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Abstract

Interval-based possibilistic logic is a flexible setting extend-
ing standard possibilistic logic such that each logical expres-
sion is associated with a sub-interval of [0, 1]. This paper fo-
cuses on the fundamental issue of conditioning in the interval-
based possibilistic setting. The first part of the paper first pro-
poses a set of natural properties that an interval-based con-
ditioning operator should satisfy. We then give a natural and
safe definition for conditioning an interval-based possibility
distribution. This definition is based on applying standard
min-based or product-based conditioning on the set of all as-
sociated compatible possibility distributions. We analyze the
obtained posterior distributions and provide a precise charac-
terization of lower and upper endpoints of the intervals asso-
ciated with interpretations. The second part of the paper pro-
vides an equivalent syntactic computation of interval-based
conditioning when interval-based distributions are compactly
encoded by means of interval-based possibilistic knowledge
bases. We show that interval-based conditioning is achieved
without extra computational cost comparing to conditioning
standard possibilistic knowledge bases.

Introduction
Interval-based uncertainty representations are well-known
frameworks for encoding, reasoning and decision making
with poor information, imprecise beliefs, confidence inter-
vals and multi-source information (Nguyen and Kreinovich
2014; Dubois 2006). In this paper, we deal with interval-
based possibilistic logic (Benferhat et al. 2011) which ex-
tends possibilistic logic (Lang 2001) such that the uncer-
tainty is described with intervals of possible degrees in-
stead of single certainty degrees associated with formulas.
This setting is more flexible than standard possibilistic logic
and allows to efficiently compute certainty degrees associ-
ated with derived conclusions. Target applications are those
where uncertainty is given as intervals (eg. resulting from
different/unreliable sources). An example of application is
sensitivity analysis to study the effects of some variations in
some parameters. Interval-based possibilistic logic is only
specified for static situations and no form of conditioning
has been proposed for updating the current knowledge and
beliefs. Conditioning and belief change are important tasks
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for designing intelligent systems. Conditioning is concerned
with updating the current beliefs when a new sure piece of
information becomes available. In the possibilistic setting,
given a possibilistic knowledge base K or a possibility dis-
tribution π and a new evidence φ, conditioning allows to up-
date the old beliefs, encoded by π or K, with φ. Condition-
ing in the standard possibilistic setting is studied in many
works (Hisdal 1978; L.M. De Campos and Moral 1995;
Dubois and Prade 2006; Fonck 1997; Dubois and Prade
1997). In (Benferhat et al. 2013) the authors dealt with
syntactic hybrid conditioning of standard (point-wise) pos-
sibilistic knowledge bases with uncertain inputs.
In (Benferhat et al. 2011), the authors dealt with inference
issues in the interval-based possibilistic setting but did not
address the conditioning issue. Conditioning operators are
designed to satisfy some properties such as giving prior-
ity to the new information and performing minimal change.
In this paper, we deal with conditioning interval-based pos-
sibility distributions and interval-based possibilistic knowl-
edge bases. The main contributions of the paper are:

i) Proposing a set of natural properties that an interval-based
conditioning operator should satisfy.

ii) Proposing a natural definition of conditioning an interval-
based possibility distribution with a new evidence. This
definition is safe since it takes into account all the com-
patible distributions.

iii) We show that when min-based conditioning is applied
over the set of compatible distributions then the result is
not guaranteed to be an interval-based distribution.

iv) We show that applying product-based conditioning leads
to an interval-based possibility distribution. We provide
the exact computations of lower and upper endpoints of
intervals associated with each interpretation of the condi-
tioned interval-based possibility distribution.

v) Lastly, we propose a syntactic counterpart of conditioning
over interval-based possibilistic bases. The proposed con-
ditioning does not induce extra computational cost. Con-
ditioning an interval-based possibilistic knowledge base
has the same complexity as conditioning a standard pos-
sibilistic knowledge base.

Before presenting our contributions, let us give a brief re-
fresher on standard and interval-based possibilistic logics.



A refresher on standard possibilistic logic
We consider a finite propositional language. We denote by
Ω the finite set of interpretations, and by ω an element of Ω.
φ and ψ denote propositional formulas, and |= denotes the
propositional logic satisfaction relation. Possibility theory is
a well-known uncertainty framework particularly suited for
representing and reasoning with uncertain and incomplete
information (Dubois 2006; 2014). One of the main concepts
of this setting is the one of possibility distribution π which is
a mapping from the set of possible worlds or interpretations
Ω to [0, 1]. π(ω) represents the degree of consistency (or
feasibility) of the interpretation ω with respect to the avail-
able knowledge. By convention, π(ω)=1 means that ω is
fully consistent with the available knowledge, while π(ω)=0
means that ω is impossible. π(ω)>π(ω′) simply means that
ω is more consistent than ω′. π is said to be normalized
if there exists an interpretation ω such that π(ω)=1; oth-
erwise it is said sub-normalized. Possibility degrees are in-
terpreted either i) qualitatively (in min-based possibility the-
ory) where only the ”ordering” of the values is important, or
ii) quantitatively (in product-based possibility theory) where
the possibilistic scale [0,1] is numerical.
Another main concept in possibility theory is the one of pos-
sibility measure, denoted Π(φ), and defined as follows:

