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Abstract. Representing and reasoning with uncertain information is
a common topic in Artificial Intelligence. In this paper, we focus on
probability-possibility transformations in the context of changing opera-
tions and graphical models. Existing works mainly propose probability-
possibility transformations satisfying some desirable properties. Regard-
ing the analysis of the behavior of these transformations with respect to
changing operations (such as conditioning and marginalization), only few
works addressed such issues. This paper concerns the commutativity of
transformations with respect to some reasoning tasks such as marginal-
ization and conditioning. Another crucial issue addressed in this paper
is the one of probability-possibility transformations in the context of
graphical models, especially the independence of events and variables.
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1 Introduction

Several frameworks exist for representing and reasoning with uncertain informa-
tion. Probability and possibility theories are among the most commonly used.
Probability theory is the oldest theory dealing with uncertainty and frequentist
setting. The early works involving probability and possibility theories were de-
voted to estalishing connections between these two frameworks (as in [19,12,15]).
These works are mostly interested in finding desirable properties to satisfy and
then proposing transformations that guarantee these properties. An example of
such desirable properties is the consistency principle used to preserve as much
information as possible.
Probability-possibility transformations are useful in many ways. For instance, an
example of propagating probabilistic (stochastic) and possibilistic information in
risk analysis is provided in [1]. Another motivation is the fact that probabilities
are more suitable in a frequentist setting, but this requires a large number of
data, and when data is not available in sufficient quantities then the possibilistic
setting can fill this lack as in [13]. Another motivation for probability-possibility
transformations is to use existing tools (e.g. algorithms and software) developed
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in one setting rather than developing everything from scratch.
In this paper, we deal with probability-possibility transformations with respect
to reasoning tasks and graphical models. On that matter, a few works have
been published. In [18], the author address the commutativity of probability-
possibility transformations with respect to some reasoning tasks. The authors
in [16] study some issues related to transforming Bayesian networks into possi-
bilistic networks. In [5], the authors deal with transforming probability intervals
into other uncertainty settings. Note that in this paper, we are only interested
in transformations from probability distributions into possibility distributions.
Given a distribution encoding some uncertain information, be it possibilistic or
probabilistic, we are supposed to be able to reason about events of interest. In
this work, we are interested in studying complementary issues such as preserving
marginalization, conditioning and independence relations. We analyze these is-
sues when the available information is encoded by means of distributions or in a
compact way in the form of graphical models. We show that there is no transfor-
mation from the probabilistic into the possibilistic setting that guarantee most
of the reasoning tasks dealt with in this work. For instance, regarding preserv-
ing marginalization, we show that no transformation can preserve the relative
order of arbitrary events even if it preserves the relative order of interpretations.
When transforming probabilistic graphical models, the order of interpretations
cannot be preserved neither. Before presenting our results, let us first recall some
concepts and present some existing probability-possibility transformations.

2 A Refresher on probability and possibility theories and
graphical models

Probability theory is a well-known and widely used uncertainty framework. One
of the building blocks of this setting is the one of probability distribution p as-
signing a probability degree to each elementary state of the world. Probability
theory is ruled by Kolmogorov’s axioms (non negativity, normalization and ad-
ditivity) and usually have two main interpretations (namely, the frequentist and
subjective interpretations). Among the alternative uncertainty theories, possibil-
ity theory [19,8] is a well-known one. It is based on the notion of possibility dis-
tribution π which maps every state ωi of the world Ω (the universe of discourse)
to a degree in the interval [0, 1] expressing a partial knowledge over the world. By
convention, π(ωi)=1 expresses that ωi is totally possible, while π(ωi)=0 means
that this world is impossible. Note that possibility degrees are interpreted either
i) qualitatively (in min-based possibility theory) where only the “ordering” of
the values is important, or quantitatively (in product-based possibility theory)
where the possibilistic scale [0, 1] is quantitative as in probability theory. One
of the main difference between probability theory and possibility theory is that
the former is additive while the latter is maxitive (Π(φ∪ψ)=max(Π(φ), Π(ψ))
∀φ, ψ⊆Ω).

