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Abstract—This paper focuses on belief graphical models and
provides an efficient approximation of MAP inference in credal
networks using probability-possibility transformations. We first
present two transformations from credal networks to possibilistic
ones that are suitable for MAP inference in credal networks.
Then we present four criteria to evaluate our approximate MAP
inference. The last part of the paper provides experimental
studies that compare our approach with both standard exact
and approximate MAP inference in credal networks. The paper
also provides a brief analysis of MAP inference complexity
using possibilistic networks and the results definitely open new
perspectives for MAP inference in credal networks.

I. INTRODUCTION

MAP (Maximum A Posteriori) inference in probabilistic
graphical models is a problem of great interest and has been
investigated for years [13], [14], [19], [21], [22]. Thus, there
exists a variety of methods and algorithms to compute the
configuration of query variables with the highest probability
given some observed variables. However, Bayesian networks,
which are the most widely used probabilistic graphical models,
might seem unfit for representing some kinds of information
such as the knowledge of a group of experts, or incom-
plete knowledge. This is why more general frameworks are
needed for allowing more flexibility especially regarding the
model parameters. Credal networks [4] have been designed to
generalize Bayesian networks and offer more expressiveness
as they represent uncertain information by means of credal
sets instead of single probability values. The problem when
reasoning with such general and expressive models is that
they entail higher computational complexity. Methods and
algorithms to compute MAP inference in credal networks exist
and give good results in terms of accuracy [17]. However,
these methods are not very efficient in terms of computational
complexity especially when dealing with problems having
many variables.
The aim of this paper is to provide a new and efficient method
for MAP inference in credal networks based on probability-
possibility transformations. Different probability-possibility
transformations have been proposed in the literature [2], [3],
[6], [8], [12], [23], [24]. In this paper, we focus on two
transformations from credal network to possibilistic networks
that are suitable for MAP inference. This paper also provides
a brief complexity analysis of MAP inference in possibilistic
network and performs an extensive experimental study on
MAP inference using probability-possibility transformations.

The first part of this paper gives the general context of
this study by recalling the basic notions of graphical models
used in this paper, the definition of MAP inference in credal
networks, and the definition of the criteria used to compute
the results of MAP requests. The second part introduces our
approach, the transformations and the used evaluation criteria.
Lastly, the paper presents the experimental study and provides
an analysis and a discussion of the results.

II. A BRIEF REFRESHER ON CREDAL AND POSSIBILISTIC
NETWORKS

Let us briefly present in this section the main belief graph-
ical models we are dealing with, namely standard Bayesian
networks, credal networks and possibilistic networks.

A. Bayesian networks

Bayesian networks (BN ) are well-known probabilistic
graphical models [5], specified by two components:
• a graphical component: a directed acyclic graph (DAG)

with nodes representing variables Ai and edges encoding
(in)dependence relationships between variables.

• a quantitative component: where each variable Ai is asso-
ciated with a local probability distribution p(Ai|par(Ai))
for each variable Ai in the context of its parents, denoted
par(Ai).

This representation, by means of graphical models, allows to
compactly represent a probability distribution over a set of
variables. The joint probability distribution encoded by a BN
is computed using the chain rule:

p(A1, .., An) =

n∏
i=1

p(Ai|par(Ai)). (1)

B. Credal networks

Credal networks [4], [18] are also probabilistic graphical
models, based on imprecise probability theory [15], [26]. A
key notion in this theory is the one of credal set which is often
interpreted as a set of imprecise beliefs, in the sense that the
true probability measure (if it exists) is in this set but there
is no way to determine it exactly due to lack of knowledge.
In order to characterize a credal set, one can use a set of
extreme points [20], probability intervals or linear constraints.
In this paper, we use interval-based probability distributions
(IPD for short) which are a very natural and common way to



specify imprecise and ill-known information. In an imprecise
probability distribution IP , every state of the world ωi∈Ω is
associated with a probability interval IP (ωi)=[li, ui] where
li (resp. ui) denotes the lower (resp. upper) bound of the
probability of ωi. Note that while a standard probability
distribution p induces a complete order over the set of possible
worlds Ω, an imprecise probability distribution IP may induce
a partial order since some interpretations may be incomparable
in case of overlapping intervals.