Π(φ) = max{π(ω) : ω ∈ Ω, ω |= φ}. (1)

A possibilistic base K={(ϕi, αi) : i=1, .., n} is a set of
possibilistic formulas, where ϕi is a propositional formula
and αi∈[0, 1] is a valuation of ϕi representing its certainty
degree. Each piece of information (ϕi,αi) can be viewed as
a constraint which restricts a set of possible interpretations.
If an interpretation ω satisfies ϕi then its possibility degree is
equal to 1, otherwise it is equal to 1−αi (the more ϕi is cer-
tain, the less ω is possible). Given a possibilistic base K, we
can generate a unique distribution where interpretations ω
satisfying all formulas inK have the highest possible degree
π(ω)=1, whereas the others are pre-ordered with respect to
the highest formulas they falsify. More formally: ∀ω∈Ω,

πK(ω) =

{
1 if ∀(ϕi, αi) ∈ K,ω |= ϕi;
1−max{αi : (ϕi, αi) ∈ K,ω 2 ϕi} otherwise.

(2)

A refresher on interval-based possibilistic logic
This section gives a refresher on interval-based possibilis-
tic logic (Benferhat et al. 2011) where the uncertainty is
not described with single values but by intervals of possible
degrees. We use closed sub-intervals I⊆[0, 1] to encode the
uncertainty associated with formulas or interpretations. If I
is an interval, then we denote by I and I its upper and lower
endpoints respectively. When all I’s associated with inter-
pretations (resp. formulas) are singletons (namely I = I),
we refer to standard (or point-wise) distributions (resp. stan-
dard possibilistic bases).

Interval-based possibility distributions
Let us recall the definition of an interval-based distribution:
Definition 1. An interval-based possibility distribution, de-
noted by Iπ, is a function from Ω to I. Iπ(ω)=I means that

the possibility degree of ω is one of the elements of I . Iπ is
said to be normalized if ∃ω∈Ω such that Iπ(ω)=1.

An interval-based possibility distribution is viewed as a
family of compatible standard possibility distributions de-
fined as follows:
Definition 2. Let Iπ be an interval based possibility distri-
bution. A normalized possibility distribution π is said to be
compatible with Iπ iff ∀ω∈Ω, π(ω)∈Iπ(ω).
We denote by C(Iπ) the set of all compatible possibility
distributions with Iπ. In the rest of this paper, we consider
only coherent interval-based possibility distributions, where
∀ω∈Ω, ∀α∈Iπ(ω), there exists a compatible possibility dis-
tribution π∈C(Iπ) such that π(ω)=α.
Given Iπ, we define an interval-based possibility degree of
a formula φ as follows:

IΠ(φ) = [min{Π(φ) : π ∈ C(Iπ)}, max{Π(φ) : π ∈ C(Iπ)}]
(3)

From interval-based possibilistic bases to
interval-based possibility distributions
The syntactic representation of interval-based possibilistic
logic generalizes the notion of a possibilistic base to an
interval-based possibilistic knowledge base.
Definition 3. An interval-based possibilistic base, denoted
by IK, is a set of formulas associated with intervals: IK =
{(ϕ, I), ϕ ∈ L and I is a closed sub-interval of [0,1]}

As in standard possibilistic logic, an interval-based
knowledge base IK is also a compact representation of an
interval-based possibility distribution IπIK (Benferhat et al.
2011).
Definition 4. Let IK be an interval-based possibilistic base.
Then:

IπIK(ω) =
[
IπIK(ω), IπIK(ω)

]
where:

IπIK(ω) =

{
1 if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−max{I : (ϕ, I) ∈ K,ω 2 ϕ} otherwise.

and

IπIK(ω) =

{
1 if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−max{I : (ϕ, I) ∈ K,ω 2 ϕ} otherwise.

Definition 4 extends the one given by Equation 2 when I=I .
Example 1. Let IK={(a∧b, [.4, .7]), (a∨¬b, [.6, .9])} be
an interval-based possibilistic base. The interval-based pos-
sibility distribution corresponding to IK according to Defi-
nition 4 is given in Table 1.

ω IπIK (ω)
ab [ 1, 1 ]

a¬b [.3, .6]
¬ab [.1, .4]
¬a¬b [.3, .6]

Table 1: Example of an interval-based possibility distribu-
tion induced by an interval-based possibilistic base.



