
Node.js

Christophe Lecoutre
lecoutre@cril.fr

IUT de Lens - CRIL CNRS UMR 8188
Université d’Artois

France

Septembre 2017

1

Plan

Node

Express

React

2

Plan

Node

Express

React

3

Ressources

I Node.js Design Patterns (2nd Edition),
Mario Casciaro and Luciano Mammino,
2016, Packt Publising

I nodejs.org

4

https://nodejs.org/api

Node.js

Node.js is a very powerful JavaScript-based framework/platform

I built on Google Chrome’s JavaScript V8 Engine,

I used to develop I/O intensive web applications (video streaming
sites, single-page applications, etc.),

I open source, completely free, and used by thousands of developers
around the world.

5

Node version Manager

Installation et Guide :

https://github.com/creationix/nvm#install-script

curl -o- https:... | bash // installer nvm
nvm install node // installer node (latest release)
nvm install --lts node // long-term support
command -v nvm // vérifier l’installation
node -v // version
nvm list // lister les versions
nvm list-remote // lister les versions distantes
nvm use 4 // utiliser la version 4
nvm use 8.6 // utiliser la version 8.6
nvm alias default 4.5 // par default, la version 4.5

Remarque
Un répertoire .nvm est créé.

6

https://github.com/creationix/nvm#install-script

Node - REPL Terminal

$ node
> x = 10
10
> let y = 10;
undefined
> x + y
20
> console.log("Hello World")
Hello World
undefined
> for (let i=0; i<3; i++)
... console.log(i);
0
1
2
undefined
>

Remarque
Taper ctrl-c, deux fois, pour quitter.

7

Node - Evaluer un fichier

Soit le fichier test.js suivant :

’use strict’;

console.log("Hello World")
for (let i=0; i<3; i++)
console.log(i);

En éxecutant :

node test.js

On obtient :

Hello World
0
1
2

8

Créer un serveur très rudimentaire

Soit le fichier server.js suivant :

const http = require("http");

http.createServer((request, response) => {
// Send the HTTP header : 200 (OK) and text/plain
response.writeHead(200,{’Content-Type’: ’text/plain’});

// Send the response body as "Hello World"
response.end(’Hello World\n’);

}).listen(8081);

// Server console will print the message
console.log(’Server running at http://127.0.0.1:8081/’);

On le lance avec node server.js

9

Créer une application avec npm

Commandes à executer pour créer une application avec une dépendance
sur trois modules.

mkdir appli
cd appli
npm init
npm install babel-cli babel-preset-es2015 express --save

On obtient un fichier package.json comme suit :

{
"name": "appli",
"version": "1.0.0",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "toto",
"license": "ISC",
"dependencies": {

"babel-cli": "ˆ6.26.0",
"babel-preset-es2015": "ˆ6.24.1",
"express": "ˆ4.15.5"

}
}

10

Soit le fichier index.js suivant à la racine du projet :

import express from "express";

const PORT = 3000;
const app = express();

app.get("/", (req, res)
=> res.json({status: "Test API"}));

app.listen(PORT, ()
=> console.log(‘Test API on Port ${PORT}‘));

En remplaçant dans package.json la ligne ”test” de ”scripts” par:

"start": "babel-node --presets ’es2015’ index.js"

On peut :

I lancer le serveur avec npm start

I lancer le client (browser) sur localhost:3000

Remarque
Les modules sont placés dans le répertoire node modules.

11

Node Package Manager

De nombreux modules accessibles par la commande npm ou sur le site
https://npmjs.com
De nombreuses commandes en ligne :

npm init // initier un projet
npm install module [--save | --save-dev]
npm remove module [--save | --save-dev]
npm update module
npm list
npm -v // version
npm addUser

Remarque
Les options --save et --save-dev font référence aux champs
’dependencies’ et ’devDependencies’ du fichier package.json.

Remarque
On peut aussi utiliser npm -g pour gérer les commandes au niveau
globale (du système), et non seulement au niveau du projet.

