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Abstract. This paper deals with belief graphical models and probability-possibility
transformations. It first analyzes some properties of transforming a credal net-
work into a possibilistic one. In particular, we are interested in satisfying some
properties of probability-possibility transformations like dominance and order
preservation. The second part of the paper deals with using probability-possibility
transformations in order to perform MAP inference in credal networks. This prob-
lem is known for its high computational complexity in comparison with MAP
inference in Bayesian and possibilistic networks. The paper provides preliminary
experimental results comparing our approach with both exact and approximate
inference in credal networks.
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1 Introduction

Belief graphical models such as Bayesian [4], credal [3] and possibilistic networks [2]
are powerful tools for representing and reasoning with uncertain information. Bayesian
networks allow to compactly encode a probability distribution thanks to the conditional
independence relationships existing between the variables. Credal networks, based on
the theory of credal sets, generalize Bayesian networks in order to allow some flexibility
regarding the model parameters. Indeed, credal networks are often seen as probabilis-
tic graphical models with relaxed parameters. They are for instance used in robustness
analysis and for encoding incomplete and ill-known knowledge and reasoning with the
knowledge of groups of experts. Possibilistic networks are the counterparts of Bayesian
networks based on possibility theory [7, 17].
Many uncertainty frameworks exist, some of which are generalizations of some other
ones. For instance, imprecise probability theory [10, 15] is a generalization of proba-
bility theory while possibility theory [7, 17] is an alternative non additive uncertainty
theory particularly suited for handling incomplete, qualitative and partial information.
In order to cast the information encoded within one setting into another uncertainty
framework, transformations are used. They are mechanical transformations satisfying
some desirable properties like consistency and order preservation. Many works are done
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for instance for transforming probability measures into possibilistic ones [9, 17]. How-
ever, in the context of belief graphical models and knowledge bases, only few works
addressed some related issues [1, 13]. Transformations can be useful in various con-
texts such as i) using the existing tools (e.g. algorithms and software) developed in one
setting rather than developing everything from scratch for the other setting or ii) ex-
ploiting information provided in different uncertainty languages as it is often the case in
some multiple expert applications. In this paper, we are mainly interested in probability-
possibility transformations for computational complexity purposes. More precisely, in
this preliminary work, our objective is to exploit probability-possibility transformations
to efficiently perform MAP inference in credal networks where this task isNPPP -hard
in the general case [12]. The main contributions of the paper are:

– Proposing and analyzing a transformation allowing to turn a credal network into a
possibilistic network.

– Proposing a kind of approximate approach for MAP inference in credal networks
by means of probability-possibility transformations.

– Providing preliminary experimental studies showing that MAP inference could ef-
ficiently be carried out using our approach with a high accuracy rate.

2 A brief refresher on credal and possibilistic networks

This section briefly presents the belief graphical models dealt with in this paper.

2.1 Bayesian networks

Bayesian networks (BN ) are well-known probabilistic graphical models [4]. They al-
low to compactly represent a probability distribution over a set of variables of interest.
A BN is specified by:

– A graphical component with nodes and edges forming a directed acyclic graph
(DAG). Each node represents a variable Ai of the modeled problem and the edges
encode independence relationships among variables.

– A quantitative component, where each variable Ai is associated with a local proba-
bility distribution p(Ai|par(Ai)) for Ai in the context of its parents par(Ai).

The joint probability distribution encoded by a Bayesian network is computed using the
following chain rule:

P (A1, .., An) =

n∏
i=1

P (Ai|par(Ai)) (1)

2.2 Credal networks

Credal networks are probabilistic graphical models based on imprecise probabilities.
Imprecise probability theory [10, 15] generalizes probability theory to encode imprecise
and ill-known information. A key notion in this theory is the one of credal set.