Properties of interval-based conditioning
In standard possibility theory, conditioning is concerned
with updating the current knowledge encoded by a pos-
sibility distribution π when a completely sure event (ev-
idence) is observed. There are several definitions of the
possibilistic conditioning (Hisdal 1978; L.M. De Campos
and Moral 1995; Dubois and Prade 2006; Fonck 1997;
Dubois and Prade 1997). In the quantitative setting, the
product-based conditioning (Shafer 1976) is the most used
one and it is defined as follows (for Π(φ) 6= 0):

π(ωi|∗φ) =

{
π(ωi)
Π(φ) if ωi |= φ;
0 otherwise.

(4)

The min-based conditioning is defined as follows (Hisdal
1978):

π(ωi|mφ) =

{
1 if π(ωi)=Π(φ) and ωi |= φ;
π(ωi) if π(ωi)< Π(φ) and ωi |= φ;
0 otherwise.

(5)
When Π(φ)=0, then by convention ∀ω∈Ω, π(ω|�φ)=1 for
both |�=|m and |�=|∗.

This section gives natural properties that a conditioning
operation should satisfy when interval-based possibility dis-
tributions are used. Let us first fix the values of Iπ(.|φ) for
degenerate possibility distributions Iπ when IΠ(φ)=0 or
IΠ(φ)=0. If IΠ(φ)=0 then by convention, as in standard
possibility distributions, ∀ω∈Ω, Iπ(ω|φ)=[1, 1]. Similarly,
if IΠ(φ)=0 (and IΠ(φ)>0) then ∀ω∈Ω,

Iπ(ω|φ) =

{
[0, 0] if Iπ(ω)=[0, 0] and ω 2 φ;
[0, 1] otherwise.

In the rest of this paper, we assume that Iπ is not degenerate
with respect to φ. Namely, we assume first that IΠ(φ)>0. In
an interval-based setting, a conditioning operator “ | ” should
satisfy the following suitable properties:

(IC1) Iπ(.|φ) should be an interval-based distribution.
(IC2) ∀ω∈Ω, if ω2φ then Iπ(ω|φ)=[0, 0].

(IC3) ∃ω∈Ω such that ω|=φ and Iπ(ω|φ)=1.
(IC4) If ∀ω 2 φ, Iπ(ω)=[0, 0] then Iπ(.|φ) = Iπ.
(IC5) ∀ω∈Ω, if ω|=φ and Iπ(ω)=[0, 0] then
Iπ(ω|φ)=[0, 0].

(IC6) ∀ω|=φ and ∀ω′|=φ, if Iπ(ω)<Iπ(ω′) then
Iπ(ω|φ)<Iπ(ω′|φ).
(IC7) ∀ω|=φ, ∀ω′|=φ, if Iπ(ω)=Iπ(ω′) then Iπ(ω|φ)=
Iπ(ω′|φ).

Property IC1 simply states that the result of applying condi-
tioning over an interval-based possibility distribution should
result in an interval-based possibility distribution. Property
IC2 requires that when the new sure piece of information φ
is observed then any interpretation that is a counter-model of
φ should be completely impossible. Property IC3 states that
there exists at least a compatible possibility distribution π′
of Iπ(.|φ) where Π′(φ)=1. Property IC4 states that if φ is
already fully accepted (namely, all counter-models of φ are
already impossible) then Iπ(.|φ) should be identical to Iπ.

Property IC5 states that impossible interpretations (even if
they are models of φ) remain impossible after conditioning.
Properties IC6 and IC7 express a minimal change principle.
IC6 states that the strict relative ordering between models
of φ should be preserved after conditioning. IC7 states that
equal models of φ should remain equal after conditioning.

Semantic-based conditioning using compatible
possibility distributions

Definitions and property-based analysis
This section provides a natural and safe definition of con-
ditioning an interval-based possibility distribution using the
set of compatible possibility distributions. More precisely,
conditioning an interval-based possibility distribution Iπ
comes down to apply standard min-based or product-based
conditioning on the set of all compatible possibility distribu-
tions C(Iπ) associated with Iπ. Namely,

Definition 5. The compatible-based conditioned interval-
based possibility distribution is defined as follows: ∀ω∈Ω,
Iπ(ω|�φ)={π(ω|�φ) : π ∈ C(Iπ)}, where |� is either |∗ or
|m given by Equations (4) and (5) respectively.

