Approximating MAP inference in credal networks using probability-possibility transformations

Salem Benferhat, Amélie Levray, Karim Tabia
Univ Lille Nord de France, F-59000 Lille, France
UArtois, CRIL UMR CNRS 8188, F-62300 Lens, France
Email: {benferhat, levray, tabia}@cril.fr

Abstract—This paper focuses on belief graphical models and provides an efficient approximation of \textit{MAP} inference in credal networks using probability-possibility transformations. We first present two transformations from credal networks to possibilistic ones that are suitable for \textit{MAP} inference in credal networks. Then we present four criteria to evaluate our approximate \textit{MAP} inference. The last part of the paper provides experimental studies that compare our approach with both standard exact and approximate \textit{MAP} inference in credal networks. The paper also provides a brief analysis of \textit{MAP} inference complexity using possibilistic networks and the results definitely open new perspectives for \textit{MAP} inference in credal networks.

I. INTRODUCTION

\textit{MAP} (Maximum A Posteriori) inference in probabilistic graphical models is a problem of great interest and has been investigated for years [13], [14], [19], [21], [22]. Thus, there exists a variety of methods and algorithms to compute the configuration of query variables with the highest probability given some observed variables. However, Bayesian networks, which are the most widely used probabilistic graphical models, might seem unfit for representing some kinds of information such as the knowledge of a group of experts, or incomplete knowledge. This is why more general frameworks are needed for allowing more flexibility especially regarding the model parameters. Credal networks [4] have been designed to generalize Bayesian networks and offer more expressiveness as they represent uncertain information by means of credal sets instead of single probability values. The problem when reasoning with such general and expressive models is that they entail higher computational complexity. Methods and algorithms to compute \textit{MAP} inference in credal networks exist and give good results in terms of accuracy [17]. However, these methods are not very efficient in terms of computational complexity especially when dealing with problems having many variables.

The aim of this paper is to provide a new and efficient method for \textit{MAP} inference in credal networks based on probability-possibility transformations. Different probability-possibility transformations have been proposed in the literature [2], [3], [6], [8], [12], [23], [24]. In this paper, we focus on two transformations from credal network to possibilistic networks that are suitable for \textit{MAP} inference. This paper also provides a brief complexity analysis of \textit{MAP} inference in possibilistic network and performs an extensive experimental study on \textit{MAP} inference using probability-possibility transformations.

The first part of this paper gives the general context of this study by recalling the basic notions of graphical models used in this paper, the definition of \textit{MAP} inference in credal networks, and the definition of the criteria used to compute the results of \textit{MAP} requests. The second part introduces our approach, the transformations and the used evaluation criteria. Lastly, the paper presents the experimental study and provides an analysis and a discussion of the results.

II. A BRIEF REFRESHER ON CREDAL AND POSSIBILISTIC NETWORKS

Let us briefly present in this section the main belief graphical models we are dealing with, namely standard Bayesian networks, credal networks and possibilistic networks.

A. Bayesian networks

Bayesian networks (\textit{BN}) are well-known probabilistic graphical models [5], specified by two components:

- a \textit{graphical component}: a directed acyclic graph (DAG) with nodes representing variables \(A_i \) and edges encoding (in)dependence relationships between variables,
- a \textit{quantitative component}: where each variable \(A_i \) is associated with a local probability distribution \(p(A_i|\text{par}(A_i)) \) for each variable \(A_i \) in the context of its parents, denoted \(\text{par}(A_i) \).

This representation, by means of graphical models, allows to compactly represent a probability distribution over a set of variables. The joint probability distribution encoded by a \textit{BN} is computed using the chain rule:

\[p(A_1, \ldots, A_n) = \prod_{i=1}^{n} p(A_i|\text{par}(A_i)). \]

(1)

B. Credal networks

Credal networks [4], [18] are also probabilistic graphical models, based on imprecise probability theory [15], [26]. A key notion in this theory is the one of credal set which is often interpreted as a set of imprecise beliefs, in the sense that the true probability measure (if it exists) is in this set but there is no way to determine it exactly due to lack of knowledge. In order to characterize a credal set, one can use a set of extreme points [20], probability intervals or linear constraints. In this paper, we use interval-based probability distributions (IPD for short) which are a very natural and common way to
specify imprecise and ill-known information. In an imprecise probability distribution \(IP \), every state of the world \(\omega_i \in \Omega \) is associated with a probability interval \(IP(\omega_i) = [l_i, u_i] \) where \(l_i \) (resp. \(u_i \)) denotes the lower (resp. upper) bound of the probability of \(\omega_i \). Note that while a standard probability distribution \(p \) induces a complete order over the set of possible worlds \(\Omega \), an imprecise probability distribution \(IP \) may induce a partial order since some interpretations may be incomparable in case of overlapping intervals.