Definition 1 (Credal set). A credal set is a convex set of probability distributions.
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Intuitively, if K is a convex set of probability measures, then mixing any two distri-
butions p1 and p2 from K will result in a distribution p belonging to K. Mixing here
means linearly combining a set of distributions p1 ... pk as follows: p=

∑k
i=1(ai ∗ pi)

where
∑k
i=1 ai=1. A credal set is often interpreted as a set of imprecise beliefs in the

sense that the true uncertainty model (probability measure) is in this set but there is no
way to determine it exactly due to lack of knowledge. In order to characterize a credal
set, one can use a (finite1) set of extreme points (edges of the polytope representing the
credal set), probability intervals or linear constraints.
Interval-based probability distributions (IPD for short) are a very natural and common
way to specify imprecise and ill-known information. In an IPD IP , every interpreta-
tion ωi∈Ω is associated with a probability interval IP (ωi)=[li, ui] where li (resp. ui)
denotes the lower (resp. upper) bound of the probability of ωi.

Definition 2 (Interval-based probability distribution). Let Ω be the set of possible
worlds. An interval-based probability distribution IP is a function that maps every
interpretation ωi∈Ω to a closed interval [li, ui]⊆[0, 1].
An IPD should satisfy the following constraints in order to ensure that the underlying
credal set is not empty and every lower/upper probability bound is reachable.∑

ωi∈Ω

li ≤ 1 ≤
∑
ωi∈Ω

ui

∀ωi ∈ Ω, li +
∑

ωj 6=i∈Ω

uj ≥ 1 and ui +
∑

ωj 6=i∈Ω

lj ≤ 1

In order to give a formal semantics for IPDs, let us first define the concept of compatible
probability distribution.

Definition 3 (Compatible probability distribution). A probability distribution p over
Ω is said compatible with IP iff ∀ωi∈Ω, p(ωi)∈IP (ωi).

Note that while a standard probability distribution p induces a complete order over the
set of possible worlds Ω, an IPD IP may induce a partial order since some interpreta-
tions may be incomparable in case of overlapping intervals. In this paper, a credal set
Ki associated with a variable Ai having an interval-based probability distribution IP
denotes the closed convex set of (standard) probability distributions p that are compati-
ble with IP . Let us now introduce probabilistic graphical models based on credal sets,
called credal networks [3, 12].

Definition 4 (Credal network). A credal network CN=<G,K> is a probabilistic graph-
ical model where

– G=<V ,E> is a directed acyclic graph (DAG) encoding conditional independence
relationships where V ={A1, A2, .., An} is the set of variables of interest (Di de-
notes the domain of variable Ai) and E is the set of edges of G.

– K={K1,K2, ..,Kn} is a collection of local credal sets, each Ki is associated with
the variable Ai in the context of its parents par(Ai).

1 It is important to note that the number of extreme points can reach N ! where N is the number
of interpretations [16].
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Such credal networks are called separately specified credal networks as the only con-
straints on probabilities are specified in local tables for each variable in the context of
its parents. Note that in practice, in local tables, one can either specify a set of extreme
points characterizing the credal set as in JavaBayes2 software or directly local IPDs.
A credal network CN can be seen as a set of Bayesian networks BN s, each encoding a
joint probability distribution. In this paper, we deal only with discrete variables and the
semantics associated with a CN is a set of compatible BN s, defined as follows:

Definition 5 (Compatible Bayesian network). Let CN=<G,K> be a credal network
and BN=<G,CPT> be a Bayesian networks. BN is said compatible with CN iff

1. BN and CN have exactly the same structure (hence they encode the same condi-
tional independence relations).

2. For each variable Ai, ∀ai∈Di, pBN (ai|par(ai))∈Ki(ai|par(ai)).

According to this semantics, a credal network CN encodes a set of joint probabil-
ity distributions, called extensions and denoted ext(CN ), where each joint distribu-
tion p∈ext(CN ) is encoded by a compatible Bayesian network. Given an extension
ext(CN ), one can compute a joint IPD (interval-based joint probability distribution) as
follows:

P (a1a2..an) = min
p∈ext(CN )

(p(a1a2..an)) (2)

P (a1a2..an) = max
p∈ext(CN )

(p(a1a2..an)) (3)

In Equations 2 and 3, p(a1a2..an) is computed with the well-known chain rule in
Bayesian networks (see Equation 1). Note that the vertices of ext(CN ) can be obtained
by considering only the set of vertices of the local credal sets Ki associated with the
variables [3]. As for marginalization and conditioning, they are defined as follows:
Let K(A1..An) be a credal set over the set of variables A={A1..An}. Let X and Y be
two disjoint subsets of A such that X∪Y =A. Then,