12

https://npmjs.com

Node Package Manager

Nommage des modules. Voir https://docs.npmjs.com/misc/semver

version Must match version exactly
>version Must be greater than version
>=version
<version
<=version
˜version "Approximately equivalent to version"
ˆversion "Compatible with version"

*

Remarque
A noter que les numéros de version de la forme x.y.z indiquent :

I x : niveau majeur

I y : niveau mineur

I z : patch

13

https://docs.npmjs.com/misc/semver

Module fs

The Node File System (fs) module can be imported with the statement
require.

Soit le fichier reading.js suivant :

Example

const fs = require("fs");

// Asynchronous read
fs.readFile(’titi.txt’, (err, data) => {
if (err)

return console.error(err);
console.log("Async. " + data.toString());

});

// Synchronous read
console.log("Sync. " + fs.readFileSync(’titi.txt’));

console.log("Program Ended");

14

If the file titi.txt is :

Bonjour à tous.
Comment allez-vous ?

and you execute:

node reading.js

then the output is:

Sync. Bonjour à tous.
Comment allez-vous ?

Program Ended
Async. Bonjour à tous.
Comment allez-vous ?

15

Module os

Example

const os = require("os");

os.hostname(); // ludwig
os.type(); // Linux
os.platform(); // linux
os.arch(); // x64
(os.totalmem/1e6).toFixed(1) + ’MB’; // 1042.2 MB
(os.freemem/1e6).toFixed(1) + ’MB’; // 195.8 MB
console.log(os.cpus());
[{

model: ’Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz’,
speed: 2926,
times: { user: 252020, nice: 0, sys: 30340, idle:

1070356870, irq: 0 }
},
{

model: ’Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz’,
speed: 2926,
times: { user: 306960, nice: 0, sys: 26980, idle:

1071569080, irq: 0 }
}]

16

Module process

Each Node.js process has a set of built-in functionality, accessible
through the global process module, which doesn’t need to be required.

process.stdout.write("Hello World!" + "\n");
process.argv.forEach(
(val, ind, array) => console.log(ind + ’: ’ + val));

console.log(process.execPath);
console.log(process.pid, process.version);
console.log(process.platform, process.title);
process.on(’exit’, () => console.log(’exiting’));
process.on(’uncaughtException’,
(err) => console.error(’Uncaught error ’, err.stack));

If the code above is in test.js and execute node test.js:

Hello World!
0: /usr/bin/node
1: /home/lecoutre/Desktop/proMern/test.js
/usr/bin/node
23289 ’v8.6.0’
linux node
exiting

17

Module url

The url module provides utilities for URL resolution and parsing.

Example

const url = require(’url’);

let p = url.parse(’http://www.arte.fr/people?name=alice’);
console.log(p.protocol); // http:
console.log(p.host); // www.arte.fr
console.log(p.query); // name=alice
console.log(p.pathname); // /people
console.log(p.search); // ?name=alice

18

Module path

Si on exécute le fichier suivant :

Example

const path = require("path");

console.log(path.normalize(’/d1/d2//d3/d4/tab/..’));
console.log(path.join(’/d1’, ’d2’, ’d3/d4’, ’tab’, ’..’));
console.log(path.resolve(’main.js’));
console.log(path.extname(’main.js’));
console.log(path.join(__dirname,’tutu’));
console.log(path.join(__dirname,__filename));

on obtient :

/d1/d2/d3/d4
/d1/d2/d3/d4
/home/lecoutre/appliTest/main.js
.js
/home/lecoutre/appliTest/tutu
/home/lecoutre/appliTest/home/lecoutre/appliTest/path1.js

19

Module EventEmitter

const EventEmitter = require(’events’).EventEmitter;
const ee = new EventEmitter();

const listener1 = () => console.log(’listener 1’);
ee.on(’bip’, listener1);
ee.on(’bip’, () => console.log(’listener 2’));

let nListeners = EventEmitter.listenerCount(ee, ’bip’);
console.log(nListeners + " Listeners");

ee.emit(’bip’); // fire the event
ee.removeListener(’bip’, listener1);
console.log("Listener 1 will not listen now.");
ee.emit(’bip’); // fire the event

nListeners = EventEmitter.listenerCount(ee, ’bip’);
console.log(nListeners + " Listeners");

console.log("Program Ended.");

20

If the previous code is in file listening.js and we execute:

node listening.js

then the output is:

2 Listeners
listener 1
listener 2
Listener 1 will not listen now.
listener 2
1 Listeners
Program Ended.

21

Streams

Streams are objects that let you read data from a source or write data to
a destination in continuous fashion. In Node.js, there are four types of
streams:

I Readable – Stream which is used for read operation.