Definition 1 (Credal network). A credal network \(CN = \langle G, K \rangle \) is a probabilistic graphical model where

- \(G = \langle V, E \rangle \) is a directed acyclic graph as for \(BN \) with \(V = \{A_1, \ldots, A_n\} \) is the set of variables and \(E \) is the set of edges.
- \(K = \{IP_1, IP_2, \ldots, IP_n\} \) is a collection of local IPDs, each \(IP_i \) is associated with the variable \(A_i \) in the context of its parents \(\text{par}(A_i) \).

Note that in practice, in local tables, one can also specify a set of extreme points instead of an imprecise probability distribution as in JavaBayes\(^1\) software. Regarding the semantics of credal networks, the most common one is to view a credal network \(CN \) as an encoding of a set of joint probability distributions, called extensions where each distribution \(p \) is encoded by a compatible Bayesian network \(BN \) [4].

Example 1. This is a small example of a credal network \(CN \). In the third column of the local distributions, there is an example of a compatible distribution of the imprecise distribution \(IP \).

<table>
<thead>
<tr>
<th>(A)</th>
<th>(IP(A))</th>
<th>(p(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>([.5, .9])</td>
<td>(.7)</td>
</tr>
<tr>
<td>(T)</td>
<td>([.1, .5])</td>
<td>(.3)</td>
</tr>
</tbody>
</table>

\[A \]

\[B \]

\[F \]

\[F \]

\[F \]

\[T \]

\[T \]

\[T \]

\[T \]

\[0, .04 \]

\[0 \]

\[\pi(a_1, a_2, \ldots, a_n) = \ast_{i=1}^n(\pi(a_i|\text{par}(a_i))) \] (2)

where \(\ast \) denotes here the product operator (for more details, see [9]).

D. MAP inference in \(CN \)

Inference in probabilistic graphical models generally consists in computing the probability of an event. In credal networks, this equivalently comes down to computing lower or upper probabilities of an event. Let \(V = \{A_1, \ldots, A_n\} \) be the set of variables of the model. Let \(O \subseteq V \) be the set of observed variables and let \(o \in O \) be an instantiation (or configuration). Let also \(Q \subseteq V \) be the set of query variables and \(q \in Q \).

For **Maximum A Posteriori** (MAP), given a assignment \(o \) of observed variables \(O \), the objective is to compute the most probable instantiation \(q \) of the query variables \(Q \). In general, \(Q \cap O = \emptyset \). Note that when \(Q \) and \(O \) span over all variables, the problem is known as the most probable explanation (MPE).

More formally, the MAP inference problem comes down to compute:

\[
\text{argmax}_{q \in \mathcal{D}_Q} (\pi(q | o))
\] (3)

where \(\text{argmax} \) denotes a decision criterion allowing to choose the set of “most probable configurations” of query variables. In the following, we will give some of the most used decision criteria that can be used for answering MAP requests in credal networks.

Example 2. Let us see an example of MAP inference. In this case, over a possibilistic network to make it simpler. Consider the following possibilistic network (Figure 2) over the set of variables \(V = \{A, B, C, D\} \). In this example, we want to compute the MAP request on \(D \) given that \(A = F \). Many algorithms exist to answer this query, like variable elimination or junction tree algorithm. Here, if we compute \(\Pi(D=T|A=F) = 1\) and \(\Pi(D=F|A=F) = .6 \), then the result of MAP query over the variable \(D \) given \(A = D = T \).

We need decision criteria to answer MAP queries in credal networks due to the representation by means of intervals. A natural criterion is the one of **Interval-dominance** (used for instance in [1] for classification, decision tasks, etc.) which refers to non-dominated instantiations of query variables.