K(X) = CH({
∑
Y

p(X,Y ) with p(X,Y ) ∈ K(A1..An)}) (4)

where CH is the convex hull operator. As for conditioning, let e be an evidence, then
K(A1..An|e) = CH({p(A1..An|e) with p(A1..An) ∈ K(A1..An) and p(e) > 0}) (5)

2.3 Possibilistic networks

A possibilistic network PN=<G,Θ> is specified by:

i) A graphical component G consisting of a directed acyclic graph (DAG) where ver-
tices represent the variables and edges represent direct dependence relationships
between variables.

ii) A numerical component Θ allowing to weight the uncertainty relative to each vari-
able using local possibility tables. The possibilistic component consists in a set of
local possibility tables θi=π(Ai|par(Ai)) for each variable Ai in the context of its
parents par(Ai) in the network PN .

2 http://www.cs.cmu.edu/˜javabayes/Home/
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Note that all the local possibility distributions θi must be normalized, namely ∀i=1..n,
for each parent context par(ai), maxai∈Di

(π(ai | par(ai))=1.
In the possibilistic setting, the joint possibility distribution is factorized using the

following possibilistic counterpart of the chain rule:

π(a1, a2, .., an) = ⊗ni=1(π(ai|par(ai))). (6)

where ⊗ denotes the product or the min-based operator depending on the quantitative
or the qualitative interpretation of the possibilistic scale [7].

3 Probability-possibility transformations

3.1 Form probability distributions to possibilistic ones

Many probability-possibility transformations exist [6, 9, 17]. Most of the works address
desirable properties and propose some transformations that satisfy such properties.
Among these transformations, the optimal transformation (OT ) [6] defines a consis-
tency condition requiring that

1. the obtained possibility distribution π dominates the original probability distribu-
tion p (namely, φ⊆Ω, P (φ)≤Π(φ)).

2. the obtained possibility distribution π preserves the order of elementary worlds en-
coded in p (namely, ∀(ωi, ωj)∈Ω2, p(ωi)>p(ωj)⇒π(ωi)>π(ωj) and p(ωi)=p(ωj)
⇒ π(ωi)=π(ωj)).

The optimal transformation (OT ) transforms p into π as follows:

πi =
∑

j/pj≤pi

pj , (7)

where πi (resp. pi) denotes π(ωi) (resp. p(ωi)). The transformation of Equation 7 guar-
antees that the obtained possibility distribution π is the most specific3 (hence most
informative) one that is consistent and preserving the order of interpretations.

The author in [14] addressed the commutativity of transformations with respect to
some operations but the aim was to show that the obtained distributions are not identical.
Some of these issues were also dealt with in the context of fuzzy interval analysis [8]. In
[1], we dealt with some issues about probability-possibility transformations especially
those regarding reasoning tasks and graphical models. In particular, we showed that:

– there is no transformation that can preserve the order of arbitrary events through
some reasoning operations like marginalization.

– for the independence of events and variables, we showed that there is no transfor-
mation that preserves the independence relations,

– when the uncertain information is encoded by means of graphical models, we
showed that no transformation can preserve the order of interpretations and events.

In this paper, we deal with some of these issues in the context of credal networks.
3 Let π′ and π′′ be two possibility distributions, π′ is more specific than π′′ iff ∀ωi∈Ω,
π′(ωi)≤π′′(ωi)
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3.2 From interval-based probability distributions to possibilistic ones

When transforming uncertain information expressed by means of probability intervals
to a possibility distribution, there is to the best of our knowledge only one work [11]
where the authors learn possibility distributions from empirical data by transforming
confidence intervals to possibility distributions. The starting point of this transforma-
tion is to consider an IPD as a means of encoding a partial order M over Ω. Indeed,
contrary to precise probability distributions which encode complete order relations over
Ω, interval-based ones encode partial orders in the form ωi<IP ωj in case where ui<lj .
LetM be the partial order encoded by an IPD IP and let C be the set of linear exten-
sions (complete orders) that are compatible with the partial orderM. The transforma-
tion proposed in [11] proceeds as follows:

