P6) Permutation: This property states that permuting the degrees or indexes of possibility distri-
butions should result in the same information affinity. Formally, InfoAff(π1, π2) = InfoAff(σ(π1),
σ(π2)) where π1, π2 are two possibility distributions over Ω and σ(π) is a permutation 8 of ele-
ments of π.

Unfortunately, the affinity measure of Equation (8.4) applies only on possibility distributions and
cannot be directly applied for assessing the similarity of two possibilistic networks.

8.5.2 Similarity of two possibilistic networks

To assess the similarity of two possibilistic networks G1 and G2 having the same structure (same
DAG), it may be relevant to compare every local possibility distribution πi1 in the network G1 with πi2,
namely its corresponding distribution in G2. This can be done for instance using an aggregation function
that takes into account all the local distributions and returns a global similarity score between G1 and
G2.

GrInfoAff(G1, G2) = Aggi=1..m(InfoAff(π
i
1, π

i
2)) (8.6)

To the best of our knowledge, there is no decomposable similarity measure over possibilistic net-
works. As examples of aggregation functions, one can use the minimum, maximum, mean, weignted

mean, sum, product, etc. In order to study the properties of similarity measures of Equation (8.6), let
us first rephrase properties (P1)-(P6) in case where the possibility distributions π1 and π2 are compactly
encoded by means of networks G1 and G2.

— (GP1) Non-negativity: GrInfoAff(G1, G2) ≥ 0.

— (GP2) Symmetry: GrInfoAff(G1, G2) = GrInfoAff(G2, G1).

— (GP3) Upper bound and Non-degeneracy: GrInfoAff(G1, G2) is maximal if and only if the
joint possibility distributions πG1

and πG2
encoded respectively by G1 and G2 are identical.

Namely,GrInfoAff(G1, G2) = 1 if and only if ∀i = 1..n, ∀xi ∈ Di, π1(x1x2..xn) = π2(x1x2..xn).
This property only requires that the two joint possibility distributions encoded by G1 and G2 are
identical to give a maximal similarity score.

— (GP4) Lower bound: GrInfoAff(G1, G2) is minimal if and only if the joint distributions πG1
and

πG2
contain maximally contradictory possibility distributions. Namely, GrInfoAff(G1, G2) = 0

if and only if

i) ∀i = 1..n, ∀xi ∈ Di, πG1
(x1x2..xn) ∈ {0, 1} and πG2

(x1x2..xn) ∈ {0, 1}, and

ii) πG1
(x1x2..xn) = 1− πG2

(x1x2..xn)

— (GP5) Inclusion: If πG1
, πG2

and πG3
are three possibility distributions encoded respectively by

three possibilistic networksG1,G2 andG3 such that ∀xi ∈ Di, πG1
(x1x2..xn) ≤ πG2

(x1x2..xn) ≤
πG3

(x1x2..xn) then GrInfoAff(G1, G2) ≥ GrInfoAff(G1, G3).

— (GP6) Permutation: This property states that permuting the degrees or indexes of joint pos-
sibility distributions should result in the same GrInfoAff . Formally, GrInfoAff(πG1

, πG2
) =

GrInfoAff(σ(πG1
), σ(πG2

)) where σ(πGi
) is a permutation of the degrees or indexes of the joint

possibility distribution πGi
.

8. For example, let Ω = {ω1, ω2, ω3} and π1 = (1, .7, 0) and π2 = (.6, 1, .2) and let σ(π1) = (0, .7, 1) and σ(π2) =
(.2, 1, .6). Then it is clear that InfoAff(π1, π2) = InfoAff(σ(π1), σ(π2)).
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The following proposition provides for each aggregation function among max, min, sum, mean and
product the set of properties defined above that are satisfied by the affinity measure based on such an
aggregation function.

Proposition 8.4. Let G1 and G2 be two possibilistic networks defined over the same set of variables

V = {X1, .., Xn} and sharing the same DAG. Then GrInfoAff satisfies the properties given in Table

8.5 depending on the used aggregation function.

M
ax

im
um

M
in

im
um

S
um

M
ea

n

P
ro

du
ct

Non-negativity (GP1) ✓ ✓ ✓ ✓ ✓

Symmetry (GP2) ✓ ✓ ✓ ✓ ✓

Upper bound (GP3) ✓ ✓ ✗ ✓ ✓

Lower bound (GP4) ✓ ✗ ✓ ✓ ✗

Inclusion (GP5) ✓ ✗ ✗ ✗ ✗

Permutation (GP6) ✓ ✓ ✓ ✓ ✓

Table 8.5 – Properties satisifed by some aggregation functions

Proof sketch. While it is obvious that all the aggregation functions of Table 8.5 make the similarity
measure GrInfoAff non-negative and symmetric, the satisfaction of the other properties depend on the
used aggregation function.
For the Upper bound property (GP3), all the aggregation functions except the Sum satisfy this property
since two possibilistic networks with same structure must have the same local distributions. If the affinity
measure GrInfoAff were based on the Sum aggregation function, then this bound will depend on the
number of variables, their domains and the structure of the network (actually, it will depend on the
number of conditional tables in the possibilistic network).
For the Lower bound property (GP4), it is clear that it is enough for two local tables inG1 andG2 to have
their InfoAff equal to zero (in case of strong conflict between these tables) to force GrInfoAff using
the Minimum or the Product aggregation functions to equal zero as shown in the following example.

A

B

A πG1
(A)

a1 1
a2 .2

A B πG1
(B|A)

a1 b1 1
a1 b2 1
a2 b1 0
a2 b2 1

A B πG1
(AB)

a1 b1 1
a1 b2 1
a2 b1 0
a2 b2 .2

A

B

A πG2
(A)

a1 1
a2 .2

A B πG2
(B|A)

a1 b1 1
a1 b2 1
a2 b1 1
a2 b2 0

A B πG2
(AB)

a1 b1 1
a1 b2 1
a2 b1 .2
a2 b2 0

Figure 8.5 – Example of two possibilistic networks G1 and G2 and their joint distributions πG1
and πG2

.

For the inclusion property (GP5) , only the Maximum aggregation satisfies this property. It is easy
to find a counter example with three possibilistic networks G1, G2 and G3 encoding three joint dis-
tributions such πG1

(x1..xn) ≤ πG2
(x1..xn) ≤ πG3

(x1..xn) for any variables instance x1..xn but
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GrInfoAff(G1, G2) < GrInfoAff(G1, G3).
For the permutation property (GP6), all the aggregation functions satisfy this property since permuting
the joint distributions πG1

and πG2
encoded by the two networks G1 and G2 respectively comes down

to permute some local tables. Now, since the affinity measure InfoAff applied to local distributions
satisfies the permutation property, then this will change the result of the aggregation.

In our first series of experiments, we used the Mean aggregation function since it satisfies most of
the properties and it outputs a score taking into account all the local scores of local tables.