I Writable – Stream which is used for write operation.

I Duplex – Stream which can be used for both read and write.

I Transform – A type of duplex stream where the output is computed
based on input.

Each type of Stream is an EventEmitter instance and throws several
events at different instance of times. For example, some of the commonly
used events are:

I data – This event is fired when there is data is available to read.

I end – This event is fired when there is no more data to read.

I error – This event is fired when there is any error.

I finish – This event is fired when all the data has been flushed to
underlying system.

22

Soit le fichier stream1.js suivant :

const fs = require("fs");

let data = ’’;

const rs = fs.createReadStream(’titi.txt’);
rs.setEncoding(’UTF8’);
rs.on(’data’, (chunk) => data += chunk);
rs.on(’end’, () => console.log(data));
rs.on(’error’, (err) => console.log(err.stack));

console.log("Program Ended");

If we execute:

node stream1.js

then the output is:

Program Ended
Bonjour à tous.
Comment allez-vous ?

23

N’y a-t-il pas un problème avec l’exécution en séquence ici ?

const fs = require("fs"), zlib = require(’zlib’);

function compress(filename) {
fs.createReadStream(filename)

.pipe(zlib.createGzip())

.pipe(fs.createWriteStream(filename + ’.gz’))

.on(’finish’, () => console.log(’finished’);
console.log("Compressed: " + filename + ’.gz’);

}

function uncompress(filename) {
fs.createReadStream(filename)

.pipe(zlib.createGunzip())

.pipe(fs.createWriteStream(filename.slice(0,-3)));
console.log("Decompressed: " + filename.slice(0,-3));

}

compress(’titi.txt’);
uncompress(’titi.txt.gz’);

24

Créer un serveur de fichiers simple

Le serveur :

const http = require(’http’), fs = require(’fs’);
const url = require(’url’);

http.createServer((req, res) => {
const pathname = url.parse(req.url).pathname;
console.log("Req for " + pathname + " received.");

// Read the reqed file content from file system
fs.readFile(pathname.substr(1), (err, data) => {

if (err) {
res.writeHead(404, {’Content-Type’: ’text/html’});
console.log(err);

} else {
res.writeHead(200, {’Content-Type’: ’text/html’});
res.write(data.toString());

}
res.end();

});
}).listen(8081);

console.log(’Server running at http://127.0.0.1:8081/’);

25

Créer un serveur de fichiers simple

Le client :

const http = require(’http’);

// Options for the request
const options = { host: ’localhost’, port: ’8081’, path: ’

/test.html’ };
// Callback function for dealing with the response
const callback = (response) => {
let s = ’’;
response.on(’data’, (data) => s += data);
response.on(’end’, () => console.log(s));

}
// Make a request to the server
const req = http.request(options, callback);
req.end();

Remarque
Lorsque le serveur est lancé, puis le client, on obtient en retour le
contenu du fichier dans la console du client.

26

Système de modules (CommonJS)

Créer un module revient à construire un objet ou une fonction et à le
rendre accessible par des instructions liées à l’exportation.

Pour bien comprendre les choses, voici ce que Node gère
automatiquement autour du code d’un fichier kit.js.

var module = { exports: {} };
var exports = module.exports;
// le code du fichier kit.js où il faut modifier
// l’une des deux variables (au choix)

return module.exports;

Pour importer le module dans un autre fichier test.js, on écrira
simplement :

const module = require(’./kit.js’);
// le code du fichier test.js

27

Exporter un objet

Un fichier person.js :

const obj = {
name : ’Alice’,
introduce() {

console.log(’Hello ’ + exports.name);
}

}
module.exports=obj;

Un fichier appli.js :

const person = require(’./person.js’);
console.log(’Name : ’ + person.name);
person.introduce();