Definition 1 (Credal network). A credal network CN =〈G,K〉
is a probabilistic graphical model where
• G= 〈V,E〉 is a directed acyclic graph as for BN with
V ={A1, .., An} is the set of variables and E is the set
of edges.

• K={IP1, IP2, .., IPn} is a collection of local IPDs, each
IPi is associated with the variable Ai in the context of
its parents par(Ai).

Note that in practice, in local tables, one can also specify
a set of extreme points instead of an imprecise probability
distribution as in JavaBayes1 software. Regarding the seman-
tics of credal networks, the most common one is to view a
credal network CN as an encoding of a set of joint probability
distributions, called extensions where each distribution p is
encoded by a compatible Bayesian network BN [4].

Example 1. This is a small example of a credal network
CN . In the third column of the local distributions, there
is an example of a compatible distribution of the imprecise
distribution IP .

A

B

A IP (A) p(A)
F [.5, .9] .7
T [.1, .5] .3

A B IP (B|A) p(B|A)
F F [.36, .4 ] .4
F T [.35, .35] .35
T F [.25, .25] .25
T T [ 0, .04 ] 0

Fig. 1. Example of a credal network CN and a compatible Bayesian network.

C. Possibilistic networks

Possibilistic networks [25] are belief graphical model mod-
els based on possibility theory, alternative uncetainty theory
particularly suited for handling incomplete and qualitative
knowledge. A possibilistic network PN=〈G,Θ〉 involves:
• A graphical component G which is a DAG exactly as in

Bayesian networks.
• A numerical component Θ, a set of local possibility

distributions π(Ai|par(Ai)) associated with each variable
Ai in the context of its parents.

The semantics associated to a possibilistic network is a
possibility distribution π, matching every world ωi ∈ Ω
to a real number in [0, 1]. Contrary to probability theory,
possibility degrees can be seen as upper probabilities,

1http://www.cs.cmu.edu/∼javabayes/Home/

consonant plausibility functions, degrees of potential surprise,
etc. [10]. Possibility theory in this sense is an alternative
theory to represent and handle uncertainty. Nonetheless, those
two theories can be related as a possibility measure can
encode a family a probability measures and which can be
seen as a credal set.

In the quantitative2 possibilistic setting, the joint possibil-
ity distribution is factorized using the following possibilistic
counterpart of the chain rule:

π(a1, a2, .., an) = ∗ni=1(π(ai|par(ai))) (2)

where ∗ denotes here the product operator (for more details,
see [9]).

D. MAP inference in CN
Inference in probabilistic graphical models generally con-

sists in computing the probability of an event. In credal
networks, this equivalently comes down to computing lower
or upper probabilities of an event. Let V ={A1..An} be the
set of variables of the model. Let O⊆V be the set of observed
variables and let o∈O be an instantiation (or configuration).
Let also Q ⊆ V be the set of query variables and q ∈ Q.
For Maximum A Posteriori (MAP ), given a assignment o of
observed variables O, the objective is to compute the most
probable instantiation q of the query variables Q. In general,
Q∩O=∅. Note that when Q and O span over all variables, the
problem is known as the most probable explanation (MPE).

More formally, the MAP inference problem comes down to
compute:

argmaxq∈DQ(IP (q | o)) (3)

where argmax denotes a decision criterion allowing to choose
the set of ”most probable configurations” of query variables.
In the following, we will give some of the most used decision
criteria that can be used for answering MAP requests in credal
networks.

Example 2. Let us see an example of MAP inference. In
this case, over a possibilistic network to make it simpler.
Consider the following possibilistic network (Figure 2) over
the set of variables V = {A,B,C,D}. In this example, we
want to compute the MAP request on D given that A = F .
Many algorithms exist to answer this query, like variable
elimination or junction tree algorithm. Here, if we compute
Π(D=T |A=F )=1 and Π(D=F |A=F )=.6, then the result of
MAP query over the variable D given A is D=T .