8.6 Experimental studies: learning from imprecise data

In this section we provide two series of experiments to compare two approaches that we present in
the following for learning the parameters of possibilistic networks. The first series of experiments is
carried out on synthetic imprecise data while the second one is done on real datasets with missing values
used in supervised classification.

8.6.1 Approaches to learn the parameters of possibilistic networks

Learning the parameters of a possibilistic network is the problem of assessing the entries of local
possibility tables π(Xi|par(Xi)) for each variable Xi given a structure G and a dataset D. The structure
here is assumed to be given (e.g. when learning naive classifiers, the structure is fixed in advance by
assumption) or learnt automatically. There are basically two ways to learn the parameters [HLA15]: i)
Transformation-based approach (TA for short) and ii) Possibilistic-based approach (PA for short). Note
that the authors in [SP15] propose a possibilistic-based method for learning the structure of a Bayesian
network.

Transformation-based approach

In this work, our contribution consists in using transformations from a credal network into a possi-
bilistic network. This means that from the data we build a credal network then transform. Learning a
credal network from imprecise data is quite easy and natural. The transformation used in this experiment
is the cumulative distributions (CD).

Given a DAG, let D be a dataset which has the following format:

x1 y2 z2
{x1, x2} {y1, y3} z2
x3 y2 {z1, z2}

where each line corresponds to an entry of the data. Given the structure of the DAG G depicting the
dependence relations we want to compute the lower and upper endpoints of the interval for each local
distributions. Let us consider first the case of a variable that has no parents. In this case, for a variableXi,
we simply count the number of occurrences Xi = xj in the dataset and then normalize by the number of
entries of the dataset. To distinguish the lower from upper bound, we identify in the dataset which line
contains xj as a unique value. Meaning that to compute the number of occurrences of the lower bound,
we count only entry where xj is the unique value for the variable Xi, in the format given above if we
take variable X and its value x1, it only appears one time alone. To compute the number of occurrences
for the upper bound, we count any line where xj appears. For instance, x1 appears twice. This gives
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us, IP (x1) = 1/3 and IP (x1) = 2/3. This means that x1 appears at least 1/3 times and at most 2/3
times. More formally, given a DAG and a dataset D. Let us denote by Nij the number of occurrences
of variable Xi = xj , Uij the number of occurrences Xi = xj precise and Nl the number of lines in the
dataset. Then for a variable Xi,

IP (xj) =
Uij
Nl

and IP (xj) =
Nij

Nl
(8.7)

Now, let us consider the case where the variableXi has parents that we denote by the subset {Xj}. In
this case, we now compute for each configuration of the parents, the number of occurrences of Xi = xk
in the dataset and then normalize by the number of lines that contains the configuration of the parents.
In the same way we distinguish the lower and upper endpoints of the interval by separating the precise
value Xi = xk to the imprecise value xk ∈ Xi. Note that we not only consider configurations of the
parents that are precise but all of the lines where the configuration appears. More formally, let us denote
by Nijk the number of occurrences Xi = xk given the configuration j of the parents of Xi. Let Uijk be
the number of precise occurrences of Xi = xk such that j ∈ Dpar(Xi). Finally, we denote by Nlj the
number of entries in the dataset for the configuration j, then for a variable Xi we have ∀j ∈ Dpar(Xi)

IP (xk|j) =
Uijk
Nlj

(8.8)

IP (xk|j) =
Nijk

Nlj
(8.9)

Example 8.3. Given the following dataset in Table 8.6 where A and B are two variables having for
domains DA = {a1, a2, a3, a4} and DB = {b1, b2}.

A B

a1 b1
a2 b1
a3 ?

{a3, a4} b2
a1 b1

Table 8.6 – Imprecise dataset of variable A and B

In this example, when having a subset like {a3, a4} is how the notion of imprecision is expressed.
In the same way, ′?′ expressed total ignorance, meaning that it can be either b1 or b2, it is equivalent to
having the subset {b1, b2}.

We obtain the following imprecise probability distribution and its transformed possibility distribu-
tion.

The linear extension used in this example is: a4 < a2 < a3 < a1 for A and b2 < b1 for B.

Possibilistic-based approach

One view of possibility theory is to consider a possibility distribution π on a variable Xi as a contour

function of a random set [S+76] pertaining to Di, the domain of Xi. A random set in Di is a random
variable which takes its values on subsets of Di. More formally, let Di be a finite domain. A basic
probability assignment or mass function is a mapping m : 2Di 7−→ [0, 1] such that

∑

xi⊆Di
(m(xi)) = 1

and m(∅) = 0. A set xi ⊆ Di such that m(xi) > 0 is called a focal set.

139



Chapter 8. Approximation of Map Inference in Credal Networks

A IP (A) πTA(A)

a1 [2/5, 2/5] 1
a2 [1/5, 1/5] .4
a3 [1/5, 2/5] .6
a4 [0/5, 1/5] .2

Table 8.7 – Imprecise probability distribution
and its transformed possibility over variable A
issued from the dataset

B IP (B) πTA(B)

b1 [3/5, 4/5] 1
b2 [1/5, 2/5] .4

Table 8.8 – Imprecise probability distribution
and its transformed possibility over variable B
issued from the dataset

The possibility degree of an event xi is the probability of the possibility of the event i.e. the proba-
bility of the disjunction of all events (focal sets) x′i in which this event is included [BSK09]:

π(xi) =
∑

x′i|xi∩x
′
i 6=∅

m(x′i) (8.10)

A random set is said to be consistent if there is at least one element xi contained in all focal sets x′i
and the possibility distribution induced by a consistent random set is, thereby, normalized. Exploring
this link between possibility theory and random sets theory has been extensively studied, in particular, in
learning tasks, we cite for instance [BSK09, Jos97]. In what follows, we present obtained results i.e. the
possibilistic-likelihood-based parameters algorithm.

Given a DAG and an imprecision degree Si, let Dij = {d
(l)
ij } be a dataset relative to a variable Xi,

d
(l)
ij ∈ Dij (resp. d(l)ij ⊆ Dij) if data are precise (resp. imprecise). The number of occurrences Xi = xik

such that par(Xi) = j, denoted by Nijk, is the number of times Xi = xik such that par(Xi) = j

appears in Dij : Nijk = card({l such that Xi = xik such that par(Xi) = j ∈ d
(l)
ij }).

ˆπ(X = Xik|par(Xi) = j) =
Nijk

∑ri
k=1Nijk

∗ Si (8.11)

where qi is card(par(Xi)), ri = card(Di) and Si corresponds to the imprecision degree relative to a
variable Xi. To obtain normalized possibility distributions, we divide each obtained distribution by its
maximum. It is evident that this operation eliminates Si. However, we could assign to each value of Xi

an imprecision degree which could be either set by an expert or inferred from the dataset to learn from.