L’exécution de appli.js :

node ./appli.js

28

Exporter une fonction

Un fichier amanda.js :

function calculate(a, x, n) {
if (x === 1) return a*n;
return a*(1-Math.pow(x,n))/(1-x);

}
module.exports = calculate;

Un fichier tyler.js :

function calculate(r) {
return 4/3*Math.PI*Math.pow(r,3);

}
module.exports = calculate;

Un fichier appli.js :

const geometricSum = require(’./amanda.js’);
const sphereVolume = require(’./tyler.js’);
console.log(geometricSum(1,2,5) + ’ ’ + sphereVolume(2));

29

Types de modules

Il y a trois types de modules :
I les core modules, fournis par Node. On donne leur nom directement

comme par exemple :

require(’fs’)
require(’http’)

I les npm modules, installés par cette commande. On donne leur nom
directement comme par exemple :

require(’express’)
require(’debug’)

I les file modules, construits par l’utilisateur. On donne leur nom,
toujours en préfixant par /, ou ./, ou encore ../ comme par exemple :

require(’./amanda.js’)
require(’../person.js’)

Remarque
Certains core modules sont globaux et ne nécessitent même pas
d’instruction require. Par exemple, process and buffer.

30

Modules npm

Ils sont installés dans le répertoire node modules.

Remarque
Lors d’une instruction require(x), où x désigne un npm module, x
sera recherché dans node modules. S’il n’est pas trouvé, il sera recherché
dans node modules, s’il existe, du répertoire parent. Et ainsi de suite.

Attention

1. Ne pas glisser ses propres modules dans node modules.

2. Ne pas utiliser plusieurs require sur le même module, ou alors
comprendre qu’un cache est utilisé.

3. On peut détruire node modules et réinstaller toutes les dépendances
placées dans package.json avec npm install

31

Système de modules (ES6 modules)

Every ES6 module needs to be represented by a separate .js file. An ES6
file can export and import any number of variables.

Exporting and importing comes in different formats:

export {name};
export {name1, name2, name3};
export {name1 as alias1, name2 as alias2};
export {name as default};
export {name1 as default, name2 as alias2, name3};
export default function() { ... };
export default class ... ;
export {name1, name2} from ’anotherModule’;
export * from ’anotherModule’;

import defaultName from ’module’;
import * as alias from ’module’;
import { mame } from ’module’;
import { name as alias } from ’module’;
import { name1 , name2 } from ’module’;
import defaultName , { name [, [...]] } from ’module’;
import defaultName, * as alias from ’module’;
import ’module’;

32

Examples

File test.js :

function cube(x) {
return x * x * x;

}
const truc = Math.PI + Math.SQRT2;
export { cube, truc };

import { cube, truc } from ’test’;
console.log(cube(3)); // 27
console.log(truc); // 4.555806215962888

File test.js :

export default function cube(x) {
return x * x * x;

}

import cube from ’test’;
console.log(cube(3)); // 27

33

File mathModules/logarithm.js :

function getLN2() { return Math.LN2; }
function getLN102() { return Math.LN10; }
export { getLN2, getLN10 };

File mathModules/trigonometry.js :

function getSin(v) { return Math.sin(v); }
function getCos(v) { return Math.cos(v); }
export { getSin, getCos };

File mathStuff.js :

import * as logarithm from ’mathModules/logarithm’;
import * as trigonometry from ’mathModules/trigonometry’;
export default { logarithm, trigonometry }

File appli.js :

import math from ’mathStuff.js’;
console.log(math.trigonometry.getSin(3));
console.log(math.logarithm.getLN2(3));

34

Plan

Node

Express

React

35

Ressources

I Express in Action,
Evan M. Hahn,
2016, Manning

I http://expressjs.com/

36

http://expressjs.com/

Express

Express est un framework JavaScript :
I construit sur Node
I permettant de développer facilement des serveurs web

Il est présent dans la suite MERN (et également dans la suite MEAN).

Remarque
Express ajoute de nombreuses fonctionalités par rapport au service
élementaire http de Node.

37

Serveur Express

Pour construire un serveur, il suffit d’exécuter la fonction retournée par le
module express.