We need decision criteria to answer MAP queries in credal
networks due to the representation by means of intervals. A
natural criterion is the one of Interval-dominance (used for
instance in [1] for classification, decision tasks, etc.) which
refers to non-dominated instantiations of query variables.

Definition 2 (Interval-dominance). An instantiation qi of
query variables Q dominates another instantiation qj iff

2In this paper, we interpret possibility degrees as upper probabilities, hence
the use of the product operator.



A B

C D

A π(A)
T 1
F .4

B π(B)
T .6
F 1

C A π(C|A)
T T .3
F T 1
T F .2
F F 1

D B A π(D|AB)
T T T .4
F T T 1
T T F .2
F T F 1
T F T 1
F F T 1
T F F 1
F F F .1

Fig. 2. Example of a possibilistic network

IP (qi|o)>IP (qj |o) where o is an instantiation of observation
variables O.

This criterion is not enough informative and often of little
use in practice. Indeed, this criterion often results in large
amounts of outcomes also called answer set (too many query
variable instances are not dominated), making it difficult to
make decisions for instance in classification where only one
class (outcome) should be returned. In the current experiments,
we propose to reduce the number of outcomes returned by
MAP queries using other criteria.
We use the well-known criteria Maximax, Maximin, and
Hurwicz. These three criteria are commonly used in decision
making under uncertainty since the early 1950’s. The Maximax
criterion can be viewed as an optimistic criterion. It examines
the maximum payoffs of alternatives and chooses the alterna-
tive whose outcome is the best. Definition 3 gives a formal
definition of Maximax criterion for the imprecise probability
setting.

Definition 3 (Maximax criterion). An instantiation qi of
query variables Q is a result of MAP inference iff
IP (qi|o)≥max{1 −

∑
qj 6=qk IP (qj |o),∀qk}, where o is an

instantiation of observed variables O.

The Maximin criterion also known as the Walds Maximin
criterion is a pessimistic criterion. It suggests that the decision
maker examines only the minimum payoffs of alternatives and
chooses the alternative whose outcome is the least worst.

Definition 4 (Maximin criterion). An instantiation qi of
query variables Q is a result of MAP inference iff
IP (qi|o)≥max{1 −

∑
qj 6=qk IP (qj |o),∀qk}, where o is an

instantiation of observed variables O.

The last criterion we review is the well-known Hurwicz
criterion which attempts to find a trade-off between the ex-
tremes, posed by the optimistic and pessimistic criteria, by
assigning a certain weight, a to optimism and the balance 1−a
to pessimism. This index reflects the decision maker attitude
towards risk taking. A cautious decision maker will set a = 1
which reduces the Hurwicz criterion to the Maximin criterion.
An adventurous decision maker will set a = 0 which reduces
the Hurwicz criterion to the Maximax criterion.

Definition 5 formally defines the Hurwicz’s criterion with
imprecise probabilities using the coefficient a = 0.5.

Definition 5 (Hurwicz’s criterion). Let qi be an instantiation
of query variables Q with o an instantiation of observed
variables of O, a = {0.5 ∗ (1−

∑
qi 6=qk IP (qi|o)) + 0.5 ∗ (1−∑

qi 6=qk IP (qi|o)),∀qk}. Then qi is a result of MAP inference
iff a = max∀qj{0.5 ∗ (1 −

∑
qj 6=qk IP (qj |o)) + 0.5 ∗ (1 −∑

qj 6=qk IP (qj |o)),∀qk}.

Example 3. Let us show an example of these criteria over the
following imprecise distribution (Table I).

ω IP (ω)
ω1 [.25; .3]
ω2 [.27; .32]
ω3 [.26; .33]
ω4 [.07; .12]

TABLE I
EXAMPLE OF AN IMPRECISE DISTRIBUTION

On this example, clearly the only world that can be excluded
from the results with the interval-dominance criterion is ω4.
The outcomes that can be obtained using the different criteria
are listed in the following items.
• Interval-dominance: Answer set = {ω1, ω2, ω3},
• Maximax: Answer set = {ω3},
• Maximin: Answer set = {ω2},
• Hurwicz: Answer set = {ω2, ω3}.