Conditioning according to Definition 5 is safe since it re-
lies on all the compatible distributions as opposed to a possi-
ble approach when only an arbitrary set of compatible distri-
butions is used. Note that the idea of compatible-based con-
ditioning in the interval-based possibilistic setting is some-
how similar to conditioning in credal sets (Levi 1980) and
credal networks (Cozman 2000) where the concept of con-
vex set refers to the set of compatible probability distribu-
tions composing the credal set. Regarding the computational
cost, conditioning in credal sets is done on the set of extreme
points (edges of the polytope representing the credal set) but
their number can reach N ! where N is the number of inter-
pretations (Wallner 2007).
The first important issue with compatible-based condition-
ing of Definition 5 is whether conditioning an interval-based
distribution Iπ with an evidence φ gives an interval-based
distribution, namely whether the first property (IC1) is sat-
isfied or not. The result is different using product-based or
min-based conditioning. In case of min-based condition-
ing, Observation 1 states that the result of compatible-based
conditioning using Definition 5 is not guaranteed to be an
interval-based possibility distribution.

Observation 1 Let |m be the conditioning operator given
by Equation 5. Then, there exists an interval-based possibil-
ity distribution, a propositional formula φ, and an interpre-
tation ω such that Iπ(ω|mφ) is not an interval.

Example 2 (Counter-example).
Let Iπ be the normalized interval-based distribution of Ta-
ble 2. Let φ=a be the new evidence. The compatible-based
conditioned distribution Iπ(.|mφ) is obtained by condition-
ing Iπ following Definition 5 with |� = |m.

From Table 2, Iπ(a¬b|mφ) is not an interval. In-
deed, one can check that for every compatible dis-
tribution π of Iπ, such that π(a¬b)∈[.4, .7[ we have



ω∈Ω Iπ(ω) ω∈Ω Iπ(ω|mφ)
ab [.7, .9] ab [ 1, 1 ]

a¬b [.4, .7] a¬b [.4, .7]∪{1}
¬ab [ .8, 1] ¬ab [ 0, 0 ]
¬a¬b [.4, .7] ¬a¬b [ 0, 0 ]

Table 2: Counter-example for Observation 1.

π(a¬b|mφ)∈[.4, .7[ (since π(ab)≥.7). Now, for com-
patible distributions where π(a¬b)=.7 we have ei-
ther π(a¬b|mφ)=.7 (if π(ab)>.7) or π(a¬b|mφ)=1 (if
π(ab)=.7). Hence, π(a¬b|mφ)=[.4, .7]∪{1} which is not an
interval.

Contrary to the min-based conditioning, using the
product-based one, conditioning an interval-based distribu-
tion Iπ with φ using Equation 4 gives an interval-based dis-
tribution.

Proposition 1. Let Iπ be an interval-based distribution.
Let φ be the new evidence and |∗ be the standard product-
based conditioning given by Equation 4. Then ∀ω∈Ω,
Iπ(ω|∗φ)=[minπ∈C(IπIK)(π(ω|∗φ)),maxπ∈C(IπIK)(π(ω|∗φ))]
is an interval.

In the rest of the paper, we only consider product-based
conditioning. Hence, we only use Iπ(.|φ) and π(.|φ) instead
of Iπ(.|∗φ) and π(.|∗φ) to avoid heavy notations. The fol-
lowing proposition states that the compatible-based condi-
tioning given in Definition 5 satisfies properties IC1-IC7.

Proposition 2. Let Iπ be a normalized interval-based pos-
sibility distribution. Let φ be the new evidence such that
IΠ(φ)>0. Then the updated interval-based possibility dis-
tribution computed according to Definition 5 satisfies prop-
erties IC1-IC7.

Computing lower and upper endpoints of Iπ(.|φ)

The objective now is to determine the lower and up-
per endpoints of Iπ(.|φ). Let us start with a particu-
lar case of interval-based distributions Iπ where in each
compatible distribution π∈C(Iπ), φ is accepted (namely,
Π(φ)>Π(¬φ)). In this case, the computation of Iπ(.|φ) is
immediate:

Proposition 3. Let Iπ be an interval-based possibility
distribution and φ be a propositional formula such that
IΠ(φ)=1 and IΠ(¬φ)<1. Then
- If there is only one interpretation ω∗∈Ω
such that ω∗|=φ and Iπ(ω∗)=1 then

Iπ(ω|φ)=

{
[1, 1] if ω = ω∗

Iπ(ω) if ω 6= ω∗ and ω |= φ
[0, 0] otherwise.

- Otherwise, ∀ω∈Ω,

Iπ(ω|φ)=

{
Iπ(ω) if ω |= φ
[0, 0] otherwise (ω 2 φ)

We now consider the complex case where IΠ(¬φ)=1,
namely there exists at least a compatible possibility dis-
tribution π where φ is not accepted. Recall that by Equa-

tion (4) ∀ω∈φ, π(ω|φ)=
π(ω)

Π(φ)
. Therefore, intuitively to get,

for instance, the lower endpoint Iπ(ω|φ), it is enough to se-
lect a compatible distribution π that provides the smallest
value for π(ω) (namely, if possible π(ω)=Iπ(ω)) and the
largest value for Π(φ) (namely, if possible Π(φ)=IΠ(φ)).
The following two propositions give these bounds depend-
ing whether there exist a unique interpretation or several in-
terpretations having their upper endpoints equal to IΠ(φ).