Example

const express = require("express");
const app = express();

app.get(’/’, function(request, response) {
response.send("Hello world!");

});

app.listen(3000, () => console.log("Waiting at 3000"));

Remarque
The Express application object can be referred from the request object
and the response object with a field called app.

38

Major Features

I middleware : requests flow through a stack, which is an array of
functions

I routing : functions associated with URLs

I extensions to request and response objects : extra methods and
properties for developer convenience

I views : HTML dynamically rendered after choosing one template
engine (e.g., React)

39

Middlewares

The signature of a middleware function (that must be passed to
app.use()).

function(request, response, next) { ... }

I request is an object that represents the incoming HTTP request

I response is an object that represents the outgoing HTTP response

I next is a function that will go the next middleware when called

Une fonction middleware met fin à une requète en appelant res.end.

Remarque
les méthodes res.send, res.sendFile et res.json appellent
indirectement res.end.

40

Important:

I chaque middleware peut modifier la requète ou la réponse

I il faut que l’un des middlewares réponde à la requète (sinon ?)

I pour passer au middleware suivant, appeler le callback next()

Example

const app = require("express")();

app.use(function(request, response, next) {
console.log("First");
next();

});
app.use(function(request, response, next) {

console.log("Second");
next();

});
app.use((req, res) => res.send("Done"));
app.listen(3000, () => console.log("Waiting at 3000"));

41

Illustration with morgan

Morgan is a nice logger for Express. In the code below, a password is
sent provided that the current number of minutes at the clock is a
multiple of 2.

Example

const app = require("express")();
const logger = require("morgan");

app.use(logger("short"));
app.use(function(req, res, next) {

const t = new Date().getMinutes();
if (t % 2 == 0)

next();
else

res.status(403).end("Not authorized");
});
app.use((req, res) => res.send("Password: toto"));

app.listen(3000, () => console.log(’Server started’));

42

If the code from the previous file is put in a file called test.js, to run the
server, type

node test.js

An alternative is to have package.json as follows:

{
"name": "test",
"version": "1.0.0",
"description": "",
"scripts": {
"start": "node test.js",
"test": "echo \"Error: no test specified\" && exit 1"

},
"author": "",
"license": "ISC",
"dependencies": {

"express": "ˆ4.16.2",
"morgan": "ˆ1.9.0"

}
}

and type:

npm start

43

Illustration with express.static

To send static files, we can use express.static. It suffices to indicate the
name of a directory where files can be downloaded.

Example

const express = require("express");
const path = require(’path’);
const http = require(’http’);

const app = express();

app.use(express.static(path.resolve(__dirname,’public’)));
app.use(function(req, res, next) {
res.writeHead(200, {’content-Type’: ’text/plain’ });
res.end("Looks like you didn’t find a static file.");

});

app.listen(3000, () => console.log(’Server started’));

Try http://localhost:3000/titi before and after building a text
file public/titi.

44

Error-handling Middlewares

Lorsqu’un problème survient, il faut appeler next() avec un argument qui
représente l’erreur. Par exemple:

next(new Error(’Something bad happened!’));

L’erreur est alors traitée par la chaine de error-handling middlewares, qui
prennent quatre arguments (le premier étant l’erreur).

I Pour passer de l’un à l’autre, appeler next avec un argument.

I Pour quitter la châıne, appeler next sans argument.

45

Two error-handling middlewares are present here:

I the first one, used for logging

I the second one, used to send a response

Example

app.use((req, res, next) => {
res.sendFile(’titi’, function(err) {

if (err)
next(new Error(’Error when sending file’));

}
});
app.use((err, req, res, next) => {
console.log(err);
next(err);

});
app.use((err, req, res, next) => {
res.status(500);
res.send(’Internal server error’);

});

46

Routing

For reading web pages, it suffices to call app.get.