8.6.2 Assessing the similarity of possibilistic networks

Experimentation setup

In this experiment, given a dataset D and a network structure (DAG) S , we compare learning a
possibilistic network parameters using two approaches, TA and PA. We denote by GTA (resp. GPA)
the possibilistic network having the structure S and its parameters are learned over the dataset D using
the transformation-based approach TA based on the p-box transformation (resp. the possibilistic-based
approach PA).
We first generated a set of possibilistic networks with different features (number of variables, number
of parents per variable, rate of imprecise data, etc.). For each possibilistic network G, we generate
datasets according toG. More precisely, for each possibilistic networkG (characterized by its number of
variables denoted # variables, the mean number of parents per node denoted µ variables and the mean
domain size of variables µ domain), we generate many datasets (with different sizes). Regarding the
dataset generation process, it consists in generating an imprecise dataset representative of its possibility
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distribution. The sampling process constructs a database of N (predefined) observations by instantiating
all variables with respect to their possibility distributions using the α-cut notion expressed as follows:

α− cutXi
= {xi ∈ Di such that π(xi) ≥ α} (8.12)

where α is randomly generated from [0, 1]. Obviously, variables are most easily processed with respect to
a topological order, since this ensures that all parents are instantiated. Instantiating a parentless variable
corresponds to computing its α-cut. Instantiating a conditioned variable Xi such that par(Xi = X)
corresponds to computing the α-cut of π(Xi|par(Xi) = X) computed as follows:

π(Xi|par(Xi) = X) = max
xi∈X

(π(Xi|xi), π(xi)) (8.13)

Table 8.9 gives the details on the generated possibilistic networks and the corresponding datasets.

Name # variables µ parents µ domain # datasets
Net10 10 1.6 3.9 9
Net20 20 2.65 3.41 8
Net30 30 2.76 3.48 7

Table 8.9 – Datasets properties used in experiments 1.

Results

Table 8.10 gives the results of computing the similarity on each dataset Di, the possibilistic network
GTAi (resp. GPAi ) learned using the TA (resp. PA) approach with the reference network Gi used to
generate Di. The results of Table 8.10 show that on the one hand the learned possibilistic networks

Dataset TA PA

Net10 0.63 0.86
Net20 0.64 0.86
Net30 0.67 0.86

Table 8.10 – Results of experiments 1.

using the TA approach are close to the reference ones. Namely, they have rather a good similarity with
the reference possibilistic networks used to generate the datasets. Moreover, the obtained similarity
scores do not seem to be affected by the number of variables, variable domains size, etc. Regarding the
possibilistic networks learned using the PA approach, their similarity scores are slightly better, but this
is expected as the datasets generation process and the PA approach have the same view of possibility
degrees. Such results also rise the issue of similarity measures on possibilistic networks which is still an
open issue.

8.6.3 Predictive power of possibilistic classifiers

In this section, we evaluate the predictive power of credal network classifiers [CZ08], naive Bayes
classifiers and naive possibilistic classifiers [BT12]. More precisely, we compare on many datasets the
classification efficiency of naive credal classifier (NCC for short) and the corresponding possibilistic
classifiers obtained either using the possibilistic-based approach (PNCPA) or using the transformation-
based approach (PNCTA). Moreover, we compare our results to naive Bayes classifier (NBC) as a
baseline.
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Classification using belief graphical models is a special kind of inference: given an observation, it is
required to determine the class label of the observed instance among a predefined set of class labels. In
classification problems, one node represents the class variable C while the remaining ones are attributes
V = {X1, X2, .., Xn} that may be observable. Given an observation denoted (x1, x2, .., xn) of X , the
candidate class c is predicted by possibilistic classifiers as follows:

c = argmaxck∈DC
(Π(ck|x1x2..xn)), (8.14)

where the term Π(ck|x1x2..xn) denotes the conditional possibility degree of having ck the actual class
given the observation x1x2,..,xn.

A naive possibilistic (resp. Bayes) network classifier is a simple form of possibilistic (resp. Bayes)
classifier. It assumes that attributes are independent in the context of the class node. Hence, the only
dependencies allowed in naive networks are from the class node C to each attribute Xi. Learning a naive
classifier in our context comes down to learning the local tables (namely the table of C and a conditional
table for of each Xi in the context of C) from data since the structure is fixed in advance.

Experimentation setup

To evaluate the NCC classifier, we use measures used in [CZ08]:

— Determinacy (Det): It is the percentage of predictions outputting a unique (precise) class label.

— Single-Accuracy (SiAcc): It denotes the percentage of correct classifications when the predictions
of NCC are precise.

— Set-Accuracy (SetAcc): It is the proportion of imprecise predictions containing the right class label.

A 10-fold cross validation is used in this experiment.

Benchmarks

The experimental study is carried out on the following datasets where some data values are missing
(here, missing data is assumed to be not missing at random). The first four datasets of Table 8.11 are
real datasets used in the literature for evaluating classifiers with missing data 9. The remaining ones are
collected from different sources.

Name # instances # variables # classes % missing
breast 286 9 2 4 %

housevotes 435 16 2 24 %
mushroom 8124 22 2 31 %

post-operative 90 8 3 3 %
audiology 226 70 24 98%

sick 3772 30 2 20%
primary-tumor 339 18 21 46%

kr-vs-kp 3196 37 2 0 %
soybean 683 36 19 18%

crx 690 16 2 2%

Table 8.11 – Datasets used in our experiments.

9. http://sci2s.ugr.es/keel/missing.php
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8.6. Experimental studies: learning from imprecise data

Results

Table 8.12 gives the results of evaluating the NCC classifier on the datasets of Table 8.11.

Dataset Det SiAcc SetAcc
breast 92.43 % 74.08 % 100 %

housevotes 99.52 % 90.26 % 100 %
mushroom 96.10 % 99.56 % 100 %

post-operative 49.67 % 67.57 % 84.36 %
audiology 7.76% 99.55% 99.03%

sick 98.93% 97.54% 100%
primary-tumor 13.59% 77.11% 63.37%

kr-vs-kp 99.18% 88.16% 100%
soybean 47.38% 92.56% 97.85%

crx 94.01% 86.34% 100%

Table 8.12 – Results of NCC classifier on datasets of Table 8.11.

Table 8.12 shows good single accuracy rates with high determinacy rates except for the post-operative,
audiology and primary-tumor datasets. Typically, it’s on small datasets with many classes where the
NCC is not efficient.