Proposition 4. Let Iπ be an interval-based distribution
such that IΠ(¬φ)=1. If there exist more than one model of
φ having their upper endpoints equal to IΠ(φ), then ∀ω∈Ω:

Iπ(ω|φ) =


[
Iπ(ω)

IΠ(φ)
,min

(
1,
Iπ(ω)

IΠ(φ)

)]
if ω |= φ

[0, 0] otherwise

The next proposition concerns the particular situation
where there exists exactly one interpretation ω∗, model of φ,
such that Iπ(ω∗)=IΠ(φ). In this case, comparing to Propo-
sition 4, only the lower endpoint of the interpretation ω∗ will
differ. More precisely:

Proposition 5. Let Iπ be an interval-based possibility
distribution such that IΠ(¬φ)=1. Assume that there ex-
ists exactly one interpretation ω∗, model of φ, such that
Iπ(ω∗)=IΠ(φ).

• If ω 6=ω∗ then Iπ(ω|φ) is the same as the one given in
Proposition 4, namely:

Iπ(ω|φ)=


[
Iπ(ω)

IΠ(φ)
,min

(
1,
Iπ(ω)

IΠ(φ)

)]
if ω |= φ

[0, 0] otherwise
• If ω=ω∗, let secondbest(Iπ)=max{Iπ(ω′) : ω′|=φ and
Iπ(ω′) 6=IΠ(φ)}. Then:

Iπ(ω|φ)=


[1, 1] if secondbest(Iπ)=0[

min(1,
Iπ(ω)

secondbest(Iπ)
), 1

]
otherwise

Example 3. Let Iπ be the normalized interval-based distribu-
tion of Table 3. Let φ=¬a be the new evidence. In this example,
we face the situation where we have exactly one interpretation
where Iπ(ω∗)=IΠ(φ)=.6. Hence, according to Proposition 5,
secondbest(Iπ)=.4.

ω∈Ω Iπ(ω) ω∈Ω Iπ(ω|φ)
ab [ 1, 1 ] ab [ 0, 0 ]

a¬b [.3, .6] a¬b [ 0, 0 ]
¬ab [.1, .4] ¬ab [.1/.6, 1]
¬a¬b [.3, .6] ¬a¬b [.3/.4, 1]

Table 3: Example of conditioning an interval-based possibil-
ity distribution using Proposition 5.

Next section provides the syntactic counterpart of the
compatible-based conditioning.

Syntactic characterization of
compatible-based conditioning

Given an interval-based knowledge base IK and a new ev-
idence φ, conditioning at the syntactic level comes down
to altering IK into IKφ such that the induced posterior



interval-based possibility distribution IπIKφ
equals the pos-

terior interval-based possibility distribution IπIK(.|φ) ob-
tained by conditioning IπIK with φ as illustrated in Figure
1.

IK IπIK

IKφ IπIK(.|φ)IπIKφ

Definition 4

Syntactic
conditioning

with φ

Definition 4 ?

Conditioning
on φ using

Propositions 4 and 5

Figure 1: Equivalence of semantic and syntactic conditionings.

The aim of this section is then to compute a new interval-
based knowledge base, denoted for the sake of simplicity by
IKφ, such that:

∀ω ∈ Ω, IπIK(ω|φ) = IπIKφ
(ω),

where IπIKφ
is the interval-based distribution associated

with IKφ using Definition 4, and IπIK(.|φ) is the result of
conditioning IπIK using the compatible-based conditioning
presented in the previous section (Propositions 4 and 5).

To achieve this aim, we need to provide methods that di-
rectly operate on the interval-based knowledge base IK:
• to check whether IΠIK(φ)=0 (resp. IΠIK(φ)=0) or not,

• to check whether IΠIK(¬φ)=1 or not,

• to compute IΠIK(φ) and IΠIK(φ),
• to compute secondbest(IπIK),
• to check whether there exists a unique interpretation ω∗

such that Iπ(ω∗)=IΠ(φ), and lastly
• to compute IKφ.