– For every linear extension Cl∈C and for each ωi∈Ω, compute:

πCl(ωi) = max
p1..pn

(
∑
pj≤pi

pi) (8)

subject to the following constraints (in order to explore only compatible probability
distributions satisfying the current linear extension Cl):{

pi ∈ [li, ui]∑
i=1..n pi = 1

p1..pn satisfy the linear extension Cl

– Build the distribution π that dominates all the distributions πCl as follows: ∀ωi∈Ω,

π(ωi) = max
Cl∈C

(πCl(ωi)) (9)

The motivation of using Equation 9 is to guarantee that the obtained possibility
distribution π dominates the probability intervals IP . This transformation tries on
one hand to preserve the order of interpretations induced by IP and the dominance
principle requiring that ∀φ⊆Ω, P (φ)≤Π(φ) on the other hand.

There are two main drawbacks with the transformation of Equations 8 and 9:

– The first issue is about the computational complexity of such transformation. Ap-
plied directly, this latter can consider in the worst case N ! linear extensions where
N is the number of possible worlds. The authors proposed in [11] an algorithm al-
lowing to achieve some improvements during this transformation but it is still very
costly when one considers variables having domains exceeding a dozen values,
which is common in many applications.

– The second concern lies in the fact that this transformation does not guarantee that
the obtained distribution is optimal is terms of specificity. Indeed, it was shown in
[5] that the transformation of Equation 9 results in a loss of information as it is not
the most specific one dominating the considered IPD. The authors in [5] suggest
that any upper generalized R-cumulative distribution F built from one linear ex-
tension Cl∈C can be viewed as a possibility distribution and it also dominates all
the probability distributions that are compatible with the IPD. Let Cl be a linear
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extension compatible with the partial orderM induced by an IPD. Let φ1, φ2..φn
be subsets of Ω such that φi={ωj |ωj ≤Cl

ωi}. The upper cumulative distribution
F built from one linear extension Cl is as follows (see [5] for more details):

F (φi) = min(
∑
ωj∈φi

uj , 1−
∑
ωj 6∈φi

lj) (10)

The obtained cumulative distribution F is a possibility distribution dominating IP
and it is such that P (φi)=Π(Ai).

Regarding the commutativity of transformations with respect to change operations like
marginalization and conditioning used to answer MAP queries, since probability distri-
butions are special cases of IPDs, it can be expected that for the commutativity issue,
the transformations exhibit the same properties. This is the focus of the next section.

4 Commutativity of interval-based probability-possibility
transformations with respect to marginalization and
conditioning

This section checks whether the interval-based probability-possibility transformations
are commutative with respect to two major change operations that are marginalization
and conditioning. Namely, the question dealt with here is: Given an IPD IP , do we get
exactly the same results when i) we first transform IP into a possibility distribution
π then apply the change operation in the possibilistic setting and when ii) we first ap-
ply the change operation in the interval-based setting then transform the result into a
possibility distribution. Proposition 1 provides the answer for marginalization :

Proposition 1. Let TR be an interval-based probability-possibility transformation4.
Then there exists an IPD IP , two events φ⊆Ω, ψ⊆Ω with φ 6=ψ, and π= TR(IP ) such
that P (φ)<P (ψ) but Π(φ)>Π(ψ).

Proposition 1 asserts that no interval-based probability-possibility transformation can
guarantee the preservation of the order of events as shown in the following example.

Example 1. Let IP be an IPD of Table 1 where Ω={ω1, ω2, ω3, ω4} and π= TR(IP ).
In this example, α1, α2 and α3 are possibility degrees such that 1>α1>α2>α3 in order
to satisfy the preference preservation principle. Now, let φ and ψ be two events such
that φ={ω1} and ψ={ω2, ω3}. We have Π(φ)=1>Π(ψ)=max(α1, α2) while
P (φ)=.4<P (ψ) = .6.

4 In the rest of this paper, TR denotes an interval-based probability-possibility transformation
satisfying the following principles:

– Dominance: The possibility distribution π obtained from the IPD IP by TR dominates
every probability distribution p compatible with IP , namely ∀φ⊆Ω, π(φ)≥p(φ).

