Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae

SYLVIE COSTE-MARQUIS

FLORIAN LETOMBE

CRIL, CNRS FRE 2499

Lens, Université d'Artois, France

Monday, July 11, 2005

The QBF problem

- Canonical PSPACE-complete problem
- Can be used in many Al areas: planning, nonmonotonic reasoning, paraconsistent inference, abduction, etc

- ▶ High complexity, both in theory and in practice
- A possible solution: tractable classes
- ▶ Instances of those tractable classes hard for current QBF solvers (e.g. (renamable) Horn benchmarks)

Outline

QBF

Target fragments

Negation normal form Other propositional fragments

Complexity results

Complexity landscape

A glimpse at some proofs

A polynomial case

Conclusion and perspectives

QBF: formal definition

Definition (QBF)

A QBF Π is an expression of the form

$$Q_1X_1\ldots Q_nX_n\Phi, \qquad (n\geq 0)$$

- $\triangleright X_1 \dots X_n$ sets of propositional variables
- Φ a propositional formula on those variables
- ▶ $Q_i(0 \le i \le n)$ an existential \exists or universal \forall quantifier

Existence of a winning strategy in a game against nature (\forall)

Example

$$\forall x \exists y_1, y_2$$

$$[(y_1 \vee y_2) \wedge (\neg y_2 \vee x) \wedge$$

$$(\neg y_1 \lor \neg y_2) \land (y_2 \lor \neg x)]$$

Existence of a winning strategy in a game against nature (\forall)

Existence of a winning strategy in a game against nature (\forall)

Example $\forall x \exists y_1, y_2$ $[(y_1 \lor y_2) \land (\neg y_2 \not \lor \not \land) \land$ $(\neg y_1 \lor \neg y_2)/(y_2/y_1/y_1/y_1)$

Existence of a winning strategy in a game against nature (\forall)

- Target fragments
 - Negation normal form

Definition (NNF [Darwiche 1999])

A formula in NNF_{PS} is a rooted DAG where:

- ▶ each leaf node is labeled with *true*, *false*, x or $\neg x$, $x \in PS$
- ▶ each internal node is labeled with ∧ or ∨ and can have arbitrarily many children

Properties [Darwiche 1999]

- Decomposability
- Determinism
- Smoothness
- Decision
- Ordering

- Target fragments
 - Other propositional fragments

- Target fragments
 - Other propositional fragments

Decomposability: if C_1, \ldots, C_n are the children of **and-node** C, then $Var(C_i) \cap Var(C_j) = \emptyset$ for $i \neq j$

- Target fragments
 - Other propositional fragments

Determinism: if C_1, \ldots, C_n are the children of **or-node** C, then $C_i \wedge C_j \models \mathit{false}$ for $i \neq j$

- Target fragments
 - Other propositional fragments

Smoothness: if C_1, \ldots, C_n are the children of **or-node** C, then $Var(C_i) = Var(C_j)$

- Target fragments
 - Other propositional fragments

Fragments of NNF_{PS}: definitions

Definition (Propositional fragments [Darwiche & Marquis 2001])

- ▶ DNNF: NNF_{PS} + decomposability.
- ightharpoonup d-DNNF: NNF_{PS} + decomposability and determinism.
- ► FBDD: NNF_{PS} + decomposability and decision.
- ▶ OBDD_<: NNF_{PS} + decomposability, decision and ordering.
- MODS: DNF ∩ d-DNNF + smoothness.

- Complexity results
 - Complexity landscape

Complexity results for QBF

Fragment	Complexity
$PROP_{PS}$ (general case)	PSPACE-c
CNF	PSPACE-c
DNF	PSPACE-c
d-DNNF	PSPACE-c
DNNF	PSPACE-c
FBDD	PSPACE-c
OBDD<	PSPACE-c
OBDD< (compatible prefix)	€ P
PI	PSPACE-c
IP	PSPACE-c
MODS	∈ P

- Complexity results
 - A glimpse at some proofs

- Complexity results
 - A glimpse at some proofs

- Complexity results
 - A glimpse at some proofs

- Complexity results
 - A glimpse at some proofs

- Complexity results
 - A glimpse at some proofs

- Complexity results
 - A glimpse at some proofs

▶ Prefix compatible: < extension of the variable ordering induced by the prefix of the QBF</p>

- Eliminating quantifiers from the innermost to the outermost
 - ► Eliminating existential quantifiers
 - ▶ Eliminating universal quantifiers $(\forall x \equiv \neg \exists x \neg)$
 - ► Reduce the OBDD< at each elimination step
- Remark: Negation in constant time in OBDD<</p>

Complexity results

A polynomial case

$$\Sigma = \exists x \ \forall y \ \exists z \ \phi$$
$$\phi \equiv (x \lor y) \land z$$

- Complexity results

A polynomial case

- Complexity results
 - A polynomial case

- Complexity results
 - A polynomial case

- Complexity results
 - A polynomial case

$$\Sigma = \exists x \ \forall y \ \exists z \ \phi$$

$$\phi \equiv (x \lor y) \land z$$

$$\exists y \neg \exists z \ \phi =$$

- Complexity results
 - A polynomial case

- Complexity results
 - A polynomial case

$$\Sigma = \exists x \ \forall y \ \exists z \ \phi
\phi \equiv (x \lor y) \land z$$

$$\exists x \forall y \exists z \ \phi = \top$$

$$\Rightarrow \Sigma$$
 is valid

Conclusion

- Presentation of propositional fragments
- Numerous intractable fragments
- ► Some tractability results (under very restrictive conditions)

Perspectives

- Study of other (polynomial) complete or incomplete fragments
- Integrate specialized algorithms into our solver
- A sharper analysis of the prefix in order to improve our solver

That's all folks!

Any questions?