Table 8.13 gives the results of evaluating the NBC (Naive Bayes Classifier), PNCTA and PNCPA
classifiers on the datasets of Table 8.11. Results of Table 8.13 show that classifiers NBC, PNCPA

% of correct classifications
Dataset NBC PNCPA PNCTA

breast 72.88% 72.73 % 70.27%
housevotes 90.11 % 89.19 % 58.71 %
mushroom 95.73 % 77.35 % 85.34 %

post-operative 68.11 % 67.78 % 71.11%

audiology 72.79% 55.90% 11.54%
sick 96.97% 95.53% 94.41%

primary-tumor 49.54% 28.42% 43.42%
kr-vs-kp 87.82% 85.86% 86.89%
soybean 92.66% 80.46% 75.51 %

crx 85.38% 85.80% 91.01%

Table 8.13 – Results of the NBC, PNCS and PNCT classifiers on the datasets of Table 8.11.

and PNCTA have most of the time comparable results in terms of correct classification rates on some
datasets but they show real performances on some other datasets. This is also valid for the results of
the NCC classifier. Now, comparing PNCPA and PNCTA, this latter achieves better results on two
datasets while the former has better classification rates on the two other datasets. It is not obvious what
really makes a given approach better, a thorough analysis of the properties of the datasets is needed to
help understanding such results.
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Chapter 8. Approximation of Map Inference in Credal Networks

8.7 Concluding remarks

The main objective of this chapter was to evaluate empirically MAP inference in credal networks
using probability-possibility transformation. We provided a new approach to perform MAP inference
in credal networks and this by transforming a credal network into a possibilistic one. We carried out
experiments to compare our approach to an approximate approach for MAP inference in credal networks
(GL). The benefits of such an approach are reducing the inference time of MAP inference while en-
suring narrower answer sets. Experimental results showed that, first, using the approximate algorithm
(GL) on credal networks was not computationally interesting due to the limits it has shown when the
number of query variables increases. Then, when using criterion like Hurwicz, CD algorithm performed
quite efficiently on numerous networks and numerous query variables. One thing that we have not been
mentioning so far, is the complexity of our transformation MD and CD, this is to be taken into account
when choosing an approach. And in this matter, CD is quite a direct translation and does not imply a
high complexity, contrary to MD transformation. This supports even more the choice of CD that gives a
good alternative to approximate MAP inference in credal networks.

The second part of the chapter tackles the problem of learning the parameters of a possibilistic net-
work, we compare two methods for assessing the parameters of a possibilistic network given a structure
and a dataset. The first series of experiments in our comparison mainly showed that the possibilistic-
based method learns slightly better and more information in terms of information affinity than the method
based on the probability-possibility transformation. This is not really surprising since the data was gen-
erated according to the possibility distributions of the reference networks. This also confirms that there
is inevitably some information loss when transforming probability distributions into possibilistic ones
[DFMP04, BLT15a]. Regarding the second series of experiments, given the results of MAP inference
using transformed possibilistic networks, we evaluate the predictive power of classifiers. One impor-
tant result is that the classifiers based on possibilistic networks have comparable efficiency with naive
Bayes and credal classifiers. On the other hand, the possibilistic classifiers where the parameters have
been learned with two different approaches have basically comparable results. Overall, such results are
preliminary but encouraging, a further comparative study on a large number of benchmarks and prob-
lems (classification and inference in general) using naive and non naive models, will be needed to really
compare the two approaches.
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Conclusion

The works presented in this thesis contribute to the development of efficient formalisms to handle
uncertain information. The first part of this thesis presented the foundations of various frameworks used
to represent uncertainty and their compact representations by means of graphical models and knowledge
bases. It also presented the different bridges existing between the uncertainty frameworks that are prob-
ability theory and possibility theory.

The second and third parts of this thesis presented our contributions. In the first part of the contribu-
tions, we dealt with conditioning in an interval-based possibilistic framework and set-valued possibilistic
framework. The purpose was to develop a conditioning machinery for interval-based possibilistic logic.
Conditioning in a standard possibilistic setting differs whether we consider a qualitative or quantitative
scale. Our works dealt with both definitions of possibilistic conditioning. This led us to investigate a new
extension of possibilistic logic, defined as set-valued possibilistic logic, and its conditioning machinery
in the qualitative possibilistic setting. These results, especially in terms of complexity, led us to study
transformations, more precisely from probability to possibility theories. The second part of our contri-
butions dealt with probability-possibility transformation procedures. Indeed, we analyzed properties of
reasoning tasks such as conditioning and marginalization. And to answer the second concern presented
in the introduction, we tackled transformations from imprecise probability theory to possibility theory
with a particular interest in MAP inference.

In more details, in Chapter 4, we first proposed natural properties (IC1-IC7) that any conditioning
operator in an interval-based possibilistic setting should satisfy. Our first result showed that quantitative
conditioning in an interval-based possibilistic setting satisfied all of our proposed postulates. We com-
puted lower and upper bounds of the conditioned interval-based possibilistic distributions and provided
the counterpart of conditioning in interval-based possibilistic logic. The surprising and interesting result
was that reasoning with the set of all compatible possibilistic bases is not more expensive than reasoning
from standard possibilistic bases. Hence, we extend standard possibilistic logic framework without extra
computational cost.

However given the postulates IC1-IC7, we showed that qualitative conditioning (using min-based
operator) does not satisfy IC1 meaning that the result of conditioning an interval-based possibility dis-
tribution is not guaranteed to give an interval-based possibility distribution. From there, we investigated
new properties (P1-P3) for min-based conditioning in an interval-based possibilistic setting. We proved
that the only conditioning satisfying these three postulates was using the notion of Interval-closure defini-
tion on the set of conditioned compatible possibility distributions. We provided the efficient procedures
to compute lower and upper bounds of the conditioned interval-based possibility distribution as well
as the syntactic counterpart of qualitative conditioning. We showed that conditioning in interval-based
possibilistic logic, like quantitative conditioning, had the same complexity as conditioning in standard
possibilistic logic.
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Conclusion

Using Interval-closure on all compatible distributions (resp. knowledge bases) can induce a larger
imprecision in the result. To counter this issue, we proposed a new setting to represent possibility degrees
named of set-valued possibility theory. This framework generalizes possibility theory by encoding the
available knowledge using sets of possibility degrees. Clearly, set-valued possibility theory is also an ex-
tension of interval-based possibility theory [BHLR11], where the set is denoted as an interval of possible
values. The two settings view a knowledge base (resp. possibility distribution) as a family of compatible
bases (resp. distributions). Of course, intervals are particular sets. In this contribution, we defined the
foundations of set-valued possibilistic setting (syntax and semantic aspects) and then we proposed a set
of postulates (S1-S3) that characterizes a qualitative conditioning operator. These three postulates S1,
S2, and S3 guarantee the uniqueness of the conditioning operation. Lastly, we gave the procedures to
compute the exact conditioned set-valued possibility distributions and the syntactic counterpart in set-
valued possibilistic logic. As for conditioning in an interval-based possibilistic setting, we showed that
conditioning in a set-valued possibilistic setting does not induce extra computational cost compared to
conditioning in standard possibilistic setting.