– Order preservation: Given two interpretations ωi∈Ω and ωj∈Ω, π(ωi)<π(ωj) iff
p(ωi)<p(ωj).
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ωi IP (ωi) π(ωi)

ω1 [.36, .4 ] 1
ω2 [.35,.35] α1

ω3 [.25,.25] α2

ω4 [ 0, .04] α3

Table 1. Example showing the loss of the order of events.

As shown in Example 1, the strict order of events is not preserved by TR because of the
different behavior of the additivity axiom in the probabilistic setting and the maxitivity
axiom of the possibilistic setting used by the marginalization operation.
As a consequence of Proposition 1, we have the following Lemma:

Lemma 1. Let TR be an interval-based probability-possibility transformation. Then
there exists an IPD IP over Ω={ω1, ω2, .., ωn} and a partition Ω′={W1,W2...Wk} of
Ω with k<n. Let π=TR(IP ), IP ′ is obtained by marginalizing IP on Ω′ according
to Equation 4 and π′ is obtained by marginalizing π on Ω′ in the possibilistic setting.
Then there may exist an event Wi∈Ω′ such that

π(Wi) 6= π′(Wi).

Proof (Proof sketch). The proof follows from Proposition 1 since if the order of events
is not preserved then the underlying marginalized distributions must be different.

Let us now check the commutativity issue with respect to conditioning. For standard
probability distributions, we have the following finding [1]:

Proposition 2. Let p be a probability distribution over Ω and let φ⊆Ω be an evidence.
Let TR be a probability-possibility transformation, p′ be a probability distribution ob-
tained by conditioning p by φ, π′′ = TR(p′) and π′ is the possibility distribution ob-
tained by conditioning π=TR(p) by φ. Then, ∀ωi, ωj ∈ Ω,

π′(ωi)<π
′(ωj) iff π′′(ωi)<π

′′(ωj).
Note that Proposition 2 is valid in both the product and the min-based possibilistic
settings and it states that the order of interpretations is not affected by the order of
applying the transformation and the conditioning operation. For IPDs, the following
proposition states that the partial order encoded by IP after conditioning is preserved
in the (complete) order induced by π after conditioning on the same evidence.

Proposition 3. Let IP be an IPD over Ω and let φ⊆Ω be an evidence. Let TR be
an interval-based probability-possibility transformation, IP ′=IP (.|φ) be a posterior
probability distribution obtained by conditioning IP by φ, π′′=TR(IP ′) and π′=π(.|φ)
is the possibility distribution obtained by conditioning π=TR(IP ) by φ. Then,

∀ωi, ωj ∈ Ω, π′(ωi)<π
′(ωj) iff π′′(ωi)<π

′′(ωj).
Proof (Proof sketch). The idea of the proof is that since conditioning in both the prob-
abilistic and possibilistic settings consists in discarding the worlds that are not models
of the evidence φ (by assigning them a 0 probability/possibility degree) then renormal-
izing the obtained distribution. Hence, the order of interpretations that are models of φ
is not affected by the order of application of transformation/conditioning operations.

Let us now see how one can use probability-possibility transformations to perform some
inference queries in credal networks.
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5 A probability-possibility transformation based approach for
inference in credal networks

In [13] a natural transformation of Bayesian networks into possibilistic networks is
proposed using the existing probability-possibility transformations such as OT .

5.1 From credal networks to possibilistic networks

A straightforward way to transform a credal network into a possibilistic network is as
follows:

Definition 6 (Credal-possibilistic network transformation). Let CN be a credal net-
work, PN CN is a possibilistic network obtained from CN and defined by:

– A graphical component G which is the same graph as the credal network hence
PN CN encodes the same independence relations as CN .

– A collection of local possibility tables πi obtained by transforming local credal
setsKi with TR, a transformation from interval-based probability distribution into
possibilistic ones.

The advantage of transforming a graphical model using Definition 6 is to preserve the
independence relationships while transforming only local tables.

Example 2. Let CN be the credal network of Figure 1 over two binary variables A and
B. Using the transformation of Equation 9, the credal network CN of Figure 1 will be
transformed to the possibilistic network PN of Figure 2.