Checking whether IΠIK(φ)=0 (resp. IΠIK(φ)=0)
or not
Recall that an interval-based possibility distribution where
IΠIK(φ)=0 expresses a very strong conflict with the evi-
dence φ. Namely, IK strongly contradicts the formula φ.
Proposition 6. Let IK be an interval-based possibilistic
base and IπIK be its associated interval-based distribution.
Then,
i) IΠIK(φ)=0 iff {ψ : (ψ, I)∈IK and I=[1, 1]} ∪ {φ} is

inconsistent. In this case, IKφ=∅.
ii) IΠIK(φ)=0 iff {ψ : (ψ, I)∈IK and I=1} ∪ {φ} is in-

consistent. In this case, IKφ={(φ, [1, 1]), (¬φ, [0, 1])}.
Example 4. Let IK={(¬a, [1, 1]), (a∨¬b, [.4, .6])} be an
interval-based possibilistic knowledge base. The associated
interval-based possibility distribution is given in Table 4. Let
φ=a be the new evidence.

In this example, IΠIK(φ)=0 since {ψ : (ψ, I)∈IK and
I=[1, 1]}∪{φ}={¬a}∪{a} is inconsistent. Hence, IKφ=∅.

In the following, we assume that IK is such that φ is
somewhat possible, hence its associated interval-based pos-
sibility distribution IπIK (namely IΠIK(φ)>0).

ω∈Ω IπIK(ω) ω∈Ω IπIK(ω|φ)
ab [ 0, 0 ] ab [ 1, 1 ]
a¬b [ 0, 0 ] a¬b [ 1, 1 ]
¬ab [.4, .6] ¬ab [ 1, 1 ]
¬a¬b [ 1, 1 ] ¬a¬b [ 1, 1 ]

Table 4: Interval-based possibility distribution induced by
the interval-based possibilistic base of Example 4.

Checking whether IΠIK(¬φ) 6=1 or not
This subsection shows how to syntactically check if φ is ac-
cepted or not, namely whether IΠIK(¬φ)=1 or not.
Proposition 7. Let IK be an interval-based possibilistic
base and IπIK be its associated possibility distribution.
Then: IΠIK(¬φ)6=1 iff {ψ : (ψ, I)∈IK and I>0} ∪ {¬φ}
is inconsistent. In this case: IKφ=IK ∪ {(φ, [1, 1])}.

Computing IΠIK(φ) and IΠIK(φ)

The computation of IΠIK(φ) and IΠIK(φ) comes down to
computing the inconsistency degrees of two particular stan-
dard possibilistic knowledge bases (considering only lower
and upper endpoints of intervals associated with formulas)
as it is stated by the following proposition:
Proposition 8. Let IK be an interval-based knowledge
base. Let IK={(ψ, I) : (ψ, I)∈IK} and IK={(ψ, I) :
(ψ, I)∈IK}. Then:

IΠIK(φ)=1− Inc(IK ∪ {(φ, 1)}) and
IΠIK(φ)=1− Inc(IK ∪ {(φ, 1)}).
In Proposition 8, Inc(K) is the inconsistency degree of

a standard possibilistic knowledge base K and it is defined
with the notion of α-cut by:

Inc(K) =

{
0 If K0 is consistent
max{α : Kα is inconsistent} otherwise

and Kα is defined by Kα={ϕ : (ϕ, β) ∈ K and β≥α}.

Checking the uniqueness of models of φ having
upper endpoints equal to IΠIK(φ)

We need to show how to syntactically check whether, or not,
there exists a unique interpretation ω∗, model of φ, such
that IπIK(ω∗)=IΠIK(φ). If an interpretation ω, model of
φ, is such that IπIK(ω)=IΠIK(φ) then ω is a model of
Φ={ψ : (ψ, I)∈IK and I>Inc(IK ∪ {(φ, 1)})} ∪ {φ}.
Besides, if for some ω′ 6=ω, IπIK(ω′)<IΠIK(φ) then this
means that ω′ falsifies at least one formula from Φ ∪ {φ}.
Additionally, assume that there exists a unique model ω∗ of
φ such that IπIK(ω∗)=IΠIK(φ). We are interested to know
whether ∀ω′ 6=ω∗, Iπ(ω′)=[0, 0]. It is enough to check that
all formulas in {ψ : (ψ, I)∈IKand I>Inc(IK ∪ {(φ, 1)})}
have their associated interval I equal to [1,1]. The main re-
sults of this section are summarized in the following propo-
sition:
Proposition 9. Let IK be an interval-based knowledge
base. Let IπIK be its associated possibility distribution. Let
Φ={ψ: (ψ, I)∈IK and I>Inc(IK∪{(φ, 1)})}∪{φ}. Then:



• Φ ∪ {φ} admits a unique model iff there exists
a unique interpretation ω∗, model of φ, such that
IπIK(ω∗)=IΠIK(φ).

• Φ ∪ {φ} admits a unique model and each formula in Φ
has [1,1] as certainty-based interval weight iff there exists
ω∗ model of φ such that Iπ(ω∗)=IΠIK(φ) and ∀ω′ 6=ω∗,
Iπ(ω′)=[0, 0].

