Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae

Sylvie Coste-Marquis Daniel Le Berre
Florian Letombe Pierre Marquis
CRIL, CNRS FRE 2499
Lens, Université d'Artois, France

Monday, July 11, 2005

The QBF problem

- Canonical PSPACE-complete problem
- Can be used in many AI areas: planning, nonmonotonic reasoning, paraconsistent inference, abduction, etc
- High complexity, both in theory and in practice
- A possible solution: tractable classes
- Instances of those tractable classes hard for current QBF solvers (e.g. (renamable) Horn benchmarks)

Outline

QBF
Target fragments
Negation normal form
Other propositional fragments
Complexity results
Complexity landscape
A glimpse at some proofs
A polynomial case
Conclusion and perspectives

QBF

QBF: formal definition

Definition (QBF)

A QBF Π is an expression of the form

$$
Q_{1} X_{1} \ldots Q_{n} X_{n} \Phi, \quad(n \geq 0)
$$

- $X_{1} \ldots X_{n}$ sets of propositional variables
- Φ a propositional formula on those variables
- $Q_{i}(0 \leq i \leq n)$ an existential \exists or universal \forall quantifier

Validity of a QBF

Existence of a winning strategy in a game against nature (\forall)

Example

$$
\begin{gathered}
\forall x \exists y_{1}, y_{2} \\
{\left[\left(y_{1} \vee y_{2}\right) \wedge\left(\neg y_{2} \vee x\right) \wedge\right.} \\
\left.\left(\neg y_{1} \vee \neg y_{2}\right) \wedge\left(y_{2} \vee \neg x\right)\right]
\end{gathered}
$$

QBF

Validity of a QBF

Existence of a winning strategy in a game against nature (\forall)

Example

$$
\begin{aligned}
& \forall x \exists y_{1}, \quad y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\neg y_{1} \vee \neg y_{2}\right) \wedge\left(y_{2} \text { XHH/K }\right) \text {] }
\end{aligned}
$$

QBF

Validity of a QBF

Existence of a winning strategy in a game against nature (\forall)

Example

$$
\begin{gathered}
\forall x \exists y_{1}, y_{2} \\
{\left[\left(y_{1} \vee y_{2}\right) \wedge\left(\neg y_{2} x / \not / x\right) \wedge\right.} \\
\left.\left(\neg y_{1} \vee \neg y_{2}\right) / \not / y(y / \nmid \nmid M / / / / \not / x)\right]
\end{gathered}
$$

QBF

Validity of a QBF

Existence of a winning strategy in a game against nature (\forall)

Example

$$
\begin{array}{cc}
\forall x \exists y_{1}, y_{2} & \exists y_{1} \forall x \exists y_{2} \\
{\left[\left(y_{1} \vee y_{2}\right) \wedge\left(\neg y_{2} \vee x\right) \wedge\right.} \\
\left.\left(\neg y_{1} \vee \neg y_{2}\right) \wedge\left(y_{2} \vee \neg x\right)\right]
\end{array} \quad \not \equiv \quad \begin{gathered}
{\left[\left(y_{1} \vee y_{2}\right) \wedge\left(\neg y_{2} \vee x\right) \wedge\right.} \\
\left.\left(\neg y_{1} \vee \neg y_{2}\right) \wedge\left(y_{2} \vee \neg x\right)\right]
\end{gathered}
$$

Definition (NNF [Darwiche 1999])

A formula in NNF $P_{P S}$ is a rooted DAG where:

- each leaf node is labeled with true, false, x or $\neg x, x \in P S$
- each internal node is labeled with \wedge or \vee and can have arbitrarily many children

Example

- Other propositional fragments

Properties [Darwiche 1999]

- Decomposability
- Determinism
- Smoothness
- Decision
- Ordering

Fragments of NNF ${ }_{P S}$: examples

Example

Fragments of NNFps: examples

Decomposability: if C_{1}, \ldots, C_{n} are the children of and-node C, then $\operatorname{Var}\left(C_{i}\right) \cap \operatorname{Var}\left(C_{j}\right)=\emptyset$ for $i \neq j$

Example

Decomposability

Fragments of NNFps: examples

Determinism: if C_{1}, \ldots, C_{n} are the children of or-node C, then $C_{i} \wedge C_{j} \models$ false for $i \neq j$