A

B

A [IP(A)]
F [.5, .9]
T [.1, .5]

A B IP(B|A)
F F [.36, .4 ]
F T [.35, .35]
T F [.25, .25]
T T [ 0, .04 ]

Fig. 1. Example of a credal network
CN .

A

B

A π(A)
F 1
T 1

A B π(B|A)
F F 1
F T .64
T F .29
T T .04

Fig. 2. The possibilistic network PNCN ob-
tained from the credal network CN of Fig. 1.

In the following, we address two main questions: i) Does the distribution πPN domi-
nate IPCN (the joint interval-based distribution encoded by CN )? and ii) Is the partial
order of interpretations induced by IPCN preserved by the transformation TR?
Regarding the first question, the two following propositions provide the answer. For
elementary worlds ωi∈Ω, Proposition 4 ensures that the computed possibility distribu-
tion dominates the corresponding probability degrees in case where the credal network
CN is a Bayesian network (namely, all the intervals in CN are singletons).

Proposition 4. Let TR be a probability-possibility transformation. Let BN be a stan-
dard Bayesian network and let pBN be the underlying joint probability distribution en-
coded by BN . Let PN be a possibilistic network such that PN=TR(BN ) and πPN
be the joint possibility distribution encoded by PN . Then ∀ωi∈Ω,
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πPN (ωi)≥PBN (ωi).

Proof (Proof sketch).
Let ωi=a1a2...an be an instantiation of the network variables A1, A2...An. We have
in the product-based possibilistic setting, for every variable value ai in its parents con-
text par(ai), pBN (ai|par(ai))≤πPN (ai|par(ai)), guaranteed by the transformation
TR. Then

∏n
i=1(pBN (ai|par(ai))≤

∏n
i=1(πPN (ai|par(ai)). The proof follows simi-

larly for min-based possibilistic networks.

Now, regarding arbitrary events φ⊆Ω, the issue is still open. If we use the optimal
transformation OT , the following proposition states that the obtained joint possibility
distribution does not guarantee to dominate the joint probability distribution.

Proposition 5. Let OT be the optimal probability-possibility transformation. There
may exist a standard Bayesian network BN encoding a joint probability distribution
denoted pBN . Let PN be a possibilistic network such that PN= OT (BN ) and πPN
be the joint possibility distribution encoded byPN . Then there may exist an event φ⊆Ω
such that

ΠPN (φ) 6≥PBN (φ)

The following counter-example shows that ΠPN (φ)≥PBN (φ) is not guaranteed when
using the optimal transformation OT .

Example 3. Let BN be the Bayesian network of Figure 3 over two variables A and B
having the domains DA={a1, a2} and DB={b1, b2, b3} respectively.

A

B

A p(A) π(A)
a1 .6 1
a2 .4 .4

A B p(B|A) π(B|A)
a1 b1 .6 1
a1 b2 .3 .4
a1 b3 .1 .1
a2 b1 .5 1
a2 b2 .3 .5
a2 b3 .2 .2

Fig. 3. Example of a Bayesian network BN and
the possibilistic networkPN obtained fromBN
using the optimal transformation OT .

A B p(A,B) π(A,B)

a1 b1 .36 1
a1 b2 .18 .4
a1 b3 .06 .1
a2 b1 .2 .4
a2 b2 .12 .2
a2 b3 .08 .08

Fig. 4. Joint probability and possibility
distributions encoded by the networks
BN and PN of Fig. 3.

The joint distributions encoded by the networks BN and PN are given in Figure 4.
From Figure 4, one can compute P (b3)=.06+.08=.14>Π(b3)=max(.1, .08)=.1.