Definition 2 (Interval-dominance). An instantiation \(q_j \) of query variables \(Q \) dominates another instantiation \(q_i \) if

\[1\]http://www.cs.cmu.edu/~javabayes/Home/

\[2\]In this paper, we interpret possibility degrees as upper probabilities, hence the use of the product operator.
Hurwicz towards risk taking. A cautious decision maker will set a to pessimism. This index reflects the decision maker attitude to the criterion which attempts to find a trade-off between the expected instantiation of observed variables. Hurwicz: Answer set = \{\omega_3\}. Then \(q_i \) is a result of MAP inference if \(a = \max_{q_i} \{ 0.5 \ast (1 - \sum_{q_j, q_k} \mathcal{IP}(q_j | o) \ast q_k) \} \). Then \(q_i \) is a result of MAP inference iff \(a = \max_{q_i} \{ 0.5 \ast (1 - \sum_{q_j, q_k} \mathcal{IP}(q_j | o)) \ast q_k \ast 0.5 \ast (1 - \sum_{q_j, q_k} \mathcal{IP}(q_j | o)) \ast q_k \ast 0.5 \ast (1 - \sum_{q_j, q_k} \mathcal{IP}(q_j | o)) \ast q_k \ast 0.5 \ast (1 - \sum_{q_j, q_k} \mathcal{IP}(q_j | o)) \ast q_k \} \).

Example 3. Let us show an example of these criteria over the following imprecise distribution (Table I).

\[
\begin{array}{c|c}
\omega & \mathcal{IP}(\omega) \\
\hline
\omega_1 & [0.25; 0.3] \\
\omega_2 & [0.27; 0.32] \\
\omega_3 & [0.26; 0.33] \\
\omega_4 & [0.07; 0.12] \\
\end{array}
\]

\text{TABLE I - EXAMPLE OF AN IMPRECISE DISTRIBUTION}

On this example, clearly the only world that can be excluded from the results with the interval-dominance criterion is \(\omega_3 \). The outcomes that can be obtained using the different criteria are listed in the following items.

- Interval-dominance: Answer set = \{\omega_1, \omega_2, \omega_3\},
- Maximax: Answer set = \{\omega_3\},
- Maximin: Answer set = \{\omega_2\},
- Hurwicz: Answer set = \{\omega_2, \omega_3\}.

As shown in this example, one of the main problems of MAP inference in credal networks is that the number of outcomes may be very large especially when the interval-dominance criterion is used. The second big problem is the one of computational complexity of MAP inference in credal networks.

E. Complexity of MAP inference in credal networks

The computational complexity of MAP inference in credal networks have been studied in [17]. To sum up, MAP inference in credal network has been established to be \(\text{P}^{\text{NP}} \)-hard for multiply-connected network and \(\Sigma_1^P \)-complete for polytrees. This extra computational cost in comparison with Bayesian networks (where MPE problem is \(\text{NP} \)-complete and MAP is \(\text{P}^{\text{NP}} \)-complete in multiply-connected networks) is not surprizing since in credal networks, there is need to deal with both upper and lower bounds.

As mentioned in [25], there is no study on the complexity of MAP inference in possibilistic networks. We can safely assume that inference in quantitative possibilistic networks is not worse than in Bayesian ones. In fact, answering queries comes down to applying the chain rule and marginalization in both Bayesian networks and possibilistic ones. Moreover, some probabilistic network inference algorithms like variable elimination and the junction tree algorithm have been adapted from the probabilistic setting and seem to show the same complexity.
In practice, the size of credal networks is often large and given the high complexity of MAP inference, it is then fundamental to have approximate MAP inference ensuring a good compromise between accuracy and computational complexity. This paper proposes a new approximate inference method for MAP in CN’s by transforming a credal network into a possibilistic one \mathcal{PN}. This transformation will keep as much as possible the information encoded by the credal network but then there is no need to deal with upper and lower bounds since a possibilistic network encodes a unique possibility distribution. Of course, one could select (using some criteria) as possible the information encoded by the credal network but \mathcal{PN} for MAP.

This paper proposes a new approximate inference method compromising between accuracy and computational complexity.

III. A PROBABILITY-POSSIBILITY TRANSFORMATION BASED APPROACH

Several probability-possibility transformations have been proposed as we recall in the following. Methods generalizing to imprecise probabilities have been proposed by Masson and Denœux [16] and others in [6]. In this section, we present two of such transformations that are appropriate for approximating MAP inference in credal networks.