In Chapter 7, the purpose was to study probability-possibility transformations with respect to rea-
soning tasks. We analyzed different properties such as the preservation of plausibility ordering between
interpretations (resp. events) during a probability-possibility transformation, as well as the preservation
of such order when applying reasoning tasks (e.g. conditioning, marginalization). In this work we have
only considered probability-possibility transformations that satisfy the consistency principle defined by
Dubois and Prade [DFMP04]. We showed that when one transforms a probability distribution into a
possibility distribution then apply conditioning, the order between interpretations is preserved. We also
analyzed imprecise probability to possibility transformations with respect to reasoning tasks (condition-
ing and marginalization). The last contribution concerned a study on MAP inference in credal networks.
We highlighted new and interesting complexity results on MAP inference in the possibilistic setting. We
showed that inference in possibilistic networks is less costly than in Bayesian networks. We also applied
our results on MAP inference to classification by learning a credal network using probability-possibility
transformations.

Among the open questions that can be addressed in future works is conditioning in another form of
compact representations like interval-based possibilistic networks [BLT14a, BLT14b]. A first glimpse of
a method to do so is discussed in Chapter 5 where we proposed a translation from interval-based possi-
bilistic networks to interval-based possibilistic knowledge bases in the qualitative setting. We will tackle
in details this type of transformation operation in both qualitative and quantitative settings.

Another open question concerns probability-possibility transformations. Indeed, we analyzed from
probability theory to possibility theory. A future work will tackle properties-based analysis of transfor-
mations from possibility to probability. These transformations can also be applied to graphical models
and knowledge bases. Indeed, numerous platforms exit for inference machinery in probabilistic setting
and if possibility-probability transformations show good results on information preservation, then we
could use these platforms to reason in possibility theory. Our works on transformations from proba-
bility to possibility were limited to distributions and graphical models. It could be interesting to apply
probability-possibility transformations to knowledge bases and analyze the preservation of the ordering
between interpretations with respect to reasoning tasks.

In this thesis we only experiments MAP inference in a quantitative possibilistic setting (using the
product operator), a comparison between the two possibilistic settings (qualitative vs. quantitative)
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should be considered in future works. We plan to investigate new algorithms for MAP inference in
possibilistic networks. We argued that contrary to the probabilistic setting, MAP inference in possibilis-
tic networks have better computational complexity than belief probabilistic networks. This will definitely
open new perspectives for approximate MAP inference in Bayesian credal networks.
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Appendix A

Background notions

A.1 Graphical models

In this section we introduce some elementary concepts of graph theory that are needed in the under-
standing of the graphical models used to represent uncertain information.

A.1.1 Basic definitions of graphs

Assume V = {X1, X2, ..., Xn} is the set of variables. The set V can be graphically represented by
a set of nodes, or vertices, one node for each element of V . These nodes can be linked by arcs which
are referred to as edges. The set of all links is denoted by E = {(Xi, Xj)|Xi and Xj are linked } where
(Xi, Xj) is used to denote the link between Xi and Xj . The sets V and E define a graph. We first give
an example, then a more formal definition of a graph.

Example A.4. Let us consider a graph G on the set of variables V = {X1, X2, X3} and the following
set of edges E = {(X1, X2), (X3, X2)}.

Definition A.4 (Graph or network). A graph G = (V,E) is defined by two sets V and E, where V is
a finite set of nodes V = {X1, X2, ..., Xn} and E is a set of edges, that is, a subset of ordered pairs of
distinct nodes.

The words "graph" and "network" are used synonymously in this thesis. The links of a graph can be
directed or undirected, depending on whether or not the direction of the link matters. We only focus on
directed graphs and therefore we discuss the definition and some of their characteristics.

Definition A.5 (Directed link). Let G = (V,E) be a graph. When (Xi, Xj) ∈ E and (Xj , Xi) 6∈ E, the
link (Xi, Xj) is called a directed link. A directed link between nodes Xi and Xj is denoted by Xi → Xj

where Xi is called parent and Xj is called child.

Definition A.6 (Directed graph). A graph in which all the links are directed is called a directed graph.

Example A.5. In this example, we illustrate the graph defined in Example A.4 as a directed graph on
Figure A.1.

Definition A.7 (Parents and children). When there is a directed link Xi → Xj from Xi to Xj , then Xi

is said to be a parent of Xj , and Xj is said to be a child of Xi.

The set of all parents of a given node Xi is denoted by par(Xi). For instance, in Example A.5, more
precisely on Figure A.1, the parents of node X2 is given by par(X2) = {X1, X3}.
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X1

X2

X3

Figure A.1 – Example of directed network

Directed graphs

Definition A.8 (Connected directed graphs). A directed graph is said to be connected if each node is
connected to another by at least one link. Otherwise, it is said to be disconnected

Definition A.9 (Trees and multiply-connected directed graphs). A connected directed graph is said to be
a tree if between every pair of nodes there exists a unique path 10. Otherwise, it is said to be multiply-

connected.

There also exist two different types of trees in directed graphs depending on the number of arrows
pointing to the same node.

Definition A.10 (Cyclic and acyclic graphs). A directed graph is said to be cyclic if it contains at least
one cycle 11. Otherwise, if it is called a directed acyclic graph (DAG).

Directed acyclic graphs play an important role as they are used as a basis for building the most known
uncertainty networks as Bayesian networks, possibilistic networks or even credal networks.

Definition A.11 (Simple trees and polytrees). A directed tree is called a simple tree if every node has at
most one parent. Otherwise, it is called a polytree.

Example A.6. In the following figure we show an example of two different directed graphs, a polytree
and a multi-connected tree.

Figure A.2 – On the left: polytree, and on the right: multiply-connected tree

10. A path is finite sequence of edges which connect a sequence of nodes with the edges all directed in the same direction.
11. where a cycle is defined as a closed directed path in a graph.
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A.1.2 Graph separation

Some properties in graphs allow to characterize the flow of the information in a Bayesian network.
This is called D-separation, it answers the question: How an observation of one or many variables affects

the belief we have on other variables? and it is based on the concept of independence.
Let us consider two subset of random variables X and Y and another subset of random variables Z

then X and Y are d-separated by Z if and only if Z blocks every paths between X and Y . There can
exist different types of connexions between these subsets of variables.

— serial connexion

X Z Y

X Y Z

The flow of information between X and Y is blocked by Z.

— X 6⊥ Y (X and Y are not independent)

— X ⊥ Y |Z (if Z is known then X and Y are independent)

— Y ⊥ X|Z (conversely, Y and X are independent given Z)

— divergent connexion

Z

YX

The flow of information between X and Y is blocked by Z.

— X 6⊥ Y (X and Y are not independent)

— X ⊥ Y |Z (if Z is known then X and Y are independent)

— Y ⊥ X|Z (if Z is known then Y and X are independent)

— convergent connexion

Z

YX

The flow of information between X and Y is not blocked by Z.