As shown in this example, one of the main problems of
MAP inference in credal networks is that the number of
outcomes may be very large especially when the interval-
dominance criterion is used. The second big problem is the
one of computational complexity of MAP inference in credal
networks.

E. Complexity of MAP inference in credal networks
The computational complexity of MAP inference in

credal networks have been studied in [17]. To sum up, MAP
inference in credal network has been established to be NPPP -
Hard for multiply-connected network and ΣP2 -Complete for
polytrees. This extra computational cost in comparison with
Bayesian networks (where MPE problem is NP -complete
and MAP is NPPP -complete in multiply-connected networks)
is not surprizing since in credal networks, there is need to
deal with both upper and lower bounds.

As mentioned in [25], there is no study on the complexity
of MAP inference in possibilistic networks. We can safely
assume that inference in quantitative possibilistic networks is
not worse than in Bayesian ones. In fact, answering queries
comes down to applying the chain rule and marginalization
in both Bayesian networks and possibilistic ones. Moreover,
some probabilistic network inference algorithms like variable
elimination and the junction tree algorithm have been adapted
from the probabilistic setting and seem to show the same
complexity.



In practice, the size of credal networks is often large and
given the high complexity of MAP inference, it is then funda-
mental to have approximate MAP inference ensuring a good
compromise between accuracy and computational complexity.
This paper proposes a new approximate inference method
for MAP in CN s by transforming a credal network into a
possibilistic one PN . This transformation will keep as much
as possible the information encoded by the credal network but
then there is no need to deal with upper and lower bounds
since a possibilistic network encodes a unique possibility
distribution. Of course, one could select (using some criteria)
a Bayesian network BN that is compatible with the credal
network CN and use the BN to answer queries, but we
want to empirically assess our approach based on probability-
possibility transformations which is well principled and could
ensure better tradeoff between accuracy and computational
efficiency. The next section deals with the transformation of a
credal network into a possibilistic one.

III. A PROBABILITY-POSSIBILITY TRANSFORMATION
BASED APPROACH

Several probability-possibility transformations have been
proposed as we recall in the following. Methods generalizing
to imprecise probabilities have been proposed by Masson and
Denoeux [16] and others in [6]. In this section, we present two
of such transformations that are appropriate for approximating
MAP inference in credal networks.

A. Probability-possibility transformations

Probability and possibility theories have both been deeply
studied and some bridges have been proposed to link these
two settings [12], [27]. We now have some transformations
passing from probability theory to possibility theory and vice
versa. Dubois and Prade [8] have, for instance, proposed the
Optimal Transformation (OT) which is defined as:

π(ωi) =
∑

j/p(ωj)≤p(ωi)

p(ωj) (4)

Transformations are required to satisfy basic principles to
preserve as much as possible the information and OT is proven
to be the optimal one satisfying such principles. More works
on transformations can be found in [2], [3], [6], [8], [12],
[23], [24]. Turning a probability measure into a possibilistic
one is useful when dealing with weak sources of information,
or even when computing with possibilities is simpler than with
probabilities as claimed in [11].

B. From interval-based probability distributions to possibilis-
tic ones

The first transformation we study is the one of Masson and
Denoeux [16], where the authors learn possibility distributions
from empirical data by transforming confidence intervals into
possibility distributions. The first point is to consider an
imprecise probability distribution as a means of encoding a
partial order M over Ω. Let M be the partial order encoded
by an imprecise probability distribution IP and let C be the set

of linear extensions (complete orders) that are compatible with
the partial order M. MD transformation proceeds as follows.
For each linear extension Cl ∈ C and for each interpretation
ωi ∈ Ω, we find the compatible probability distribution
which will give the most specific possibility distribution when
transforming with OT.

πCl(ωi) = max
p1..pn

(
∑

pj≤pi

pi) (5)

Indeed, MD transformation can be reduced to OT when we
consider single values instead of intervals.

