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Abstract
We investigate the problem of eliciting CP-nets in
the well-known model of exact learning with equiv-
alence and membership queries. The goal is to
identify a preference ordering with a binary-valued
CP-net by guiding the user through a sequence of
queries. Each example is a dominance test on some
pair of outcomes. In this setting, we show that
acyclic CP-nets are not learnable with equivalence
queries alone, while they are learnable with the help
of membership queries if the supplied examples
are restricted to swaps. A similar property holds
for tree CP-nets with arbitrary examples. In fact,
membership queries allow us to provide attribute-
efficient algorithms for which the query complex-
ity is only logarithmic in the number of attributes.
Such results highlight the utility of this model for
eliciting CP-nets in large multi-attribute domains.

1 Introduction
The spectrum of AI applications that resort on the abil-
ity to reason about preferences is extremely wide, ranging
from configuration softwares and recommender systems to
autonomous agents and group decision-making. As many, if
not most, of these applications are defined over large, multiat-
tribute domains, a key challenge in preference research is to
develop representation languages and elicitation techniques
that cope with the exponential size of the outcome space.

Conditional preference networks (CP-nets), have emerged
as an expressive language capable of representing ordinal
preferences relations in a compact and structured manner
[Boutilier et al., 2004]. Briefly, a CP-net is a graph where
each node is labelled with a table describing the user’s prefer-
ence over alternative values of this node given different values
of the parent nodes. For example, the entry Jb∧Pb : Sr � Sb
might state that, all other things being equal, I prefer a red
shirt than a black one if the color for both the jacket and the
pants is black. The semantics of a CP-net is defined by a
dominance ordering on the outcome space, derived from such
reading of entries in the tables. Based on this relation, a key
reasoning task is dominance testing: given a CP-net N and a
pair of outcomes (o, o′), determine whether o dominates o′,
according to the dominance ordering induced by N .

Ideally, in preference elicitation with CP-nets, the
decision-maker should simply “fill the tables” by asking the
user how her preference over the values of one node depends
on the values of its parents. Yet, in practice, eliciting pref-
erences is far from easy because the dependency graph is
generally not known in advance: the decision-maker must
therefore seek the interdependencies between attributes and
identify a minimal set of parents for each target node. The
problem is exacerbated still further by the fact that real-world
applications typically involve many irrelevant attributes. For
instance, it is not uncommon in recommender systems to
describe products using thousands of variables, with the
expectation that only a small fraction of these are crucial
for describing preferences [Basilico and Hofmann, 2004;
Ziegler et al., 2008]. The decision-maker is thus required
to select, within a large collection of attributes, a relatively
small subset over which the network will be specified.

Such considerations bring into sharp focus the need for
query learning algorithms that aim at extracting CP-nets by
guiding the user through an appropriate sequence of queries.
A widely adopted framework for studying this issue is the
model of exact learning with equivalence and membership
queries [Angluin, 1988]. In essence, equivalence queries sim-
ulate a form of passive learning in which the decision-maker
observes the user’s behavior until she finds a counterexam-
ple to her hypothesis. By contrast, membership queries cap-
ture a form of active learning by allowing the decision-maker
to ask about examples of her own choice. The utility of this
model lies in the fact that rich concept classes, including Horn
theories, decision trees, and some description logics, have
been shown to be learnable with both equivalence queries
and membership queries, while in weaker versions one can
prove superpolynomial lower bounds [Angluin et al., 1992;
Bshouty, 1995; Frazier and Pitt, 1996].

In the learning model suggested by this study, the target
concept is a dominance ordering on the outcome space. Each
example is a preference situation involving some pair of out-
comes. For a membership query, the learner supplies an ex-
ample (o, o′) and is told whether o dominates o′, or not. For
an equivalence query, the learner presents a CP-net N , and
either is told that N correctly identifies the target concept, or
it is given a counterexample (o, o′). The goal is to identify
the target concept using as few resources as possible, where
resources refer both to the run time and the number of queries.



From a practical perspective, one must take into account
the fact that outcomes are typically not comparable with an
equivalent cost. As observed in [Green and Srinivasan, 1978],
users can meaningfully compare outcomes if they differ only
on very few attributes. Similarly, for the learner, this task can
be arduous because dominance testing is generally NP-hard,
even for acyclic CP-nets. Thus, our learnability results are
defined in terms of a concept class in which the target concept
is chosen, and an instance class that circumscribes the set of
examples used by equivalence and membership queries.

The key message to be gleaned from this paper is that
active learning is required to correctly and efficiently ex-
tract preference networks in binary-valued domains. On the
one hand, acyclic CP-nets are not learnable with equivalence
queries alone, while on the other, they are learnable with
equivalence and membership queries, provided that the in-
stance class is restricted to simple outcome pairs for which
dominance testing takes linear time. Interestingly, a simi-
lar property holds for tree-structured CP-nets by extending
the instance class to arbitrary examples. When membership
queries are available, we provide attribute-efficient learning
algorithms for which the query complexity is linear in the
size of the minimal CP-net that identifies the target concept,
and logarithmic in the total number of attributes. Such en-
couraging results pave the way for fast elicitation techniques
capable of extracting “small” CP-nets in “large” domains.