Example

Determinism

Fragments of NNFps: examples

Smoothness: if C_{1}, \ldots, C_{n} are the children of or-node C, then $\operatorname{Var}\left(C_{i}\right)=\operatorname{Var}\left(C_{j}\right)$

Example

Smoothness

Fragments of NNF $P_{P S}$: definitions

Definition (Propositional fragments [Darwiche \& Marquis 2001])

- DNNF: NNF $P_{P S}+$ decomposability.
- d-DNNF: NNF $P_{P S}+$ decomposability and determinism.
- FBDD: NNF PS $^{+}$decomposability and decision.
- $\mathrm{OBDD}_{<}$: NNF P + decomposability, decision and ordering.
- MODS: DNF $\cap \mathrm{d}$-DNNF + smoothness.

Complexity results for QBF

Fragment	Complexity
PROP $_{\text {PS }}$ (general case)	PSPACE-c
CNF	PSPACE-c
DNF	PSPACE-c
d-DNNF	PSPACE-c
DNNF	PSPACE-c
FBDD	PSPACE-c
OBDD $_{<}$	PSPACE-c
OBDD $_{<}$(compatible prefix)	\in P
PI	PSPACE-c
IP	PSPACE-c
MODS	$\in \mathrm{P}$

Inclusion of fragments [Darwiche \& Marquis 2001]

Inclusion of fragments [Darwiche \& Marquis 2001]

Inclusion of fragments [Darwiche \& Marquis 2001]

Complexity results
LA glimpse at some proofs

Inclusion of fragments [Darwiche \& Marquis 2001]

Complexity results
LA glimpse at some proofs

Inclusion of fragments [Darwiche \& Marquis 2001]

Complexity results
LA glimpse at some proofs

Inclusion of fragments [Darwiche \& Marquis 2001]

$O B D D_{<}$with compatible prefix: a polynomial case

- Prefix compatible: < extension of the variable ordering induced by the prefix of the QBF
- Eliminating quantifiers from the innermost to the outermost
- Eliminating existential quantifiers
- Eliminating universal quantifiers ($\forall x \equiv \neg \exists x \neg$)
- Reduce the $\mathrm{OBDD}_{<}$at each elimination step
- Remark: Negation in constant time in $\mathrm{OBDD}_{<}$

LA polynomial case

OBDD $<$ with compatible prefix: a polynomial case

$$
\begin{aligned}
\Sigma & =\exists x \forall y \exists z \phi \\
\phi & \equiv(x \vee y) \wedge z
\end{aligned}
$$

LA polynomial case

$0 B D D_{<}$with compatible prefix: a polynomial case

$$
\begin{aligned}
\Sigma & =\exists x \forall y \exists z \phi \\
\phi & \equiv(x \vee y) \wedge z
\end{aligned}
$$

$L_{\text {A polynomial case }}$

$0 B D D_{<}$with compatible prefix: a polynomial case

$L_{\text {A polynomial case }}$

$0 B D D_{<}$with compatible prefix: a polynomial case

LA polynomial case

OBDD $<$ with compatible prefix: a polynomial case

$$
\exists y \neg \exists z \phi=\begin{aligned}
\Sigma & =\exists x \forall y \exists z \phi \\
\phi & \equiv(x \vee y) \wedge z
\end{aligned}
$$

LA polynomial case

OBDD $<$ with compatible prefix: a polynomial case

$$
\begin{aligned}
\Sigma & =\exists x \forall y \exists z \phi \\
\phi & \equiv(x \vee y) \wedge z
\end{aligned}
$$

LA polynomial case

OBDD $<$ with compatible prefix: a polynomial case

$$
\begin{array}{r}
\Sigma=\exists x \forall y \exists z \phi \\
\phi \equiv(x \vee y) \wedge z \\
\exists x \forall y \exists z \phi=\top
\end{array}
$$

$\Rightarrow \Sigma$ is valid

Conclusion

- Presentation of propositional fragments
- Numerous intractable fragments
- Some tractability results (under very restrictive conditions)

Perspectives

- Study of other (polynomial) complete or incomplete fragments
- Integrate specialized algorithms into our solver
- A sharper analysis of the prefix in order to improve our solver

Any questions ?