Conditioning is an important belief change operation concerned with up-
dating the current beliefs encoded by a probability or a possibility distribution
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when a completely sure event (evidence) is observed. While there are several
similarities between the quantitative possibilistic and the probabilistic frame-
works (conditioning is defined in the same way following the so-called Dempster
rule of conditioning), the qualitative one is significantly different. Note that
the two definitions of possibilistic conditioning satisfy the condition: ∀ω∈φ,
π(ω)=π(ω|φ)⊗Π(φ) where ⊗ is either the product or min-based operator. In
the quantitative setting, the product-based conditioning is defined as follows:

π(wi|pφ) =
{

π(wi)
Π(φ) if wi ∈ φ;
0 otherwise.

(1)

Conditioning in the qualitative setting is defined as follows [11]:

π(wi|mφ) =

{ 1 if π(wi)=Π(φ) and wi ∈ φ;
π(wi) if π(wi)< Π(φ) and wi ∈ φ;
0 otherwise.

(2)

Working directly with uncertainty (probability or possibility) distributions is
not convenient in terms of spatial and temporal complexity. Indeed, the distribu-
tion size can become too large to be stored and manipulated. This is why belief
graphical models [4] have been developed. They represent uncertain information
in a more compact way, and multiple tools have been developed for inference.

Bayesian networks A Bayesian network [4] is specified by:

– A graphical component with vertices and edges forming a directed acyclic
graph (DAG). Each vertice represents a variable Ai of the modeled problem
and the edges encode independence relationships among variables.

– A quantitative component, where every variable Ai is associated with a local
probability distribution p(Ai|par(Ai)) for Ai in the context of its parents,
denoted par(Ai).

A Bayesian network encodes a joint probability distribution using the following
chain rule:

P (A1, ..., An) =
n∏
i=1

P (Ai|par(Ai)) (3)

Bayesian networks are not only used to represent information but also to reason
with it. Many algorithms for exact and approximate inferences exist for proba-
bilistic graphical models [4].

Possibilistic networks A possibilistic network [3] is also specified by a graphi-
cal and a numeric component where the local tables are possibility distributions.
The chain rule is defined as follows:

π(A1, ..., An) = ⊗i=1..nπ(Ai | par(Ai)) (4)
where ⊗ is either the product or min-based operator (namely, ⊗=min or ⊗=∗).
Unless otherwise stated, all that follows is valid in both the quantitative or
qualitative possibilistic settings.
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3 Probability-possibility transformations

In this section, we first review the main principles of probability-possibility trans-
formations. In particular, since probability and possibility theories represent dif-
ferent kinds of uncertainty, there is a need to focus on the concept of consistency
coined by Zadeh [19] and redefined by many authors like Dubois and Prade [7].

3.1 Basic principles for probability-possibility transformations

The first principle that transformations tried to satisfy is due to Zadeh [19]:
Zadeh consistency principle. Zadeh [19] measures the consistency between a
probability and possibility distribution as follows:

Cz(π, p) =
∑
i=1..n

π(ωi) ∗ p(ωi). (5)

where p and π are a probability and a possibility distributions respectively over
a set of n worlds. It intuitiveley captures the fact that “A high degree of possi-
bility does not imply a high degree of probability, and a low degree of probability
does not imply a low degree of possibility”. The computed consistency degree is
questionable [7,12] in the sense that two resulted possibility distributions can
have the same consistency degree but do not contain the same amount of infor-
mation.
Dubois and Prade consistency principle. Dubois and Prade [7] defined
three postulates allowing to define the optimal transformation [7] which always
exist and it is unique.

– Consistency condition states that for each event (ie. a set of worlds) φ⊆Ω,
P (φ)≤Π(φ). Here, the obtained possibility distribution should dominate the
probability distribution.

– Preference preservation: ∀(ω1, ω2)∈Ω2,
p(ω1)≥p(ω2) iff π(ω1)≥π(ω2). Intuitively, if two worlds are ordered in a given
way in p, then π should preserve the same order.