A. Probability-possibility transformations

Probability and possibility theories have both been deeply studied and some bridges have been proposed to link these two settings [12], [27]. We now have some transformations passing from probability theory to possibility theory and vice versa. Dubois and Prade [8] have, for instance, proposed the Optimal Transformation (OT) which is defined as:

$$\pi(\omega_i) = \sum_{j/\pi(\omega_j) \leq \pi(\omega_i)} p(\omega_j) \quad (4)$$

Transformations are required to satisfy basic principles to preserve as much as possible the information and OT is proven to be the optimal one satisfying such principles. More works on transformations can be found in [2], [3], [6], [8], [12], [23], [24]. Turning a probability measure into a possibilistic one is useful when dealing with weak sources of information, or even when computing with possibilities is simpler than with probabilities as claimed in [11].

B. From interval-based probability distributions to possibilistic ones

The first transformation we study is the one of Masson and Denœux [16], where the authors learn possibility distributions from empirical data by transforming confidence intervals into possibility distributions. The first point is to consider an imprecise probability distribution as a means of encoding a partial order \mathcal{M} over Ω. Let \mathcal{M} be the partial order encoded by an imprecise probability distribution IP and let \mathcal{C} be the set of linear extensions (complete orders) that are compatible with the partial order \mathcal{M}. MD transformation proceeds as follows. For each linear extension $\mathcal{C}_l \in \mathcal{C}$ and for each interpretation $\omega_i \in \Omega$, we find the compatible probability distribution which will give the most specific possibility distribution when transforming with OT.

$$\pi^C_l(\omega_i) = \max_{p_1 \ldots p_n} \left(\sum_{p_j \leq p_i} p_i \right) \quad (5)$$

Indeed, MD transformation can be reduced to OT when we consider single values instead of intervals.

Then, to compute the possibility distribution taking into account each possibility distribution built for each linear extension, for each interpretation we use the maximum value of this interpretation in the set of possibility distributions.

$$\pi(\omega_i) = \max_{\mathcal{C}_l \in \mathcal{C}} (\pi^C_l(\omega_i)) \quad (6)$$

This transformation tries on one hand to preserve the order of interpretations induced by IP and the dominance principle requiring that $\forall \phi \subseteq \Omega, P(\phi) \leq P(\phi)$ on the other hand.

The second transformation, called CD stands for Cumulative Distribution, is related to upper and lower cumulative distributions. In the current work, we transform an imprecise probability distribution into two possibility distributions. In [7], the authors discussed the connection that one can make between generalized p-box and possibility distributions and gave a representation of a p-box by two possibility distributions. Given a set of probability intervals and an ordering relation \leq_c on a linear extension \mathcal{C}_l between elements ω_i, we can easily build a generalized p-box [7], $[\mathcal{E}, \mathcal{F}]$ defined by two cumulative distributions \mathcal{E} and \mathcal{F}. Given the consecutive sets $A_i = \{\omega_i, \forall \omega_i \in \Omega \text{ and s.t. } \omega_i \leq_c \omega_j \text{ iff } i < j\}$, lower and upper generalized cumulative distributions corresponding to Ω are, respectively:

$$\mathcal{E}(\omega_i) = \mathcal{E}(A_i) = \max \left(\sum_{\omega_i \in A_i} l_j, 1 - \sum_{\omega_i \notin A_i} u_j \right)$$

$$\mathcal{F}(\omega_i) = \mathcal{F}(A_i) = \min \left(\sum_{\omega_i \in A_i} u_j, 1 - \sum_{\omega_j \notin A_i} l_j \right)$$

From this two cumulative distributions, we can compute two possibility distributions $\pi_{\mathcal{F}}$ and $\pi_{\mathcal{E}}$ where:

$$\pi_{\mathcal{E}}(\omega_i) = 1 - \max \{ \mathcal{E}(\omega_i) < \mathcal{E}(\omega_i) : j = 0..n \} \quad (7)$$

$$\pi_{\mathcal{F}}(\omega_i) = \mathcal{F}(\omega_i) \quad (8)$$

These two equations are written as they have been defined in [7]. But as for the use of $\pi_{\mathcal{E}}$, we will simply consider as a possibility distribution, the lower generalized cumulative distribution $\pi_{\mathcal{E}}(\omega_i) = \mathcal{E}(\omega_i)$ and we normalize it. Now let us now see how to apply these transformations on credal networks.
C. From credal networks to possibilistic networks

A direct method to transform a credal network into a possibilistic one is to transform only local probability tables into local possibilistic ones. This has the advantage of preserving the independence relationships.