Example

const express = require("express");
const path = require(’path’);
const http = require(’http’);

const app = express();

app.use(express.static(path.resolve(__dirname,’public’)));
app.get(’/’, (req, res) => res.end("Home page!"));
app.get(’/about’, (req, res) => res.end("About page!"));
app.get(’/jobs’, (req, res) => res.end("Jobs page!"));
app.use((req,res) => res.status(404).end(’404!’));

app.listen(3000, () => console.log("Waiting at 3000"));

Try http://localhost:3000/, http://localhost:3000/about,

http://localhost:3000/jobs and http://localhost:3000/titi.
47

Parameters in Routing

A parameter can be defined by using the character ’:’. You can get its
value with req.params.

Example

app.get(’/users/:userId’, (req, res) => {
const userId = req.params.userId;
res.send(’Id = ’ + userId);

});

This will not match /users/ and /users/12/posts but this will match
/users/toto. If we only want integers for user ids :

Example

app.get(/ˆ\/users\/(\d+)$/, (req, res) => {
const userId = req.params[0];
res.send(’Id = ’ + userId);

});

48

Parameters in Queries

In URLs, you can provide information under the form of a query. You get
this information with req.query.

Example

app.get(’/search’, (req, res) => {
Object.entries(req.query)

.forEach(t => console.log(t[0] + ’:’ + t[1]));
res.send(’searching...’);

});

If you hit:

http://localhost:3000/search/?a=10&b=7&c=titi

you get in the server console:

a:10
b:7
c:titi

49

Using Auxilliary Routers

To get an auxilliary router object, just call express.Router().

Example

const sub = require("express").Router();
sub.get(’/posts’, (req, res) => res.end("Posts page!"));
sub.get(’/mails’, (req, res) => res.end("Mails page!"));
module.exports = sub;

If the code above is in file sub.js and you run the following server:

Example

const app = require("express")();
app.use(’/students’, require(’./sub’));
app.use((req,res) => res.status(404).end(’404!’));
app.listen(3000, () => console.log("Waiting at 3000"));

then, you get the pages with:

I http://localhost:3000/students/posts

I http://localhost:3000/students/mails
50

Object Request

A lot of useful information in the first object passed to each middleware:

I req.app: a reference to the instance of the Express application that
is using the middleware

I req.header

I req.body: object containing key-value pairs of data submitted in the
request body (POST and PUT). It is undefined, except if you use
body-parsing middleware such as body-parser.

I req.hostname

I req.ip : the remote IP address of the request

I req.method

I req.url, req.originalURL

I req.protocol

I req.path

I req.query

51

Object Response

A lot of useful information in the second object passed to each
middleware:

I res.app: a reference to the instance of the Express application that is
using the middleware

I res.end(): ends the response process. Use to quickly end the
response without any data. If you need to respond with data,
instead use methods such as res.send() and res.json().

I res.json(): sends a response (with the correct content-type) that is
the parameter converted to a JSON string using JSON.stringify()

I res.redirect(): Redirects to the specified URL

I res.send(): Sends the HTTP response. The body parameter can be
a buffer (application/octet-stream), a string (text/html), an object
or an array (both being stringified in JSON).

I res.sendFile(): Transfers the specified file

I res.status(): Sets the HTTP status for the response.

52

CRUD

HTTP methods map to CRUD (Create, Read, Update, Delete)
operations.

I Create : POST

I Read : GET

I Update : PUT and PATCH

I Delete : DELETE

The methods that can be used with Express are:

I app.all()

I app.post()

I app.get()

I app.put()

I app.delete()

53

CRUD

Example

const app = require("express")();

app.all(’/’, (req, res, next) => {
console.log(’a request ’ + req.method);
next();

});
app.get(’/’, (req, res) => res.send(’get request’));
app.post(’/’, (req, res) => res.send(’post request’));
app.put(’/’, (req, res) => res.send(’put request’));
app.delete(’/’, (req, res) => res.send(’delete request’));

app.listen(3000, () => console.log("Waiting at 3000"));

You can hit the server as follows:

I curl -X PUT http://localhost:3000/

I curl -X POST http://localhost:3000/

54

Plan

Node

Express

React

55

Ressources

I Pro MERN Stack,
Vasan Subramanian,
2017, Apress

I https://reactjs.org/

56

https://reactjs.org/

React from a CDN

Use something like this in the head element of your page:

Example

<head>
<meta charset="utf-8" >
<title>Hello World!</title>
<script src="https://cdnjs.cloudflare.com/ajax/libs/

react/15.2.1/react.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/

react/15.2.1/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/

babel-core/5.8.23/browser.min.js"></script>
</head>

57

Scripts for React

Example

<body>
<div id="container"></div>

<script type="text/babel">
let container = document.getElementById(’container’);
let component = <h1>Hello World!</h1>;
ReactDOM.render(component, container);

</script>
</body>

58

React Classes

It suffices to build a class extending React.Component, which contains a
method render.