Computing secondbest(IK)

Recall that IK={(ψ, I) : (ψ, I)∈IK} and that
secondbest(IK) is only computed in the situation
where there exists exactly one interpretation ω∗, model
of φ, such that IΠ(φ)=Iπ(ω∗). In order to easily define
secondbest(IπIK), we first let L={α1,. . ., αn} to be the
different degrees present in IK, with α1>. . .>αn. Then
we define (Aα1

, Aα2
, . . ., Aαn) as the WOP (well ordered

partition) associated with IK, obtained by letting:

Aαi = {(ψ, β) : (ψ, β) ∈ IK and β = αi}. (6)

Namely, Aαi is the subset of IK composed of all weighted
formulas having a certainty degree equal to αi. Then:
Proposition 10. Assume that there exists exactly one inter-
pretation ω∗, model of φ, such that IΠIKφ(φ)=IπIKφ(ω∗).
Let (Aα1

, Aα2
, . . . , Aαn) be the WOP associated with

IK, where Aαi ’s are given by Equation (6). De-
fine secondbest(IK)=1 − min{αi : αi>Inc(IK ∪
{(φ, 1)}) and Aαi is a non-tautological formula }. Then
secondbest(IK)=secondbest(IπIK).

Computing IKφ

We are now ready to give the syntactic computation of IKφ

when IΠIK(¬φ) = 1. In order to simplify the notations, we
now denote:

i) α=1− 1− I
1− Inc(IK ∪ {(φ, 1)}) iv) Φ={ψ: (ψ, I)∈IK, and

I>Inc(IK ∪ {(φ, 1)})}
ii) α=1− 1− I

1− Inc(IK ∪ {(φ, 1)})

iii) 2α=1− 1− I
secondbest(IK)

The two following propositions provide the syntactic com-
putation of IKφ depending whether Φ ∪ {φ} admits more
than one model or not:
Proposition 11 (General case: Φ ∪ {φ} has more than
one model). Assume that Φ ∪ {φ} has strictly more than
one model. Then: IKφ={(φ, [1, 1])} ∪ {(ψ, [max (0, α) , α]) :
(ψ, I)∈IK, and I≥Inc(IK ∪ {(φ, 1)})}.
Proposition 12 (Particular case: Φ ∪ {φ} has exactly one
model). Assume that Φ ∪ {φ} admits a unique model.

1. If each formula in Φ has an interval equal to [1,1],
then: IKφ={(ψ, [1, 1]):(ψ,[1, 1])∈IK and Inc(IK ∪
{φ, 1})<1}∪{(φ,[1, 1])}.

2. If there exists a formula in Φ with a cer-
tainty interval different from [1,1]. Then:
IKφ={(φ,[1, 1])}∪{(ψ,[max (0, α) , α]) : (ψ, I)∈IK,
and I>Inc(IK ∪ {(φ, 1)})} ∪ {(ψ, [0,max(0, 2α)]) :
(ψ, I)∈IK, and I=Inc(IK ∪ {(φ, 1)}) > 0}.

Note that item 1 corresponds to the case where
secondbest(IK)=0.

Example 5. Let us consider Example 1 with the
new evidence being φ=¬a. From this example,
Φ={a∨¬b} and Φ∪{φ} has exactly one model. We
face the case of Proposition 12, 2nd item. Therefore,
IKφ={(¬a, [1, 1]), (a∧b, [0, .1/.4]), (a∨¬b, [0, .5/.6])}.
Computing IπIKφ

according to Definition 4, gives exactly
the same distribution as the one of Example 3 when
conditioned on φ=¬a using Propositions 4 and 5.

Algorithm 1 summarizes the main steps for computing IKφ.

Algorithm 1 Syntactic counterpart of conditioning
Input: An interval-based logic base IK and a new evidence φ
Output: A new interval-based possibilistic base IKφ such that
∀ω∈Ω, IπIKφ(ω)=IπIK(ω|φ).
Let A={ψ: (ψ, I)∈IK and I=[1, 1]}∪{φ}
Let B={ψ: (ψ, I)∈IK and I=1}∪{φ}
if A is inconsistent then
IKφ=∅ (Prop. 6).

else if B is inconsistent then
IKφ={(φ, [1, 1]), (¬φ, [0, 1])} (Prop. 6).

else if {ψ : (ψ, I) ∈ IK} ∪ {¬φ} is inconsistent then
IKφ = IK ∪ {(φ, [1, 1])} (Prop. 7).