– Maximum specificity principle: This principle requires to search for the most
specific possibility distribution that satisfies the two above conditions. Let
π1 and π2 be two possibility distributions, π1 is said to be more specific than
π2 if ∀ωi∈Ω, π1(ωi)≤π2(ωi).

3.2 Transformation rules

Many probability-possibility transformations have been proposed in the litera-
ture. We cite the Optimal transformation (OT) [7], Klir transformation (KT) [12],
Symmetric transformation (ST) [10], and Variable transformation (VT) [14].
The optimal transformation (OT ) guarantees the most specific possibility dis-
tribution that satisfies Dubois and Prade’s consistency principle. It is defined as
follows:

π(ωi) =
∑

j/p(ωj )≤p(ωi)

p(ωj). (6)

Note that there exist transformations from the possibilistic setting into the
probabilistic one [10] and into other uncertainty frameworks [5].
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4 Transformations and changing operations

Our purpose in this paper is to study the commutativity of transformations on
reasoning tasks. In [18], the author was the first to study this question but his
focus was only if the resulted distributions are identical. He showed that there
is no transformation satisfying commutativity of transformations with respect
to operations like conditioning and marginalization. We use .(p)=π to denote
the transformation from a probability distribution into possibility distribution
satisfying Dubois and Prade preference preservation principle. In the following,
we study the commutativity of transformations with respect to i) the order of
arbitrary events and ii) two changing operators that are marginalization and
conditioning. We focus on these two issues especially for useful practical uses of
transformations. In fact, among the most used queries in probabilistic models,
we find MPE queries (searching for the most plausible explanations) and MAP
(where given some observations, the objective is to find the most plausible values
of some variables of interest) [4]. For instance, let p(ABC) be a probability distri-
bution over three binary variables A,B and C. Let C=0 be an observation. MPE
querry would be “which is the most probable interpretation for p(A,B,C=0)”.
MAP querry would be “which is the most probable set of interpretations for
p(A,B|C=0)”. To answer such queries using probability-possibility transforma-
tions, it is necessary to study the commutativity of transformations with respect
to the marginalization and conditioning operations.

p p′

π = .(p) π′′ = .(p′)π′

Changing Operation

Changing Operation

?
Fig. 1: Commutativity of operations

We consider operations on distributions as depicted on Figure 1. On one hand
we obtain a possibility distribution by first applying an operation then the trans-
formation, and on the other hand we obtain the possibility distribution by first
transforming the probability distribution then applying the corresponding oper-
ation in the possibilistic setting. Our objective is to compare these distributions
and see if they encode the same order.

We first consider the operation of marginalization which consists in building
the marginal distributions from a joint distribution.

4.1 Marginalization and Transformations: Preservation of the order
of arbitrary events

As said in the previous section, one of the principles of Dubois and Prade re-
quires that the order of interpretations must be preserved, but nothing is said
regarding arbitrary events (sets of interpretations). For instance, is it enough for
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a transformation to preserve the order of interpretations to preserve the order
of arbitrary events? Proposition 1 states that there is no probability-possibility
transformation preserving the order of events.
Proposition 1. Let . be a probability-possibility transformation operation (or
function)1. Then there exists a probability distribution p, φ⊆Ω, ψ⊆Ω, with φ 6=ψ,
and π= .(p) such that

P (φ) < P (ψ) holds but Π(φ) < Π(ψ) does not hold.

The reason of loosing the strict order is due to the difference in behavior of the
additivity axiom in the probabilistic setting and the maxitivity axiom of the pos-
sibilistic setting. As a consequence of Proposition 1, if the universe of discourse Ω
is a cartesian product of a set of variable domains, then the marginalization over
variables will not preserve the relative order of events after the transformation
operation.

4.2 Conditioning and Transformations: Preservation of the order of
arbitrary events

The question here is “is the order of interpretations and arbitrary events pre-
served if we apply conditionning before or after transformation?”.