Definition 6 (Credal-possibilistic network transformation). Let CN be a credal network, PN_{CN} is a possibilistic network obtained from CN and defined by:

- A graphical component G which is the same graph as the credal network hence PN_{CN} encodes the same independence relations as CN.
- A collection of local possibility tables π_i, obtained by transforming local credal sets IP_i with TR_i, a transformation from interval-based probability distributions into possibilistic ones.

Example 4. Let CN be the credal network of Figure 1 over two binary variables A and B. Using the MD transformation of Equation 6, the credal network CN of Figure 1 will be transformed to the possibilistic network PN of Figure 3.

![Fig. 3. The possibilistic network PN_{CN} obtained from the credal network CN of Fig. 1.](image)

Using CD transformation, we obtain two possibilistic networks (Figure 4), the upper one π_u on this example matches the one obtained with MD transformation. The lower one, π_l corresponds to the one obtained using Equation 7, needing normalizing the obtained local possibility tables in order to draw inferences.

![Fig. 4. The possibilistic network PN_{CN} obtained from the credal network CN of Fig. 1.](image)

We have studied some principles of credal-to-possibilistic network transformations in [3] where two main issues were answered: i) Does the distribution π_{PN} dominate IP_{CN} (the joint interval-based distribution encoded by CN)? and ii) Is the partial order of interpretations induced by IP_{CN} preserved by the transformation TR?

Regarding the first issue, for elementary worlds $\omega_i \in \Omega$, we ensure that the computed possibility distribution dominates the corresponding probability degrees in case where the credal network CN is a Bayesian network (namely, all the intervals in CN are singletons). Regarding arbitrary events $\phi \subseteq \Omega$, the issue is still open. If we use the optimal transformation OT, the obtained joint possibility distribution does not guarantee to dominate the joint probability distribution. On the second issue, there is no guarantee that the interpretations’ order encoded by the joint distribution is the same after the transformation. For more details, see [3].

Nevertheless, this approach can still be considered as an approximate method. The following section will highlight empirically how accurate is this approximate approach for MAP inference in credal networks.

IV. EXPERIMENTAL STUDIES

In this section, we give the results of our experimental studies where we have used new criteria to assess MAP requests accuracy in credal networks.

A. Experimentation setup

Before giving a detailed record of what we have implemented for the experimental study, let us recall that there exists no platform or implemented algorithm that can compute MAP inference in possibilistic networks. Furthermore, there is also no platform that computes MAP inference in credal networks. Yet, there exist packages to perform some inference tasks. Precisely, those packages return the probability degree or interval of a variable given an evidence. We implemented:

- the transformation of a credal network into a possibilistic network,
- an inference algorithm in possibilistic networks,
- the procedure to compute MAP outcomes from the results of the inference algorithm in credal networks and possibilistic networks.

B. Evaluation criteria

The benchmarks used in the current work are presented in Table II, such benchmarks are publicly available at [3].

<table>
<thead>
<tr>
<th>Networks</th>
<th>Topology</th>
<th>#Nodes</th>
<th>[domain]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Multiply-connected</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>Insurance</td>
<td>Multiply-connected</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Poly</td>
<td>Polytree</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Multi</td>
<td>Multiply-connected</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE II CREDAL NETWORKS USED IN THE EXPERIMENTATIONS.

In order to compare the results of MAP inference in credal networks and their possibilistic counterparts, each query Q is submitted to a credal network CN (using JavaBayes) then to the corresponding possibilistic network PN obtained from CN. And in the same way, Q is submitted to a credal network through JavaBayes and to the same credal network using GL2U, a package for approximate inference in credal networks. The results are compared through the accuracy measure defined as follows:

$$accuracy(Q_1, Q_2...Q_n) = \frac{1}{n} \sum_{i=1}^{n} \frac{|C_{\text{MAP}}(Q_i) \cap P_{\text{MAP}}(Q_i)|}{|C_{\text{MAP}}(Q_i) \cup P_{\text{MAP}}(Q_i)|}$$

where $C_{\text{MAP}}(Q_i)$ (resp. $P_{\text{MAP}}(Q_i)$) denotes the results of the query Q_i submitted to the network CN (resp. PN). This
always better in terms of the number of networks answered. On the contrary, our approach based on the transformations is not able to handle queries with more than 3 variables.

