Some applications of SAT

What SAT4J users do

Daniel Le Berre

CRIL-CNRS UMR 8188, Université d’Artois, Lens, FRANCE
leberre@cril.univ-artois.fr
http://www.sat4.org/

DoD SAT Workshop - Baltimore - March 3-5, 2008
Outline

Presentation of the SAT4J project

Application in related area

Application in Bioinformatic

Application in Software Engineering

SAT technology on developer desktops

Conclusion
Non exhaustive list of SAT-based apps:
- examples of different users needs
- wide target applications

Biased toward Java/SAT4J users

Not necessarily difficult problems: used in interactive tools

SAT as a black box for such users: no internal tuning needed, push button technology.
The SAT4J project: “Java users deserve SAT technology”
http://www.sat4j.org/

- An open source (EPL/LGPL) library of SAT solvers in Java
- Project started late 2003 as an implementation in Java of the MiniSAT specification.
- Library updated continuously with latest SAT improvements
- Can handle several kind of constraints:
 - clauses $a \lor b \lor \neg c$
 - cardinality $a + b + c + \neg d \geq 3$
 - pseudo boolean $3 \times a + 2 \times b + 2 \times c + \neg d \geq 3$
- Constraint Satisfaction Problem (CSP) to SAT support.
- Optimization problems support ([Weighted] MAXSAT).
- Target easy integration in any Java software!
- Community support provided by OW2 consortium
Warning: Alloy4 defaults to SAT4J since it is pure Java and very reliable. For faster performance, go to Options menu and try another solver like MiniSat. Felix Chang, MIT. Message appearing when launching Alloy 4.

The default SAT Solver used by Forge and JForge is SAT4J, which is pure Java. We highly recommend you use one of the other supported SAT solvers, because they usually exhibit better performance. Greg Dennis, MIT. Quote from Forge web page.
Use case 1: the termination competition
http://www.lri.fr/~marche/termination-competition/

- solvers have one minute to prove that a term or string rewriting system terminates, e.g.:

 INPUT: (RULES b c -> a b b , b a -> a c b)
 ANSWER: NO

 Input system R is not terminating since R admits a looping reduction from bcaaca to aacabacbcacaacabbb with 10 steps.

- huge success of the open source SAT solvers MiniSat and SatELite in the SAT 2005 competition

- Aprove, Jambox and Matchbox use them since 2006
SAT in Aprove

http://aprove.informatik.rwth-aachen.de/

- Solving the Lexicographic Path Order (quasi or strict) problem as SAT
- Combine it with Argument Filtering (still as SAT)
- Complete with Recursive Path Order (as SAT)
- Each move to SAT encoding provided orders of magnitude speedup compared to previous techniques
- Aprove, written in Java, used SAT4J for its builtin Tseitin translation!, and Minisat/SatElite as backend SAT solver!
- Remark 1: CNF format is not user friendly!
More information about Aprove and SAT

Use case 2: Genetic Network Analyzer (bioinformatic)

http://www.genostar.fr/

- Analysis of Genetic Regulatory Networks
- GRN = interaction between Genes, proteins, RNA and molecules.
- Abstraction based on state transition graphs
- Objective: finding all steady states
- How: one steady state = one model of a CNF
- Approach: Efficient CNF encoding (not exponential in the number of genes but in the number of regulators of the genes)
- Benefit:
 - real bacterial GRN solved in a few seconds
 - orders of magnitude improvement on previous methods based on CSP on random networks.
- Available in Genostar product since October 2007
- Remark 2: solving SAT decision problem is not sufficient
More information about GNA and SAT

- H. de Jong, M. Page (2008), Search for steady states of piecewise-linear differential equation models of genetic regulatory networks, ACM/IEEE Transactions on Computational Biology and Bioinformatics, in press.
Use case 3: Verifying the Executable UML Metamodel

Context of the problem

- Object Management Group (OMG) initiative
- Model Driven Architecture context
- Semantics of a Foundational Subset for Executable UML
- Objective: Enable tool-support for constructing, verifying, translating & executing computationally-complete models
- Check the ExUML metamodel for compliance w.r.t. OMG’s language architecture principles
- Package merge is an important step for the well-formed construction of a metamodel for ExUML
- Very important for embedded and/or mission-critical systems

Approach:

1. Extract information from the ExUML metamodel with OCL queries
2. Verify the extracted information using Alloy4
3. Visualize positive/negative results with Alloy4Eclipse
Better Model Driven Development w/ Alloy

- Infrastructure Metamodel
 - Extensible (open)

- Verify Type Dependencies & Package Layering

- Verify Element Redefinitions & Property Subsets
 - Superstructure Metamodel
 - Merged (closed)

- UML Package Merge
 - Traceability Extension

- 06/2008

- EMF Code Generation
 - Monitoring Extension
 - XMI Loader/Exporter
 - Metamodel API

- Runtime Verification

- 04/2008

- ✓ 10/2007

Current scope of JPL’s efforts for the ExUML specification

Future work

9/10/2007
04/2008
06/2008
The long path from ExUML to SAT

AMDD = AlloyModelDrivenDevelopment,
A4E = Alloy 4 Eclipse, A4 = Alloy 4, KK=Kodkod
Key features

- JPL environment based on Rational Software Architect (Eclipse)
- Alloy4Eclipse provides seamless integration of Alloy4 in the Eclipse environment
- Alloy4Eclipse augments Alloy4 visualization with a basic mapping to elements of the analyzed model
- Alloy 4 checks A4 models and provides visual feedback of models or counterexamples.
- KodKod contains all the machinery for efficient relational model to SAT translation and interpretation (symmetry breaking predicates, unsat core in the original model, etc) and multiple SAT solvers support (berkmin, minisat, zchaff, SAT4J, ...).
- Remark 3 : Alloy 4 separates SAT translation from Alloy 4 semantics. Kodkod can be reused in other tools : Forge
For further information

Alloy http://alloy.mit.edu
 Tutorial by Greg Dennis this afternoon!