— X ⊥ Y (X and Y are independent)

— X 6⊥ Y |Z (if Z is known then X and Y are not independent)

— Y 6⊥ X|Z (conversely, knowing Z, Y and X are not independent)
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A.2 Querying graphical models

A.2.1 Probability of evidence

One of the simplest queries is to ask for the degree or interval-degree of some variable instantiation
e. For example 12, in the Asia network (Figure A.3) we may be interested in knowing the probability that
the patient has a positive x-ray but no dyspnoea, P (X = yes,D = no). This can be computed easily by
tools such as JavaBayes, leading to a probability of about 3.96%. The variables E = {X,D} are called
evidence variables in this case and the query P (e) is known as a probability-of-evidence query, although
it refers to a very special type of evidence corresponding to the instantiation of some variables.

A: Visit to Asia S: Smoker

T: Has tuberculosis C: Has lung cancer B: Has bronchitis

P: TB or cancer

X: Positive X-ray D: Dyspnoea

Figure A.3 – Asia network where each variable is boolean "yes" or "no"

There are other types of evidence beyond variable instantiations. In fact, any propositional sentence
can be used to specify evidence. For example, we may want to know the probability that the patient
has either a positive x-ray or a dyspnoea, X = yes ∨ D = yes. Tools in general do not provide
direct support for computing the probability of arbitrary pieces of evidence but such probabilities can be
computed indirectly using the following method.

We can add an auxiliary node E to the network, declare nodesX andD as the parents of E, and then
adopt the following conditional probability distribution on E (see Table A.1).

X D E p(e|x, d)
yes yes yes 1
yes no yes 1
no yes yes 1
no no yes 0

Table A.1 – Conditional probability distribution of E given X and D

Given this conditional probability distribution, the event E = yes is then equivalent to X = yes ∨
D = yes and hence, we can compute the probability of the latter by computing the probability of the

12. Note that the examples taken in this section come from the book "Modeling and reasoning with Bayesian network"
[Dar09]
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former.
This method, known as auxiliary-node method, is practical only when the number of evidence vari-

ables is small enough, as the conditional probability distribution size grows exponentially in the number
of these variables. However, this type of conditional probability distribution is quite special as it only
contains probability degree equal to 0 or 1. When a conditional probability distribution satisfies this
property, we say that it is deterministic. We also refer to the corresponding node as a deterministic node.

A.2.2 Prior and posterior marginals

If probability-of-evidence queries are one of the simplest, then posterior-marginal queries are one
of the most common. The difference between prior and posterior marginals is that a prior marginal is a
marginal distribution given no evidence. And the posterior marginal distribution is computed given some
evidence e,

p(x1, ..., xm|e) =
∑

xm+1,...,xn

p(x1, ..., xn|e). (A.1)

A: Visit to Asia
1% yes
99% no

S: Smoker
50% yes
50% no

T: Has tuberculosis
1.04% yes
98.96% no

C: Has lung cancer
5.50% yes
94.50% no

B: Has bronchitis
45.0% yes
55.0% no

P: TB or cancer
6.48% yes
93.52% no

X: Positive X-ray
11.03% yes
88.97% no

D: Dyspnoea
43.60% yes
56.40% no

Figure A.4 – Prior marginals in the Asia network

Figure A.4 depicts a network where the prior marginals are shown for every variable in the network.
Figure A.5 depicts also the Asia network but where posterior marginals are shown for every variable
given that the patient has a positive x-ray but no dyspnoea, (e : X = yes, D = no).
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A: Visit to Asia
1.17% yes
98.83% no

S: Smoker
51.32% yes
48.68% no

T: Has tuberculosis
5.40% yes
94.60% no

C: Has lung cancer
25.23% yes
74.77% no

B: Has bronchitis
19.32% yes
80.68% no

P: TB or cancer
30.37% yes
69.63% no

X: Positive X-ray
100% yes
0% no

D: Dyspnoea
0% yes

100% no

Figure A.5 – Posterior marginals in the Asia network given a positive x-ray and no dyspnoea

A.2.3 Most probable explanations

We now turn to another class of queries: computing the most probable explanation (MPE). The goal
here is to identify the most probable instantiation of network variables given some evidence. Specially,
if X1, ..., Xn are all the network variables and if e is the given evidence, the goal then is to identify
an instantiation x1, ..., xn for which the probability p(x1, ..., xn|e) is maximal. Such an instantiation
x1, ..., xn will be called a most probable explanation given evidence e.

Consider the Asia network still with the evidence e : X = yes, D = yes (a patient with positive
x-ray and dyspnoea), if we compute the MPE queries given e, then the result corresponds to a patient
that made no visit to Asia, is a smoker, and has lung cancer and bronchitis but no tuberculosis.

It is important to note here that an MPE cannot be obtained directly from posterior marginals. That
is, if x1, ..., xn is an instantiation obtained by choosing each value xi so as to maximize the probability
p(xi|e), then x1, ..., xn is not necessarily an MPE. Consider the posterior marginals in Figure A.5 as an
example. If we choose for each variable the value with maximal probability, we get an explanation in
which the patient is a smoker:

ω : A = no, S = yes, T = no, C = no, B = no, P = no, X = yes, D = no.

This instantiation has a probability of
approx20.03% given the evidence e : X = yes, D = no. However, the most probable explanation
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given e is the one in which the patient is not a smoker:

ω : A = no, S = no, T = no, C = no, B = no, P = no, X = yes, D = no.

This instantiation has a probability of ≈ 38.57% given evidence e : X = yes, D = no.

A.2.4 Maximum a posteriori hypothesis (MAP )

The MPE query is a special case of a more general class of queries for finding the most probable
instantiation of a subset of network variables. Specially, suppose that the set of all network variables is V
and let Q be a subset of these variables. Given some evidence e, our goal is then to find an instantiation q
of variables Q for which the probability p(q|e) is maximal. Any instantiation q that satisfies the previous
property is known as a maximum a posteriori hypothesis (MAP ). Moreover, the variables inQ are known
as MAP variables or query variables. Clearly, MPE is a special case of MAP when the MAP variables
include all network variables. One reason why a distinction is made between MAP and MPE is that
MPE is much easier to compute algorithmically. An issue that we will address in the following.

Using the same Asia network from Figure A.3, let us consider a patient with a positive x-ray and no
dyspnoea, so the evidence is X = yes, D = no. The MAP variables are Q = {A,S}, so we want to
know the most likely instantiation of these variables given the evidence. Given the evidence e, the result
of MAP query is

A = no, S = yes.

This instantiation have a probability degree of ≈ 50.74% given the evidence.
A common method for approximating MAP is to compute an MPE and then return the values it

assigns to MAP variables. We say in this case that we are projecting the MPE on MAP variables.
However, we stress that this is only an approximation scheme as it may return an instantiation of the
MAP variables that is not maximally probable. Consider again the MPE example where the MPE
instantiation was:

ω : A = no, S = no, T = no, C = no, B = no, P = no, X = yes, D = no.

under X = yes, D = no. Projecting this MPE on the variables Q = {A,S}, we get the instantiation

A = no, S = no,

which has a probability ≈ 48.09% given the evidence. This instantiation is clearly not a MAP as we
found a more probable instantiation earlier, that is, A = no, S = yes with a probability of about
50.74%.