We can notice that the GL approach outperforms the other approximate approach \((\text{MD and CD}) \) in terms of number of query variables. We present the results of two types of networks, polytrees and multiply-connected networks, as \(A# \) for Alarm file and \(P# \) for Poly file with \(# \) is the number of requested variables. We carried out experiments with different numbers of query variables (more precisely, we vary the number of query variables between 1 to 5 and for each case, we tested around 200 networks).

1) Quantitative results: One of the main objectives of this experiment was to show that our approach could considerably reduces the computation time of \(\text{MAP} \) inference and this is what we present in Table III. Indeed, this table shows the number of files handled successfully by the different tested approaches. We can notice that GL, in terms of number of query variables, cannot handle queries with more than 3 variables. On the contrary, our approach based on the transformations is always better in terms of the number of networks answered even when we vary the number of query variables from 1 to 5. Note that when we say that an algorithm was not able to answer a query on a given network, we mean that it reached a timeout. Clearly, our approach handles bigger networks and queries without reaching the timeout.

2) Qualitative results: We have shown that our approach outperforms the other approximate approach \((\text{GL}) \) in terms of computation time. So a natural question is about the actual quality of the results. To answer this question, we provide in Table IV some results regarding the number of outputs returned over the number of possible outcomes and the percentage of configurations returned that are included in the answer sets returned by the exact approach given by JavaBayes.

In Table IV, there are three main results that show the efficiency of our method:

i) When using \(\text{Interval-dominance} \) criterion, the number of configurations returned by JavaBayes as the result of \(\text{MAP} \) inference is around 80% of possible outcomes. These results clearly show a lot of confusion and make it hard to make decisions with such number of outcomes.

On the other hand, the \(\text{Maximax} \) criterion ensures a narrower proportion of outcomes (around 36%). The method using the \(\text{CD} \) transformation gives similar results.

ii) Regarding the transformation \(\text{MD} \) and information preservation, the proportion of returned outcomes combined to the proportion of included outcomes show that \(\text{MD} \) is the transformation that preserves the information the better. These results hold when considering \(\text{Interval-dominance} \) criterion.

iii) Table IV finally shows that the approximate approach GL generally gives sets of outcomes larger than the exact approach. And even more, as the number of requested variables increases, GL tends to return all possible outcomes.

In the following, we show graphically the accuracy of each method \(\text{MD}, \text{CD} \) and \(\text{GL} \). The axis \(x \) is to be read as \(A# \) for Alarm file and \(P# \) for Poly file with \(# \) is the number of requested variables. We present the results of two types of networks, polytrees and multiply-connected networks, and with three different criteria, \(\text{Interval-dominance}, \text{Maximax} \) and \(\text{Hurwicz} \). Indeed, we omit \(\text{Maximin} \) criterion due to the similarity in terms of accuracy with \(\text{Maximax} \) and \(\text{Hurwicz} \) criteria.

![Fig. 5. Comparison between MD, CD and GL using Interval-dominance criterion](image)

On Figure 5, the approximate method GL gives better results for both types of networks, except queries with more than 4 request variables where it can no longer answer. This problem can be explained by the fact that the variables are chosen randomly and it can affect the difficulty of the \(\text{MAP} \) inference algorithm implemented. The results of GL are in agreement with the previous results presented in Table IV. Indeed, by the fact that this method returns around 88% of the outcomes, it...
is more likely to be in the 79% of the results returned by the exact method.

As for the possibilistic approach using MD transformation, if we correlate the accuracy results observed in the graphics, with the proportion given in Table IV, than MD is slightly better than GL. Indeed, by returning less outcomes than the exact approach and having a better proportion of included outcomes, it balances the accuracy rate which is still better than CD. As well, this approach is not sensitive to the size of the network nor by the size of the request variables.

TABLE III

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>187</td>
<td>187</td>
<td>143</td>
<td>57</td>
<td>43</td>
</tr>
<tr>
<td>Insurance</td>
<td>180</td>
<td>180</td>
<td>164</td>
<td>116</td>
<td>52</td>
</tr>
<tr>
<td>Poly</td>
<td>200</td>
<td>200</td>
<td>140</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>Multi</td>
<td>200</td>
<td>200</td>
<td>110</td>
<td>200</td>
<td>120</td>
</tr>
</tbody>
</table>

Number of files answered by the different algorithms.