Then, to compute the possibility distribution taking into
account each possibility distribution built for each linear
extension, for each interpretation we use the maximum value
of this interpretation in the set of possibility distributions.

π(ωi) = max
Cl∈C

(πCl(ωi)) (6)

This transformation tries on one hand to preserve the order
of interpretations induced by IP and the dominance principle
requiring that ∀φ⊆Ω, P (φ)≤Π(φ) on the other hand.

The second transformation, called CD stands for Cumu-
lative Distribution, is related to upper and lower cumulative
distributions. In the current work, we transform an imprecise
probability distribution into two possibility distributions. In
[7], the authors discussed the connection that one can make be-
tween generalized p-box and possibility distributions and gave
a representation of a p-box by two possibility distributions.
Given a set of probability intervals and an ordering relation
≤CI on a linear extension Cl between elements ωi, we can
easily build a generalized p-box [7], [F , F ] defined by two
cumulative distributions F and F . Given the consecutive sets
Ai = {ωi,∀ωi ∈ Ω and s.t. ωi ≤CI ωj iff i < j}, lower and
upper generalized cumulative distributions corresponding to Ω
are, respectively:

F (ωi) = P (Ai) = max(
∑
ωi∈Ai

lj , 1−
∑
ωi 6∈Ai

uj)

F (ωi) = P (Ai) = min(
∑
ωi∈Ai

uj , 1−
∑
ωj 6∈Ai

lj)

From this two cumulative distributions, we can compute two
possibility distributions πF and πF where:

πF (ωi) = 1−max{F (ωj) < F (ωi) : j = 0..n} (7)

πF (ωi) = F (ωi) (8)

These two equations are written as they have been defined
in [7]. But as for the use of πF , we will simply consider
as a possibility distribution, the lower generalized cumulative
distribution πF (ωi) = F (ωi) and we normalize it. Now let
us now see how to apply these transformations on credal
networks.



C. From credal networks to possibilistic networks

A direct method to transform a credal network into a pos-
sibilistic one is to transform only local probability tables into
local possibilistic ones. This has the advantage of preserving
the independence relationships.

Definition 6 (Credal-possibilistic network transformation). Let
CN be a credal network, PN CN is a possibilistic network
obtained from CN and defined by:
• A graphical component G which is the same graph

as the credal network hence PN CN encodes the same
independence relations as CN .

• A collection of local possibility tables πi obtained by
transforming local credal sets IPi with TR, a transfor-
mation from interval-based probability distributions into
possibilistic ones.

Example 4. Let CN be the credal network of Figure 1 over
two binary variables A and B. Using the MD transformation
of Equation 6, the credal network CN of Figure 1 will be
transformed to the possibilistic network PN of Figure 3.

A

B

A πMD(A)
F 1
T 1

A B πMD(B|A)
F F 1
F T .64
T F .29
T T .04

Fig. 3. The possibilistic network PNCN obtained from the credal network
CN of Fig. 1.

Using CD transformation, we obtain two possibilistic net-
works (Figure 4), the upper one πu on this example matches
the one obtained with MD transformation. The lower one, πl
corresponds to the one obtained using Equation 7, needing
normalizing the obtained local possibility tables in order to
draw inferences.

A

B

A πl(A) πu(A)
F .5 1
T .1 .5

A B πl(B|A) πu(B|A)
F F .96 1
F T .6 .64
T F .25 .29
T T 0 .04

Fig. 4. The possibilistic network PNCN obtained from the credal network
CN of Fig. 1.

We have studied some principles of credal-to-possibilistic
network transformations in [3] where two main issues were
answered: i) Does the distribution πPN dominate IPCN (the
joint interval-based distribution encoded by CN )? and ii) Is
the partial order of interpretations induced by IPCN preserved
by the transformation TR?
Regarding the first issue, for elementary worlds ωi ∈ Ω, we
ensure that the computed possibility distribution dominates the
corresponding probability degrees in case where the credal
network CN is a Bayesian network (namely, all the intervals
in CN are singletons). Regarding arbitrary events φ ⊆ Ω,
the issue is still open. If we use the optimal transformation

OT , the obtained joint possibility distribution does not guar-
antee to dominate the joint probability distribution. On the
second issue, there is no guarantee that the interpretations’
order encoded by the joint distribution is the same after the
transformation. For more details, see [3].