Example 3 clearly shows that the transformation OT does not guarantee that when
transforming a Bayesian network to a possibilistic network, the underlying joint possi-
bility distribution dominates the corresponding probability distribution.
Now, how about the order of interpretations encoded by a credal network when it is
transformed into a possibilistic network? The following proposition answers this ques-
tion. Recall that the objective here is to check if the order of interpretations induced by
IPCN (the joint IPD encoded by the credal network CN ) is preserved in the obtained
joint possibility distribution πPN encoded by the possibilistic network PN .
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Proposition 6. Let TR be a transformation from credal networks to possibilistic ones.
Then there exists a credal network CN and two interpretations ωi∈Ω and ωj∈Ω such
that

pCN (ωi) < p
CN

(ωj) but πPN (ωi) ≥ πPN (ωj).

where p
CN

and pCN denote lower and upper bounds induced by CN and πPN denotes
the joint possibility distribution induced by PN using the transforamtion of Defini-
tion 6. The following gives a counter-example.

Example 4. Let CN be the credal network of Figure 5 over two disconnected variables A and
B. Note that the IPD IP (A) in CN is a permutation5 of the IPD of B. Hence, the transforma-
tion of IP (A) and IP (B) by TR gives π(A) and π(B) where π(B) is also a permutation of
π(A). In this example, since TR is assumed to preserve the partial order of interpretations, we
have 1>α1>α2>α3. The probability and possibility degrees of interpretations a1b3 and a2b2 are

A B

A IP (A) π(A)
a1 [.36, .4 ] 1
a2 [.26, .26] α1

a3 [.24, .24] α2

a4 [ .1, .14] α3

B IP (B) π(B)
b1 [ .1, .14] α3

b2 [.26, .26] α1

b3 [.24, .24] α2

b4 [.36, .4 ] 1

Fig. 5. Counter-example for Proposition 6.

p(a1b3)=0.36∗0.24=0.0864 and p(a2b2)=0.26∗0.26=0.0676. Clearly, p(a1b3)>p(a2b2). Now,
π(a1b3)=min(α2, 1) and π(a2b2)=min(α1, α1) then, π(a1b3)<π(a2b2). It is clear that the rel-
ative order of interpretations is reversed whatever is the used transformation in the ordinal setting.
In the same way, in the product-based possibilistic setting, the relative order of interpretations can
not be preserved by any transformation.

Up to now, the findings of this paper are rather negative but transformations from credal
networks into possibilistic ones can be very helpful for certain types of queries in credal
networks as it is shown in the following sections.

5.2 MAP inference in credal networks through credal-possibilistic network
transformation

Inference in probabilistic graphical models generally consists in computing the proba-
bility of an event. In credal networks, this equivalently comes down to computing lower
or upper probabilities of an event of interest. Let A={A1, A2...An} be the set of vari-
ables of the probabilistic model. Let O⊆A be the set of observed variables and let o be
an instantiation of observation variables O. Let alsoQ⊆A be the set of query variables
and let q be instantiation of the query variables. There are three main query types when
reasoning with belief graphical models:

– Computing the probability of an event q of interest (Pr) given an evidence o.
– Computing the most plausible explanation (MPE). Given an observation o of some

variables, the objective is to compute the most probable instantiation q of all the
remaining (unobserved) variables Q. Note that here O∪Q=A and Q∩O=∅.

5 The permutation property of probability-possibility transformations is discussed in [14].
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– Computing the maximum a posteriori (MAP ). Given some observations o of the
values of some variables O, the objective is to compute the most probable instanti-
ation q of the query variablesQ. In MAP queries,Q∩O=∅. Note that MPE queries
are special cases of MAP ones.

In credal networks, the inference problem equivalently comes down to compute either
the lower or the upper bound of an event of interest. As for MPE and MAP queries,
there are different criteria to choose the most probable instantiation of query variables
given the observations. The commonly used criterion in credal networks is the one of
interval-dominance and refers to non-dominated instantiations of query variables.

Definition 7 (Interval-dominance). An instantiation qi of query variables Q domi-
nates another instantiation qj iff P (qi|o)>P (qj |o) where o is an instantiation of obser-
vation variables O.

The following table summarizes complexity results of inference in Bayesian and credal
networks [12].