There is a relatively general class of situations in which the solution to a MAP query can be obtained
immediately from an MPE solution by projecting it on the MAP variables. To formally define this
class of situations, let E be the evidence variables, Q be the MAP variables, and R be all other network
variables. The condition is that there is at most one instantiation r of variables R that is compatible with
any particular instantiations q and e of variables Q and e, respectively. More formally, if p(q, e) > 0,
then p(q, e, r) 6= 0 for exactly one instantiation r.

A.3 Different algorithms for inference in Bayesian networks

A.3.1 Efficient inference in trees - variable elimination

Let us illustrate the process of variable elimination through an Bayesian example. Let us consider
the Bayesian network in Figure A.7 with DA = {a, a}, DB = {b, b}, DC = {c, c} and DD = {d, d}
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and suppose that we are interested in computing the degree of D = d, meaning computing P (d).

P (d) =
∑

A,B,C(P (ABCd))

=
∑

A,B,C(P (d|C) ∗ P (C|B) ∗ P (B|A) ∗ P (A))

=
∑

B,C(P (d|C) ∗ P (C|B) ∗
∑

A P (B|A) ∗ P (A))

=
∑

B,C(P (d|C) ∗ P (C|B) ∗ P (B))

=
∑

C(P (d|C) ∗
∑

B P (C|B) ∗ P (B))
=

∑

C(P (d|C) ∗ P (C))
= P (d)

. (A.2)

A B C D

A p(A)

a .4
a .6

A B p(B|A)

a b .2

a b .8
a b .5

a b .5

B C p(C|B)

b c .6
b c .4

b c .2

b c .8

C D p(D|C)

c d .2

c d .8
c d .6

c d .4

Figure A.6 – Network on which to perform variable elimination

What is the probability of the event φ = {d} (i.e. P (d))? The first step is to merge the table of
variable A with the table of variable B|A to remove the variable A.

fB(B) =
∑

A

P (B|A) ∗ P (A).

A B C D

A p(A)

a .4
a .6

A B p(B|A)

a b .2 ∗ .4 = .08

a b .8 ∗ .4 = .32
a b .5 ∗ .6 = .3

a b .5 ∗ .6 = .3

B C p(C|B)

b c .6
b c .4

b c .2

b c .8

C D p(D|C)

c d .2

c d .8
c d .6

c d .4

Figure A.7 – Elimination of variable A

The second step consists in merging the distribution of variable B with the distribution of C to
eliminate variable B.

fC(C) =
∑

B

P (C|B) ∗ P (B).

We keep eleminating variables in the way until we are left with our variable of interest D. Indeed,
we eliminate C by combining tables of variables C and D.

fD(D) =
∑

C

P (D|C) ∗ P (C).

Table A.2 depicts the final distribution onD after the elimination of the other variables, and for the result
of our query D = d, then P (d) = .54.
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B C D

B p(B)

b .38

b .62

B C p(C|B)

b c .6 ∗ .38 = .228
b c .4 ∗ .38 = .152

b c .2 ∗ .62 = .124

b c .8 ∗ .62 = .496

C D p(D|C)

c d .2

c d .8
c d .6

c d .4

Figure A.8 – Elimination of variable B

D p(D)

d .46

d .54

Table A.2 – Distribution of D after elimination of A,B and C

One could have simply constructed the joint distribution of the network and marginalized on the
variables of interest to obtain the marginal distribution as requested. The fact is doing so we would have
computed unnecessary information. Variable elimination in this sense, in a slightly intelligent way to
sum out variables from the joint without actually constructing its explicit representation.

In terms of complexity in Bayesian networks, we can distinguish different cases depending on the
network structure:

— in trees: the complexity is linear in the number of variables

— in polytrees: the complexity of variable elimination is exponential in the tree width

— complexity of the best elimination order: in the general case we always need to fix an order for the
variable elimination which is a NP -complete problem.

A.3.2 The junction tree algorithm

The junction tree algorithm is one of the most used algorithms and among the most efficient ones. It
generalizes most of the inference algorithms existing in Bayesian networks. It was developed by Jensen,
Lauritzen and Spiegelhalter [Jen96, LS90]. This algorithm is based on both graph theory and probability
theory to find a efficient factorization of the probability distributions encoded by a Bayesian network.
This algorithm translates the initial Bayesian network into a structure called junction tree which we use
to answer queries. It is composed of 3 main steps:

— step 1: Construction

— moralization of the initial graph

— triangulation of the moral graph

— construction of the junction tree

— step 2: Initialization

— step 3: Answering the queries

These steps are the same in both probabilistic and possibilistic settings. Let us expand a little theses
steps:

Moralization: A moral graph is a graph where all the parents of a node are connected through a link.
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Figure A.9 – Moralization step

For this step, it is enough to create first a non directed graph by discarding the edges then "marry"
the parents of each nodes in the graph.

Triangulation: undirected graph is said to be triangulated if and only if for every cycle of length 4
or more, there exists a link between two non consecutive nodes of the cycle.

Triangulation consist in adding links until the graph is triangulated. A graph can have different
triangulations which gives different set of cliques. A clique in that respect is a subset of variables forming
a complete subgraph meaning that two given variables are always connected. Moreover, the triangulated
graph can have, also, multiple junction tree. The problem of optimality for triangulation is NP -complete
[ref].

A

B C

D E

F

Figure A.10 – Triangulation step giving the cliques: CABC , CBCE , CBDE , CDEF

Construction of the junction tree: This step consists in transforming the triangulated graph into a
junction tree. Following the triangulation, the graph is composed of cliques denoted by Ci. Note that
a junction tree built from a triangulated graph is not unique. For this step, it is enough to connect the
identified cliques with the condition that every clique between two other cliques Ci and Cj must contain
Ci∩Cj . Once all adjacent cliques are identified, we insert a separator denoted by Sij , between each pair
of cliques Ci and Cj , containing the shared variables.

Once the junction tree build, the initialization step consists in quantifying the tree by transforming
local distributions in joint distribution attached to cliques and separators.

Broadly speaking, the initialization procedure is resumed as:

— for each clique Ci, affect a uniform distribution: θ1Ci
= 1

— for each separator Sij , affect a uniform distribution: θ1Sij
= 1

— for each variable Xk ∈ V , choose a clique Ci containing {Xk} ∪ par(Xk) and update the capaci-
ties.
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ABC BC BCE

BE

BDEDEDEF

Figure A.11 – Junction tree associated to the graph of Figure A.9

Note that if a clique has too many nodes, the computation of the joint distribution can be costly.