Nevertheless, this approach can still be considered as an
approximate method. The following section will highlight
empirically how accurate is this approximate approach for
MAP inference in credal networks.

IV. EXPERIMENTAL STUDIES

In this section, we give the results of our experimental
studies where we have used new criteria to assess MAP
requests accuracy in credal networks.

A. Experimentation setup

Before giving a detailed record of what we have imple-
mented for the experimental study, let us recall that there
exists no platform or implemented algorithm that can compute
MAP inference in possibilistic networks. Furthermore, there
is also no platform that computes MAP inference in credal
networks. Yet, there exist packages to perform some inference
tasks. Precisely, those packages return the probability degree
or interval of a variable given an evidence. We implemented:
• the transformation of a credal network into a possibilistic

network,
• an inference algorithm in possibilistic networks,
• the procedure to compute MAP outcomes from the re-

sults of the inference algorithm in credal networks and
possibilistic networks.

B. Evaluation criteria

The benchmarks used in the current work are presented in
Table II, such benchmarks are publicly available at http://ipg.
idsia.ch/software/CNsBench.zip.

Networks Topology #Nodes max |domain|
Alarm Multiply-connected 37 4
Insurance Multiply-connected 27 5
Poly Polytree 10 4
Multi Multiply-connected 6 4

TABLE II
CREDAL NETWORKS USED IN THE EXPERIMENTATIONS.

In order to compare the results of MAP inference in credal
networks and their possibilistic counterparts, each query Q
is submitted to a credal network CN (using JavaBayes) then
to the corresponding possibilistic network PN obtained from
CN . And in the same way, Q is submitted to a credal
network through JavaBayes and to the same credal network
using GL2U, a package for approximate inference in credal
networks. The results are compared through the accuracy
measure defined as follows:

accuracy(Q1, Q2...Qn) =
1

n

∑
i:1..n

|CNMAP (Qi) ∩ PNMAP (Qi)|
|CNMAP (Qi) ∪ PNMAP (Qi)|

, (9)

where CNMAP (Qi) (resp. PNMAP (Qi)) denotes the results of
the query Qi submitted to the network CN (resp. PN ). This



measure evaluates the agreement between the results of CN to
the MAP queries and the ones of PN . Thus, the experiment
provides:
• Accuracy rates compared to the exact algorithm imple-

mented in JavaBayes software:
– The accuracy of the approximate inference algorithm

used in GL2U software.
– The accuracy of MAP requests using possibilistic net-

works obtained by transforming the credal network
using MD and CD transformations.

• Inclusion rates: The inclusion rate is a measure showing
how much of the outcomes returned by one network are
included in the outcomes returned by another network. In
our case, we compute the proportion of outcomes returned
by the approximate approach that are included in the
outcomes of the exact approach.

• Size of outcomes set: we compare the number of out-
comes to the number of possible outcomes.

C. Results

This subsection can be divided into two types of results,
quantitative ones and qualitative ones. We carried out ex-
periments with different numbers of query variables (more
precisely, we vary the number of query variables between 1
to 5 and for each case, we tested around 200 networks).

1) Quantitative results: One of the main objectives of this
experiment was to show that our approach could considerably
reduces the computation time of MAP inference and this is
what we present in Table III. Indeed, this table shows the
number of files handled successfully by the different tested ap-
proaches. We can notice that GL, in terms of number of query
variables, cannot handle queries with more that 3 variables.
On the contrary, our approach based on the transformations is
always better in terms of the number of networks answered
even when we vary the number of query variables from 1 to
5. Note that when we say that an algorithm was not able to
answer a query on a given network, we mean that it reached
a timeout. Clearly, our approach handles bigger networks and
queries without reaching the timeout.