Query Polytree Bounded treewidth Multiply-connected
Pr Polynomial Polynomial PP-Complete

Bayesian MPE Polynomial Polynomial NP-Complete
Networks MAP NP-Complete NP-Complete NPPP -Complete

Pr NP-Complete NP-Complete NPPP -Complete
Credal MPE Polynomial Polynomial NP-Complete

Networks MAP ΣP
2 -Complete ΣP

2 -Complete NPPP -Hard

It is obvious that even in polytrees, MAP inference is a hard task. In practice, the size
of networks and the set of extreme points of local credal sets is often large. This mo-
tivates approximate inference approaches where the goal is to provide bounds of the
real bounds of probabilities. In this work, we provide a kind of approximate inference
approach for MAP inference in CN s by transforming the credal network CN into a pos-
sibilistic network PN used to answer the queries. Note that the complexity of inference
in possibilistic networks is similar to inference in Bayesian networks.

6 Experimental studies

The objective of this section is to empirically evaluate the accuracy of performing MAP
inference in credal networks by transforming them into possibilistic networks. In order
to evaluate our approach, we carried out a set of experimentations on the well-known
and publicly available credal networks benchmark 6. This latter contains a set of credal
networks with different topologies and parameters in .bif format. Table 2 gives some
details on the networks used in our experimentations. Table 2 shows that the number of
variables in the used networks varies from 6 up to 37. As for variable domains, their
sizes vary between 2 and 8. In this preliminary study, we are interested only in MAP
queries where given some observed variables, the task is to find the most probable val-
ues of some other non observed variables, called query variables. In this experimenta-
tion, we report results where the number of observed variables and the observed values

6 http://ipg.idsia.ch/software/
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Networks Topology # Nodes max domain size
Alarm Multiply-connected 37 4
Insurance Multiply-connected 27 5
Poly Polytree 10, 20, 30 4
Multi Multiply-connected 6, 10, 20 8

Table 2. Credal networks used in the experimentations.

are randomly chosen. The queries concern only one variable chosen randomly. Now, in
order to compare the results of MAP inference in credal networks and their possibilistic
counterpart, each query Q is submitted to a credal network CN then to the correspond-
ing possibilistic network PN obtained from CN . The results are compared through the
accuracy criterion defined as follows:

accuracy(Q1, Q2...Qn) =
1

n

∑
i:1..n

|CNMAP (Qi) ∩ PNMAP (Qi)|
|CNMAP (Qi) ∪ PNMAP (Qi)|

, (11)

where CNMAP (Qi) (resp. PNMAP (Qi)) denotes the results of the query Qi submit-
ted to the network CN (resp. PN ). This criterion evaluates the coincidence between
the results of CN to the MAP queries and the ones of PN .
In Table 3, we provide the accuracy (see Equation 11) of MAP inference achieved
through our credal-possibilistic network transformation approach with respect to the re-
sults of credal networks. More precisely, the columnExact vsAppr provides the accu-
racy of an approximate inference algorithm in credal networks achieved with the GL2U
software7 on each network category. The column Exact vs CD (resp. Exact vs MD)
provides the accuracy of possibilistic networks obtained by our credal-possibilistic net-
work transformation where local tables are transformed using the cumulative distribu-
tion of Equation 10 (resp. Masson and Denoeux’s transformation [11] considering all
the linear extensions). Note also that we evaluated only product-based possibilistic net-
works and the experiments are performed on a few dozen requests on a laptop.
The results of Table 3 clearly show that, on one hand, the credal-possibilistic network

Networks Exact vsAppr Exact vs CD Exact vs MD

Alarm 75% 100% timeout
Insurance 50% 100% timeout
Poly 83% 100% timeout
Multi 90% 38% 48%

Table 3. Credal networks used in the experimentations.

transformation based approach can ensure a high accuracy rate and, on the other hand,
the results are often better than those obtained with an approximate approach.

7 Conclusions

This paper dealt with probability-possibility transformations in the context of credal
networks. We first analyzed some issues related to the commutativity of transforma-
tions with respect to marginalization and conditioning, two main change operations
used for MAP inference. We then proposed an approach allowing to perform MAP

7 http://people.idsia.ch/˜sun/gl2u-ii.htm
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inference in credal networks with a lower computational costs. Finally, we provided
experimental studies showing the efficiency of the proposed approach in terms of ac-
curacy. Future works will deal with extensive experimental studies as well as using our
credal-possibilistic network transformation based approach for achieving classification
with credal networks in real applications.
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