Example

const container = document.getElementById(’contents’);
class Test extends React.Component {
render() {

return (
<div>Test !</div>

);
}

}
ReactDOM.render(<Test />, container);

Remarque
Il faut auto-fermer la balise en utilisant le caractère ’/’.

59

Composing Components

Example

class Sub1 extends React.Component {
render() { return (<div> Sub 1 </div>); }

}
class Sub2 extends React.Component {
render() { return (<div> Sub 2 </div>); }

}
class Test extends React.Component {
render() {

return (
<div>

<Sub1 />
<hr />
<Sub2 />

</div>
);

}
}
ReactDOM.render(<Test />, document.getElementById(’ct’));

60

Passing Data

Any data can be passed by introducing some user-defined attributes,
which are accessed in the React component with this.props

Example

class Table extends React.Component {
render() {

const borderedStyle = {border: "1px solid silver",
padding: 6};

return (
<table style={{borderCollapse: "collapse"}}>

<tr>
<th style={borderedStyle}>Id</th>
<th style={borderedStyle}>Title</th>

</tr>
<Row id={1} title="One" />
<Row id={2} title="Two" />

</table>
);

}
}

61

Passing Data

Example

class Row extends React.Component {
render() {

const borderedStyle = {border: "1px solid silver",
padding: 4};

return (
<tr>

<td style={borderedStyle}>{this.props.id}</td>
<td style={borderedStyle}>{this.props.title}</td>

</tr>
);

}
}

Remarque
For the attribute style, you pass in an object containing key-value
pairs. The keys are same as the CSS style names, except that camel case
is used (e.g., border-collapse is replaced by borderCollapse).

62

Property Validation

Properties being passed can be validated against a specification, supplied
by a static getter function propTypes() in the class of the React
component, and returning an object containing key-value pairs:

I the name of the property is the key
I the validator is the value, which is one of the many constants

exported by React.PropTypes.

Example

static get propTypes() {
return {

id: React.PropTypes.number.isRequired,
title: React.PropTypes.string

};
}

An alternative is:
Row.propTypes = {
id: React.PropTypes.number.isRequired,
title: React.PropTypes.string

};

63

Using Children

Another way to pass data is by using the content of the HTML-like node
of the component. This can be accessed with this.props.children

Example

class BorderWrap extends React.Component {
render() {
const borderedStyle = {border: "1px solid silver",

padding: 6};
return (
<div style={borderedStyle}>

{this.props.children}
</div>

);
}

}

<BorderWrap>

<ExampleComponent />
</BordeWrap>

64

Passing objects

Of course, it is possible to pass objects.

Example

const persons = [
{ id: 1, name: ’Toto’, born: new Date(’2016-08-15’) },
{ id: 2, name: ’Titi’, born: new Date(’2016-08-16’) }
];

<Group persons={persons} />

class Group extends React.Component {
render() {

const rows = this.props.persons.map(
p => <Row key={p.id} person={p} />);

return (<table> {issueRows} </table>);
}

}

Remarque
It is important, for efficiency reasons, to associate a unique key with each
component of an array/iterator. 65

Passing functions

The way to communicate from a child component to its parent is by
passing callbacks from the parent to the child, which it can call to
achieve specific tasks.

Example

hh

66

React state

The state of a React component is managed by this.state.
Whenever the state changes, it triggers a rerender of the component and
the view automatically changes.