2) Qualitative results: We have shown that our approach
outperforms the other approximate approach (GL) in terms
of computation time. So a natural question is about the
actual quality of the results. To answer this question, we
provide in Table IV some results regarding the number of
outputs returned over the number of possible outcomes and
the percentage of configurations returned that are included
in the answer sets returned by the exact approach given by
JavaBayes.

In Table IV, there are three main results that show the
efficiency of our method:

i) When using Interval-dominance criterion, the number of
configurations returned by JavaBayes as the result of
MAP inference is around 80% of possible outcomes.
These results clearly show a lot of confusion and make it
hard to make decisions with such number of outcomes.

Criterion MD CD GL
.794 .685 .36 .88 % answers/all
Inter-dom .967 1 .891 % Inclusion
.36 .685 .36 .88 % answers/all
Maximax .546 .74 .629 % Inclusion

TABLE IV
PROPORTION OF RETURNED ANSWERS OVER ALL POSSIBLE OUTCOMES VS

PROPORTION OF INCLUDED ANSWER SETS

On the other hand, the Maximax criterion ensures a
narrower proportion of outcomes (around 36%). The
method using the CD transformation gives similar results.

ii) Regarding the transformation MD and information
preservation, the proportion of returned outcomes com-
bined to the proportion of included outcomes show that
MD is the transformation that preserves the information
the better. These results hold when considering Interval-
dominance criterion.

iii) Table IV finally shows that the approximate approach GL
generally gives sets of outcomes larger than the exact
approach. And even more, as the number of requested
variables increases, GL tends to return all possible out-
comes.

In the following, we show graphically the accuracy of
each method MD, CD and GL. The axis x is to be read
as A# for Alarm file and P# for Poly file with # is the
number of requested variables. We present the results of two
types of networks, polytrees and multiply-connected networks,
and with three different criteria, Interval-dominance, Maximax
and Hurwicz. Indeed, we omit Maximin criterion due to the
similarity in terms of accuracy with Maximax and Hurwicz
criteria.

P1 A1 A2 P2 P3 A3 A4 P4 P5 A5

0
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C
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GL

Fig. 5. Comparison between MD, CD and GL using Interval-dominance
criterion

On Figure 5, the approximate method GL gives better results
for both types of networks, except queries with more than 4
request variables where it can no longer answer. This problem
can be explained by the fact that the variables are chosen
randomly and it can affect the difficulty of the MAP inference
algorithm implemented. The results of GL are in agreement
with the previous results presented in Table IV. Indeed, by the
fact that this method returns around 88% of the outcomes, it



# query variables 1 2 3 4 5
Algorithm MD CD GL MD CD GL MD CD GL MD CD GL MD CD GL
Alarm 187 187 143 149 149 149 77 77 68 63 63 0 43 43 0
Insurance 180 180 164 152 152 152 116 116 52 55 55 0
Poly 200 200 140 200 200 190 200 200 180 200 200 0 180 180 0
Multi 200 200 110 200 200 200 200 200 120 200 200 0

TABLE III
NUMBER OF FILES ANSWERED BY THE DIFFERENT ALGORITHMS.

is more likely to be in the 79% of the results returned by the
exact method.

As for the possibilistic approach using MD transformation,
if we correlate the accuracy results observed in the graphics,
with the proportion given in Table IV, than MD is slightly
better than GL. Indeed, by returning less outcomes than the
exact approach and having a better proportion of included
outcomes, it balances the accuracy rate which is still better
than CD. As well, this approach is not sensitive to the size of
the network nor by the size of the request variables.
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Fig. 6. Comparison between MD, CD and GL using Maximax criterion

Now, considering Maximax criterion, we observe on Fig-
ure 6 that CD gives the best results in terms of accuracy but
also in terms of inclusion (cf. Table IV). Still, it decreases
when the number of requested variables increases.
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Fig. 7. Comparison between MD, CD and GL using Hurwicz criterion

Finally, we also conducted our experiment using Hurwicz
criterion with the 0.5 degree associated to each evaluation. In
terms of results (Figure 7), they are more or less the same as