else if Φ ∪ {φ} admits a unique model then
if each formula ψ in Φ has a certainty interval equal to [1,1]
in IKφ then
IKφ={(ψ, [1, 1]) : (ψ, [1, 1])∈IK and Inc(IK)<1} ∪
{(φ, [1, 1])} (Prop. 12).

else
IKφ={(φ, [1, 1])}∪{(ψ, [max (0, α) , α]):(ψ, I)∈IK,

and I>Inc(IK ∪ {(φ, 1)})} ∪ {(ψ, [0,max(0, 2α)]) :
(ψ, I)∈IK, and I=Inc(IK ∪ {(φ, 1)}) > 0} (Prop. 12).

end if
else
IKφ={(φ, [1, 1])} ∪ {(ψ, [max (0, α) , α]) : (ψ, I)∈IK,

and I≥Inc(IK∪{(φ, 1)})} (Prop. 11).
end if

The nice features of the proposed conditioning is that:
i) It extends the one used in standard possibility theory:
namely when all intervals I , associated with interpretations,
are singletons, then ∀ω∈Ω, Iπ(ω|φ)= [π(ω|φ),π(ω|φ)]
where π is the unique compatible distribution associated
with Iπ.
ii) When formulas in IK are in a clausal form then comput-
ing the conditioning of an interval-based possibilistic base
has the same complexity as the one of conditioning standard
possibilistic knowledge bases (namely, when I’s are single-
tons). Indeed, for standard possibilistic knowledge bases K
the hardest task consists in computing Inc(K) which can
be achieved in time in O(log2(m).SAT ) where SAT is a
satisfiability test of a set of propositional clauses and m is
the number of different weights in K. For an interval-based
knowledge base, the main (hard) tasks in computing IKφ

are:

• The computation of Inc(IK∪{(φ,1)}) and Inc(IK ∪
{(φ, 1)}). This is done in O(log2(m).SAT ) where SAT



is a satisfiability test of a set of propositional clauses and
m is the number of different weights in IK and IK,

• The test whether the sub-bases A or B are consistent or
not. This needs only one call to a SAT solver.

• The computation of secondbest(Iπ)=1-min{αi:
αi>Inc(IK∪{(φ,1)}) and Aαi is a non-tautological
formula} (see Proposition 10). This needs: i) the
computation of Inc(IK∪{(φ,1)}), done again in
O(log2(m).SAT ), and ii) checking for the lowest αi
such that Aαi is a non-tautological formula, which is
done in linear time (w.r.t the number of clauses in IK).

• Lastly, checking whether Φ={ψ: (ψ, I)∈IK, and
I>Inc(IK∪{(φ, 1)})}∪{φ} admits a unique model.
This can be done using two calls to a SAT solver. Indeed,
checking whether there exists a unique interpretation ω∗
such that IπIK(ω∗)=IΠIK(φ) comes down to checking
whether the formula Φ∪{φ} has a unique model. If this
formula is under the clausal form, then this problem is
the one of Unique-SAT. This can be done by launching
two calls to a SAT solver: the first call is applied to the
formula Φ. When it returns a model ω (recall that Φ∪{φ}
is consistent), then a second call to a SAT solver with
the formula Φ∧¬ω is performed (where ¬ω is a clause
composed of the disjunction of literals that are not true
in ω). If a SAT solver declares that the extended formula
has no model, then we conclude that there exists a
unique interpretation ω∗ such that IπIK(ω∗)=IΠIK(φ).
Otherwise the formula Φ∪{φ} has at least two models.

To summarize, the overall complexity is:
Proposition 13. Computing IKφ is O(log2(m).SAT )
where SAT is a satisfiability test of a set propositional
clauses and m is the number of different weights in IK and
IK.

Proposition 13 shows that the syntactic computation of
conditioning an interval-based possibilistic base has ex-
actly the same computational complexity of computing
product-based conditioning of standard possibilistic knowl-
edge bases.

Conclusions
Interval-based possibilistic logic offers an expressive and a
powerful framework for representing and reasoning with un-
certain information. This setting was only specified for static
situations and no form of conditioning has been proposed
for updating the knowledge and the beliefs. In this paper,
we showed that conditioning can be handled in a natural
and safe way and without extra computational cost. More
precisely, we proposed a compatible-based conditioning of
interval-based possibilistic knowledge bases. This condi-
tioning reflects viewing an interval-based possibilistic base
as a set of compatible bases. We showed that when min-
based conditioning is applied over the set of compatible dis-
tributions then the obtained result is not guaranteed to be
an interval possibility distribution while applying product-
based conditioning on the set compatible possible distri-
butions gives an interval-based possibility distribution. We

provided the exact computations of lower and upper end-
points of intervals associated with each interpretation of the
conditioned interval-based possibility distributions. Lastly,
we provided a syntactic counterpart of the compatible-based
conditioning that does not imply extra computational cost.
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