Forge http://sdg.csail.mit.edu/forge/
 Bounded Program Verification using Kodkod

Alloy4Eclipse http://alloy4eclipse.googlecode.com/

AlloyModelDrivenDevelopment to be presented at EclipseCon
 2008 conference (17th-20th March). Report and tool
 should be publicly available soon.
Use case 4: Eclipse provisioning
Joint work with Anne Parrain (CRIL) and Pascal Rapicault (IBM)

- Eclipse is an open platform for building Rich Client Applications.
- Each functionality is brought by a bundle.
- Each bundle has dependencies (needs, conflicts) with other bundles.
- Bundles can have several versions.
- Most recent available bundles should be preferred.
- Problem translated into a binate covering problem (CNF + optimization function).
- Manage those dependencies using a Pseudo Boolean solver.
- Based on the EDOS project (SAT) and the OPIUM (PB) results for Linux package management.
- Should ship in June with next Eclipse release: 3.4.
Eclipse provisioning preliminary results

<table>
<thead>
<tr>
<th>Structure</th>
<th>Answer</th>
<th>#V</th>
<th>#C</th>
<th>Opt. Sol.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclipse IUs from a repository containing all of Ganymede M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDT</td>
<td>SAT</td>
<td>109</td>
<td>770</td>
<td>0.24</td>
<td>1.75</td>
</tr>
<tr>
<td>RAP</td>
<td>SAT</td>
<td>128</td>
<td>985</td>
<td>0.33</td>
<td>4.14</td>
</tr>
<tr>
<td>TPTP</td>
<td>SAT</td>
<td>197</td>
<td>1338</td>
<td>0.40</td>
<td>3.76</td>
</tr>
<tr>
<td>WTP</td>
<td>UNSAT</td>
<td>264</td>
<td>2028</td>
<td>-</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Eclipse release

| SDK 3.3 | SAT | 376 | 2231| 0.56 | 1.36 |

- Can easily find the optimal solution
- Need more time to prove it is optimal!
- Ideal case: nothing installed in the computer. Need to take into account installed bundles too!
Conclusion

- Numerous other applications: requirements engineering, software product lines/feature programming, C static code analyzer, ...
- **SAT is a mature technology**
- Not only used by power users, but also “normal” programmers
- SAT technology is being used as a lightweight generic search framework
- **Improvements needed:**
 - Dimacs format is not suitable for average user: CNF, readability
 - Need a more user friendly modeling language, or front end (i.e. MX, Kodkod, BoolVar, etc.)
 - Answering SAT is often not sufficient: enumerating them, proof logging, unsat core, etc. also needed! One SAT solver usually does not provide all those features
Gartner Hype Cycle for SAT: where are we up to?

http://www.gartner.com/

Image from wikipedia
Thanks for your attention

Questions?
OpenOME an Eclipse plugin for requirements engineering.

goal model to connect the user’s high level requirements with the system’s low level configuration items

preferences between goals: one goal is more important than another

expectations a goal needs to be satisfied to a certain degree

- Top-down reasoning propagates the high level goals downward to obtain the minimal number of low level goals.
- Top-down reasoning done with SAT4J
AHEAD tool suite
http://www.cs.utexas.edu/users/schwartz/ATS.html

Product line an aggregation of components having features
Constraint Not all features are compatible
Safe Composition Avoiding type errors in the composed code.
AHEAD theory of software synthesis including feature modeling.

SAT used to:
▶ debug feature models
▶ perform safe composition
Product line an aggregation of components having features

Constraint Not all features are compatible

Safe Composition Avoiding type errors in the composed code.

AHEAD theory of software synthesis including feature modeling.

“Further, the performance of using SAT solvers to prove theorems was encouraging: non-trivial product-lines of programs of respectable size [...] could be analyzed and verified in less than 30s.”

Don Batory and Sahil Thaker, Safe Composition of Product Lines
Alloy 4 Analyzer
http://alloy.mit.edu/

- Structural modelling language based on first-order logic
 - quantifiers
 - higher arity relations
 - polymorphism
 - subtyping
 - ...

- Provides fully automatic simulation and checking
- Uses Kodkod SAT-based model finder
- Alloy can be seen as a subset of Z, ASCII notation
- Alloy is similar to OCL, but fully declarative
- Mature technology (started in 1997)
Alloy4Eclipse
http://alloy4eclipse.googlecode.com/

Aims:

▶ To provide JDT-like features to Alloy 4 model designers
 ▶ First class Alloy 4 editor (code completion, syntax coloring, refactoring, etc).
 ▶ Compile on save approach.
 ▶ Eclipse like (Outline view, console, preferences...)
▶ To facilitate the integration of Alloy 4 with other Eclipse plugins.
 ▶ Model files management the Eclipse way
 ▶ SWT/SWING integration of Alloy 4 graphical views.

Development:

▶ Started in January 2007
▶ By two 4th year University Students (Université d’Artois, Lens, France).
▶ Two new students working on it in 2008