Now comes the propagation step, before that let us introduce the notion of global coherence in
junction tree. Let Ci and Cj two adjacent cliques in the junction tree and let Sij be their separator. The
cliques Ci and Cj are said to be stable or consistent if:

∀sij ∈ DSij
,
∑

Ci\Sij

θCi
(ci) = θSij

=
∑

Cj\Sij

θCj
(cj)

13 (A.3)

If every link in a junction tree is coherent then the junction tree is said to be globally coherent. Once the
junction tree initialized, global propagation ensures the global coherence through the message passing
between the cliques. The first step is to arbitrary choose a pivot clique which will start the two phases
process:

— collection phase: each clique sends a message to its adjacent cliques towards the pivot.

— distribution phase: each clique send a message in the opposite way of the pivot to its adjacent
cliques starting from the pivot itself until reaching one of the end of the tree.

This is a brief description of the steps to follow to build the junction tree.

A.4 A brief refresher on propositional logic

Propositional logic is used as a tool for representing and reasoning about events. Let us take an
example and consider the following situation that involves an alarm that can be triggered by burglaries,
or an earthquake. We can express the event of having either a burglar or an earthquake. This is written
using the following propositional formula:

Burglary ∨ Earthquake.

In this situation, Burglary and Earthquake are called propositional variables and ∨ represents logical
disjunction. With propositional logic we can make more complicated statement, such as:

Burglary ∨ Earthquake⇒ Alarm,

where⇒ describes logical implication. Meaning that a burglary or an earthquake is guaranteed to turn
on the alarm. Consider also the formula:

¬Burglary ∧ ¬Earthquake⇒ ¬Alarm,

13. This is valid in the probabilistic setting, for the possibilistic setting, we would have the maximum operator instead of the
summation for instance.
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where ¬ represents the logical negation and ∧ represent the logical conjunction. And this means that if
there is no burglary nor earthquake, the alarm will not trigger.

Overall, propositional formulas are formed using a set of propositional variables, a, b, c. These vari-
ables are boolean variables. A formula ϕ can be of two forms, either given by an atomic formula of the
form ai, and interpreted as the variable ai is true. The second form of formula that can be written in
propositional logic is by using the logical connectives ¬, ∨ and ∧. If ϕ and τ are formulas, then ¬ϕ,
ϕ ∨ τ and ϕ ∧ τ are formulas. These formulas composed the language L.

Other connectives can be introduced, such as implication⇒ and equivalence⇔. These connectives
can be expressed using the three previous ones, in particular the formula ϕ⇒ τ can be written as ¬ϕ∨τ .
Also, ϕ⇔ τ can be written as (ϕ⇒ τ) ∨ (τ ⇒ ϕ). With this preliminaries we can define a knowledge
base.

Definition A.12 (Knowledge base). A propositional knowledge base, denotedK is a set of propositional
formulas ϕ1, ..., ϕn, that is interpreted as a conjunction ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn.

Here are some properties:

— ϕ ∧ ¬ϕ is a contradiction (will never hold).

— ϕ ∨ ¬ϕ is a tautology (always holds).

— ϕ and ϕ⇒ τ implies τ .

— ϕ ∨ τ is equivalent to τ ∨ ϕ.

The semantic associated to a propositional knowledge base is the one of models.

Definition A.13 (Model of a formula). Given a formula ϕ, a model ω is a mapping of all propositional
variables to a truth value such as ω |= ϕ. We say that ω satisfies (or entails) the event ϕ.

Now we say that a world ω is a model of a knowledge baseK if it is a model of all the formulas inK.
A world is the equivalent of a configuration which means that the value of each propositional variable
is known. This definition stands in the same line as the definition of world we have seen for uncertain
theories in the previous chapter.

The set of worlds that satisfy ϕ is denoted by:

Mods(ϕ) = {ω : ω |= ϕ}.
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Résumé

Cette thèse contribue au développement de formalismes efficaces pour représenter l’information in-
certaine. Les formalismes existants tels que la théorie des probabilités ou la théorie des possibilités sont
parmi les cadres les plus connus et utilisés pour représenter ce type d’information. Différentes exten-
sions (e.g. théorie des probabilités imprécises, théorie des possibilités à intervalles) ont été proposées
pour traiter des informations incomplètes ou des connaissances mal-connues, ainsi que pour raisonner
avec les connaissances d’un groupe d’experts. Les contributions de cette thèse sont divisées en deux
parties. Dans la première partie, nous développons le conditionnement dans le cadre des possibilités à
intervalles et dans le cadre des possibilités ensemblistes. Conditionner dans le cadre standard diffère
que l’on considère l’échelle possibiliste qualitative ou quantitative. Notre travail traite les deux défini-
tions du conditionnement possibiliste. Ce qui nous amène à étudier une nouvelle extension de la logique
possibiliste, définie comme logique possibiliste ensembliste, et son opérateur de conditionnement dans
le cadre possibiliste qualitatif. Ces résultats, plus spécialement en termes de complexité, nous amène à
étudier les transformations, plus précisément des transformations du cadre probabiliste vers le cadre pos-
sibiliste. En effet, nous analysons des propriétés les tâches de raisonnement comme la marginalisation et
le conditionnement. Nous nous attaquons aussi aux transformations des probabilités imprécises vers les
possibilités avec un intérêt particulier pour l’inférence MAP .

Mots-clés: Cadre des possibilités à intervalles, conditionnement, raisonnement, transformation probabiliste-
possibiliste, inference MAP .

Abstract

This thesis contributes to the development of efficient formalisms to handle uncertain informa-
tion. Existing formalisms such as probability theory or possibility theory are among the most known and
used settings to represent such information. Extensions and generalizations (e.g. imprecise probability
theory, interval-based possibilistic theory) have been provided to handle uncertainty such as incomplete
and ill-known knowledge and reasoning with the knowledge of a group of experts. We are particularly
interested in reasoning tasks within these theories such as conditioning.

The contributions of this thesis are divided in two parts. In the first part, we tackle conditioning in
interval-based possibilistic framework and set-valued possibilistic framework. The purpose is to develop
a conditioning machinery for interval-based possibilistic logic. Conditioning in a standard possibilis-
tic setting differs whether we consider a qualitative or quantitative scale. Our works deal with both
definitions of possibilistic conditioning. This leads us to investigate a new extension of possibilistic
logic, defined as set-valued possibilistic logic, and its conditioning machinery in the qualitative pos-
sibilistic setting. These results, especially in terms of complexity, lead us to study transformations,
more precisely from probability to possibility theories. The second part of our contributions deals with
probability-possibility transformation procedures. Indeed, we analyze properties of reasoning tasks such
as conditioning and marginalization. We also tackle transformations from imprecise probability theory
to possibility theory with a particular interest in MAP inference.

Keywords: Interval-based possibilistic setting, conditioning, reasoning tasks, probability-possibility
transformation, MAP inference..
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