Maximax criterion. This is why, in the last graphic (Figure 8),
we compare these 3 criteria with CD method.
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Fig. 8. Comparison between Maximax, Maximin, Hurwicz criteria for CD
method

What we can see from Figure 8 is that the three criteria
mostly behave the same way. We can conclude that from
those three criteria, one should choose Hurwicz criterion, and
if we would like to favor an optimistic (resp. pessimistic)
evaluation, we could increase the degree of Hurwicz criterion
(resp. decrease). Overall, the three approximate algorithms
show the same behavior towards the number of requested
variables, the accuracy rates all decrease as the number of
variables increases.

This section shows empirically that possibilistic networks
ensure an interesting trade-off in terms of accuracy and com-
putational time. This led us to start investigating the issue
of computational complexity in possibilistic networks. The
following section provides some preliminary findings.

D. A note on the complexity of inference in possibilistic
networks

As said earlier in this paper, there is no systematic study of
complexity issues for inference in possibilistic networks and
most of the works assume that the same complexity results in
Bayesian networks still hold in the possibilistic setting. This
section briefly shows that inference in possibilistic networks
is less costly than in Bayesian networks. Let us start with the
MPE problem.

Definition 7. Let PN be a possibilistic network and e be
an evidence. Let D-MPE be the decision problem: Is there
a complete instantiation q of all non observed variables Q
such that Π(q, e) > t? with t ∈ [0, 1].



Recall that in MPE queries, Q=X\E. Intuitively, the deci-
sion problem for MPE comes down to answering whether the
possibility degree Π(q, e) is greater than a rational number t.

Theorem 1. D-MPE is NP -complete.

The membership of D-MPE to NP and it is hardness can
be shown very easily and similarly to the way they are shown
in Bayesian networks (for lack of space, the proof of the
theorem is not provided in this paper but it can be found fol-
lowing this link: https://www.dropbox.com/s/oo8q3aim4rm2nm5/
PN-complexity.pdf?dl=0).
Now, regarding the complexity of MAP queries, we re-
call that in the possibilistic setting, we are given an evi-
dence e and the problem is to compute the most plausible
configuration of some variables Q. Namely, the answer is
argmaxqi∈QΠ(qi|e). Recall that in the possibilistic setting,
argmaxqi∈QΠ(qi|e)=maxx∈Ω∩q∩e Π(x). Hence, the decision
problem of MAP inference in possibilistic networks is exactly
the one of Definition 7, namely, the decision problem for
MAP (noted D-MAP ) here comes down to answer whether
the statement: Is there a complete instantiation (x1, .., xn) of
the network variables (X1, .., Xn) that is compatible with q
and e and such that Π(x1, .., xn)>t. Clearly, the complexity
of D-MAP in possibilistic networks is also NP -complete.

V. CONCLUDING DISCUSSIONS

We provide a new and efficient approach to perform MAP
inference in credal networks by transforming them into possi-
bilistic ones. We carried out experiments to compare our ap-
proach to both exact and approximate approaches for MAP in-
ference in credal networks (GL). The benefits of our approach
are i) reducing the computational time of MAP inference while
ii) ensuring narrower answer sets. Experimental results showed
that, first, using the approximate algorithm (GL) on credal
networks was not computationally interesting due to the limits
it has shown when the number of request variables increases.
Then, when using criteria like Hurwicz, CD algorithm per-
formed quite efficiently on numerous networks and numerous
request variables. One thing that we have not been mentioning
so far, is the complexity of our transformation MD and CD,
this is to be taken into account when choosing an approach.
And in this matter, CD is quite a direct translation and does
not imply a high complexity, contrary to MD transformation.
This supports even more the choice of CD that gives a good
alternative to approximate MAP inference in credal networks.
As future works, we plan to investigate new algorithm for
MAP inference in possibilistic networks. As shown in the last
section, the complexity of inference in possibilistic networks
is less costly than in Bayesian and credal networks. This will
definitely open new perspectives for MAP inference especially
for credal networks.
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