Example

class Things extends React.Component {
constructor() {

super();
this.state = { things: [] };
this.add = this.add.bind(this);

}
add(thing) {

const t = this.state.things.concat(thing);
this.setState({ things: t });

}
render() { return (

<div>
<ListThings things={this.state.things} />
<AddThing add={this.add} />

</div>
); }

}

67

Example

class AddThing extends React.Component {
constructor() {

super();
this.handleSubmit = this.handleSubmit.bind(this);

}
handleSubmit(e) {

e.preventDefault();
const form = document.forms.formAdd;
this.props.add({
f1: form.field1.value,
f2: form.field2.value,

});
form.field1.value = ""; form.field2.value = "";

}
render() { return (

<div>
<form name="formAdd" onSubmit={this.handleSubmit}>

<input name="field1" />
<input name="field2" />
<button>Add</button>

</form>
</div>

); }
}

68

React with Express

Example

const app = require(’express’)();
app.use(require(’express’).static(’static’));
app.use(require(’body-parser’).json());

const things = [...];

app.get(’/things’, (req, res) => {
const metadata = { count: things.length };
res.json({ _metadata: metadata, records: things });

});

app.post(’/things’, (req, res) => {
const newThing = req.body;
newThing.created = new Date();
things.push(newThing);
res.json(newThing);

});

app.listen(3000, () => console.log(’App at 3000’));

69

React with Express

Example

class Things extends React.Component {
constructor() {

super();
this.state = { things: [] };
this.add = this.add.bind(this);

}

componentDidMount() {
this.loadData();

}

loadData() {
fetch(’/things’).then(response =>
response.json()

).then(data => {
console.log("Total count:", data._metadata.count);
this.setState({ things: data.records });

}).catch(err => {
console.log(err);

});
}

70

Example

add(newThing) {
fetch(’/things’, {
method: ’POST’,
headers: { ’Content-Type’: ’application/json’ },
body: JSON.stringify(newThing),

}).then(response => {
if (response.ok) {

response.json().then(th => {
th.created = new Date(th.created);
const t = this.state.things.concat(th);
this.setState({ things: t });

});
} else

response.json().then(err => alert(err.message));
}).catch(err => alert("Error: " + err.message));

}

render() { return (
<div>
<ListThings things={this.state.things} />
<AddThing add={this.add} />

</div>
); }

}

71

Important Details

The package body-parser is necessary to parse various types of request
bodies including URL-encoded form data and JSON.

const bodyParser = require(’body-parser’);
...
app.use(bodyParser.json());

The popular library jQuery is an easy way to use the $.ajax() function.
But modern browsers support asynchronous calls natively via the Fetch
API:

<script src="https://cdnjs.cloudflare.com/ajax/libs/fetch
/1.0.0/fetch.min.js">

</script>

An Ajax call using fetch(), is similar to $.ajax(). It takes in the path of
the URL to be fetched, and returns a promise with the response as the
value. Concerning the response:

I we can use the json() method to parse it

I date strings must be converted into date objects

72

Important details

It may be relevant to initialize the state after the component has been
mounted (in the constructor, it may cause problems). This is possible by
putting the following method in the React class of the compornent:

componentDidMount() {
// initialize state here

}

Remarque
If the state contains an array to be modified, you need to make a copy or
a clone of the existing array, append to it, and put it in the state. You
must call setState().

73

Stateless Components

Some components are stateless ; typically, only containing a render()
method.

For performance reasons, it is recommended that such components are
written as functions rather than classes: functions that take in props
and just renders based on it.

Example

function Row(props) {
const borderedStyle = {border: "1px solid silver",

padding: 4};
return (

<tr>
<td style={borderedStyle}>{props.id}</td>
<td style={borderedStyle}>{props.title}</td>

</tr>
);

}

74

JS and JSON

I to convert JS objects into JSON strings, use JSON.stringify
I to convert JSON strings into JS objects, use JSON.parse

Example

let guys = {
toto : {

age : 15,
city : ’Lille’

},
titi : {

age : 28,
city : ’Paris’

}
}

let s = JSON.stringify(guys).replace(/city/g, ’town’);
console.log(s);
let guys2 = JSON.parse(s);
guys2.toto.age = 16;
console.log(guys2);
console.log(JSON.stringify(guys2));

75

	Node
	Express
	React