Proposition 2 states that the order of elementary interpretations after con-
ditioning is preserved if the used transformation preserves the order of interpre-
tations.
Proposition 2. Let φ⊆Ω be an evidence. Let . be a probability-possibility trans-
formation, p′ be a probability distribution obtained by conditioning p by φ,
π′′ = .(p′) and π′ is the possibility distribution obtained by conditioning π = .(p)
by φ. Then, ∀ωi, ωj ∈ Ω, π′(ωi)<π′(ωj) iff π′′(ωi)<π′′(ωj).
Proposition 2 is valid using both the product or min-based conditioning.

As a consequence of Proposition 2, if one is interested in MPE queries, then
the answers of such queries are exactly the same if we condition then transform
or first transform then condition. However, because of the loss of the order of
events when marginalizing (see Proposition 1), then the answers to MAP queries
will not be the same.

4.3 Independence relations and Transformations

When dealing with uncertain and incomplete information, the notion of inde-
pendence2 is very important. This subsection checks if the independence relation
between events is preserved. Of course, the concept of independence is linked to
the one of conditioning and marginalization. Proposition 3 states that there is
no transformation operation . that preserves the independence relations.
1 . is always assumed to satisfy Dubois and Prade consistency and preference preser-

vation principle.
2 Let α, φ and ψ be three arbitrary events, in probability theory (resp. possibility

theory ), φ is said to be independent of ψ in the context of α iff P (φ|ψ, α)=P (φ|α)
(resp. Π(φ|ψ, α)=Π(φ|α)).
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Proposition 3. Let φ, ψ and α⊆Ω be three events. Let . be a probability-
possibility transformation operation. Then there exist a probability distribution p
and π= .(p) such that

P (φ | ψα) = P (φ | α) but Π(φ |⊗ ψα) 6= Π(φ |⊗ α)

In Proposition 3, |⊗ denotes either the product or min-based conditioning oper-
ator. As a consequence, we can state that the independence of variables is not
preserved either. This represents a major issue especially if one applies trans-
formations to graphical models which are based on the concept of conditional
independence relations.

5 Graphical models and Transformations

Let us first define a transformation of a probabilistic graphical model into a
possibilistic one. We transform a Bayesian network into a possibilistic network
as follows (as in [16]):

Definition 1. Let BN be a Bayesian network over a set of variables A={A1, ..,
An}, PN be a possibilistic network over the same set of variables A. PN is
obtained by a transformation operation . defined as follows:

– The graphical component of PN is the same graph as the one of the Bayesian
network BN .

– The numerical component of PN is such that every local probability table
p(Ai|par(Ai)) is transformed with . into π(Ai|par(Ai)) = .(p(Ai|par(Ai))).

The advantage of transforming a graphical model using Definition 1 is preserving
independence relations, while computationally it is less consuming to transform
a set of local tables than a whole joint distribution. The problem now is that
there is no guarantee that the order of interpretations and events is preserved in
the obtained possibilistic network and its underlying joint distribution. Figure 2
illustrates the issue of transforming a Bayesian network into a possibilistic one.

Bayesian Network BN

A

B

C

Probabilistic
chain rule

p(A,B,C)
-
-

.

.

Possibilistic Network PN

A

B

C

Possibilistic
chain rule

π(A,B,C)
-
-

Fig. 2: Belief graphical model transformation
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Let us now check if the order of interpretations induced by pBN (the joint
distribution encoded by the Bayesian network BN ) is preserved in the obtained
joint possibility distribution πPN (the joint distribution encoded by the possi-
bilistic network PN ). Proposition 4 answers this question.

Proposition 4. Let . be a probability-possibility transformation. Then there ex-
ist a Bayesian network BN , ω1∈Ω and ω2∈Ω where:

π′(ω1) < π′(ω2) does not imply π′′(ω1) < π′′(ω2)
where: i) π′(ω) = .(p(ω)) and p is the joint distribution induced by BN and ii)
π′′ is the joint distribution induced by PN using Definition 1.