Fig. 6. Comparison between MD, CD and GL using Maximax criterion

Now, considering Maximax criterion, we observe on Figure 6 that CD gives the best results in terms of accuracy but also in terms of inclusion (cf. Table IV). Still, it decreases when the number of requested variables increases.

Fig. 7. Comparison between MD, CD and GL using Hurwicz criterion

Finally, we also conducted our experiment using Hurwicz criterion with the 0.5 degree associated to each evaluation. In terms of results (Figure 7), they are more or less the same as Maximax criterion. This is why, in the last graphic (Figure 8), we compare these 3 criteria with CD method.

Fig. 8. Comparison between Maximax, Maximin, Hurwicz criteria for CD method

What we can see from Figure 8 is that the three criteria mostly behave the same way. We can conclude that from those three criteria, one should choose Hurwicz criterion, and if we would like to favor an optimistic (resp. pessimistic) evaluation, we could increase the degree of Hurwicz criterion (resp. decrease). Overall, the three approximate algorithms show the same behavior towards the number of requested variables, the accuracy rates all decrease as the number of variables increases.

This section shows empirically that possibilistic networks ensure an interesting trade-off in terms of accuracy and computational time. This led us to start investigating the issue of computational complexity in possibilistic networks. The following section provides some preliminary findings.

D. A note on the complexity of inference in possibilistic networks

As said earlier in this paper, there is no systematic study of complexity issues for inference in possibilistic networks and most of the works assume that the same complexity results in Bayesian networks still hold in the possibilistic setting. This section briefly shows that inference in possibilistic networks is less costly than in Bayesian networks. Let us start with the MPE problem.

Definition 7. Let PN be a possibilistic network and e be an evidence. Let D-MPE be the decision problem: Is there a complete instantiation q of all non observed variables Q such that \(\Pi(q, e) > t\) with \(t \in [0, 1]\).
Recall that in MPE queries, $Q = X \setminus E$. Intuitively, the decision problem for MPE comes down to answering whether the possibility degree $\Pi(q, e)$ is greater than a rational number t.

Theorem 1. D-MPE is NP-complete.

The membership of D-MPE to NP and it is hardness can be shown very easily and similarly to the way they are shown in Bayesian networks (for lack of space, the proof of the theorem is not provided in this paper but it can be found following this link: https://www.dropbox.com/s/oo8b3aim4rn2n5/PN-complexity.pdf?dl=0).

Now, regarding the complexity of MPE queries, we recall that in the probabilistic setting, we are given an evidence e and the problem is to compute the most plausible configuration of some variables Q. Namely, the answer is $\arg\max_{q \in Q} \Pi(q | e)$. Recall that in the probabilistic setting, $\arg\max_{q \in Q} \Pi(q | e) = \max_{x \in \Omega \cap Q | q_e} \Pi(x)$. Hence, the decision problem of MPE inference in probabilistic networks is exactly the one of Definition 7, namely, the decision problem for MAP (noted D-MAP) here comes down to answer whether the statement: Is there a complete instantiation (x_1, \ldots, x_n) of the network variables (X_1, \ldots, X_n) that is compatible with q and e and such that $\Pi(x_1, \ldots, x_n) > t$. Clearly, the complexity of D-MAP in possibilistic networks is also NP-complete.

V. CONCLUDING DISCUSSIONS

We provide a new and efficient approach to perform MAP inference in credal networks by transforming them into possibilistic ones. We carried out experiments to compare our approach to both exact and approximate approaches for MAP inference in credal networks (GL). The benefits of our approach are i) reducing the computational time of MAP inference while ii) ensuring narrower answer sets. Experimental results showed that, first, using the approximate algorithm (GL) on credal networks was not computationally interesting due to the limits it has shown when the number of request variables increases. Then, when using criteria like Hurwicz, CD algorithm performed quite efficiently on numerous networks and numerous request variables. One thing that we have not been mentioning so far, is the complexity of our transformation MD and CD, this is to be taken into account when choosing an approach. And in this matter, CD is quite a direct translation and does not imply a high complexity, contrary to MD transformation. This supports even more the choice of CD that gives a good alternative to approximate MAP inference in credal networks. As future works, we plan to investigate new algorithm for MAP inference in possibilistic networks. As shown in the last section, the complexity of inference in possibilistic networks is less costly than in Bayesian and credal networks. This will definitely open new perspectives for MAP inference especially for credal networks.

REFERENCES