Example 1. Let BN be the Bayesian network of Figure 3 over two disconnected vari-
ables A and B. Note that the probability distribution p(A) in BN is a permutation3

of the probability distribution p(B). Hence, the transformation of p(A) and p(B) by
. gives π(A) and π(B) where π(B) is also a permutation of π(A). In this example,
since . is assumed to preserve the order of interpretations, we have 1>α1>α2>α3. The

A B

A p(A) π(A)
a1 0.4 1
a2 0.2 α2
a3 0.25 α1
a4 0.15 α3

B p(B) π(B)
b1 0.15 α3
b2 0.2 α2
b3 0.25 α1
b4 0.4 1

Fig. 3: Example of Bayesian-possibilistic network transformation.

probability and possibility degrees of interpretations a1b1 and a2b2 are

– p(a1b1) = 0.4 ∗ 0.15 = 0.06
– p(a2b2) = 0.2 ∗ 0.2 = 0.04 then, p(a1b1) > p(a2b2) (a)

– π(a1b1) = α3
– π(a2b2) = α2 then, π(a1b1) < π(a2b2) (b)

From (a) and (b) one can see that the relative order of interpretations is reversed
whatever is the used transformation in the ordinal setting. In the same way, in the
quantitative setting, the relative order of interpretations can not be preserved by any
transformation.

6 Related works and discussions

This paper dealt with some issues about probability-possibility transformations
especially those regarding reasoning tasks and graphical models. We showed
that there is no transformation that can preserve the order of arbitrary events
through some reasoning operations like marginalization. As for the independence
of events and variables, we showed that there is no transformation that preserves
the independence relations. When the uncertain information is encoded by means
3 The permutation property of probability-possibility transformations is discussed

in [18].
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of graphical models, we showed that no transformation can preserve the order
of interpretations and events.

In the literature, there are two works in particular that dealt with the issues
of our work. First, in [16] the authors studied transformation of Bayesian net-
works into possibilistic networks. They extend the definition of the consistency
principle to preserve the order of interpretations and the distributions obtained
after a transformation. Note that in this work, the authors focused mostly on
certain existing transformations such as OT and ST while our work deal with
all the transformations preserving the order of interpretations. The second work
close to ours [18] addressed the commutativity of transformation with respect
to some operations but its aim was to show that the obtained distributions are
not identical. In our work, we are actually interested in the commutativity but
only regarding the order of interpretations and events. Some of these issues were
dealt with in the context of fuzzy interval analysis [9]

An interesting question is whether there exist particular probability distribu-
tions p such that the transformation operation . preserves the relative ordering
between interpretations after marginalisation. A first natural idea is uniform
probability distributions. Any transformation . should preserve normalisation
which results in an uniform possibility distribution (where each state is asso-
ciated to the possibility’s degree of 1). Consequently, any event will have a
possibility’s degree of 1, meaning that there will not be a reversal in the or-
der of interpretation on marginals distributions for example. Another kind of
probability distributions is called ”atomic bond system” [17] or big-stepped or
lexicographic [6,2] probability distributions p defined by: ∀ωi ∈ Ω, p(ωi) >∑
{p(ωj) : ωj ∈ Ω and p(ωj) < p(ωi)}. Clearly, if p is a big-stepped distribution

then the transformation operation . preserves the ordering between interpreta-
tions after marginalisation. Note however that for both particular cases (uniform
and big-stepped distribution) the ordering between non-elementary events is not
preserved.

It is known that probability-possibility transformations suffer from loss of
information as we move from an additive framework to a qualitative or semi-
qualitative framework. But the impact on the reasoning was not yet completely
studied. The results we obtained confirm that there is a loss of information at
several levels regarding reasoning. But this does not mean we can do nothing
with transformations. In particular, responses to MPE queries are not affected
by the transformations. Which is not the case for the MAP queries unfortu-
nately. As future works, we will study MAP inference in credal networks (based
on sets of probabilities and known for their high computational complexity in
comparison to Bayesian or possibilistic networks) by transforming them into
possibilistic networks. This can provide good and efficient approximations for
MAP inference with a better computational cost. Other open questions concern
the commutativity of transformations with other definitions of conditioning and
independence in the possibilistic setting.
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