2 Conditional Preference Networks
The learning problems under consideration in this study are
defined over a set of Boolean variables X = {x1, · · · , xn}.
As usual, we refer to xi and xi as literals. Given a literal p,
we denote by p the opposite of p; for example, if pi is xi, then
pi is xi. A term t is a conjunction of literals. By var(t) we
denote the set of variables occurring in t. A term t is maximal
for a subset of variables Y ⊆ X if var(t) = Y .

A conditional preference rule (CP-rule) on a variable x is
an expression of the form t : p � p, where p is a literal of x
and t is a term such that x 6∈ var(t). Such a rule captures the
statement “given that t holds, the value p is preferred to the
value p for the variable x, all other things being equal”.

A conditional preference table (CP-table) on a variable x
with respect to a set Y ⊆ X \ {x} is a set of CP-rules on x
that associates at most one rule t : p � p to each maximal
term t for Y . The CP-table is complete if exactly one rule
t : p � p is associated to each maximal term t for Y .

A conditional preference net (CP-net) is a labelled digraph
N over a subset var(N) of X , where each node x ∈ var(N)
is annotated with a CP-table cpt(x) on x with respect to the
set Pa(x) of parents of x in the graph. The CP-net is complete
if any node x ∈ var(N) is annotated with a complete CP-
table. A CP-net is acyclic if its digraph is acyclic, and tree-
structured if its digraph forms a forest, that is, a set of trees.

These notions are illustrated in the left part of Figure 1,
where an acyclic complete CP-net is specified for the popular
evening dress scenario. I unconditionally prefer black (, p)
to white (, p) as the color of both the jacket and the pants,
while my preference for a red shirt (s) versus a white one (s)
depends on the combination of jacket and pants.
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Figure 1: A CP-net and its preference graph for “evening dress”

An outcome is a maximal term o for X . Given a term t, we
write o[t] for the outcome obtained by making o agree with
t, i.e. o[t] = {p : p ∈ t or p ∈ o − t}. For example, if
o = x1x2x3 and t = x1x2, then o[t] = x1x2x3. An outcome
o satisfies a term t if o = o[t]. We write 0 (resp. 1) for the
outcome that assigns 0 (resp. 1) to every variable in X .

The ceteris paribus semantics of a CP-rule t : p � p on
a variable x can be described as follows: if an outcome o
satisfies the condition t and assigns the value p to x, then it
is preferred to an outcome o′ which differ from o only in that
is assigns the value p to x. In formal terms, we say that o is
preferred to o′ for t : p � p if o = o[t ∧ p] and o′ = o[p]. In
this case, (o, o′) is called a model of the rule t : p � p.

Given a CP-net N and two outcomes o and o′, we say that
o dominates o′ forN if there is a sequence (o1, · · · , om) such
that o1 = o′, om = o and for each i : 1 ≤ i < m, (oi+1, oi)
is a model of some CP-rule ofN . In this case, (o, o′) is called
a model of N , and (o1, · · · , om) an improving sequence from
o′ to o. The dominance ordering of N , denoted �N , is the
set of all models of N . For example, the dominance ordering
of the CP-net for evening dress is the transitive closure of the
digraph displayed in the right part of Figure 1.

A CP-net N is consistent if there is no outcome o which
dominates itself, i.e. o �N o. If N is consistent, then �N is
a strict partial order over the outcome space. As reported in
[Boutilier et al., 2004], any acyclic CP-net is consistent.

Given two CP-nets N and N ′, we say that N subsumes N ′
if for any CP-rule t′ : p � p inN ′, there is a CP-rule t : p � p
in N such that t′ ⊆ t. A CP-net N is minimal if there is no
distinct netN ′ subsumed byN and for which�N=�N ′ . For
example, the CP-net in Figure 1 is minimal.

Finally, the size |r| of a CP-rule r will be the number of
occurrences of literals in its definition. Specifically, if r is of
the form t : p � p, then |r| = |t|+2. The size |N | of a CP-net
N will be the sum of |r| over all rules r in N . For example,
the size of the CP-net in Figure 1 is 2 + 2 + 4× (2 + 2) = 20.

3 Exact Learning with Queries
The learning criterion expected in this study is that of exact
identification, which is achieved if the learner can infer a CP-
net that correctly represents the target concept. A concept is a
strict partial ordering � on the outcome space. A representa-
tion class is a setN of CP-nets. A concept� is representable
by N if there is a CP-net N ∈ N such that �N=�. The



concept class CN over N is the set of all concepts that are
representable by N . The description size of a concept � in
CN will be the minimum of |N | over all representations N of
� in N . Finally, an instance or example is a pair (o, o′) of
outcomes, and an instance class is a set O of examples.

Let � be a target concept of some concept class CN , and
O be an instance class. The learner may extract information
about � using two types of queries. A membership query
MQ over O takes an example (o, o′) ∈ O and returns Yes
if o � o′, and No otherwise. An equivalence query EQ
over O takes a CP-net N ∈ N , and returns Yes if N is a
representation of �, or returns a counterexample (o, o′) ∈ O
otherwise. The counterexample (o, o′) is positive if o � o′

and o �N o′, and negative if o � o′ and o �N o′.

Definition 1. An algorithm A is a query learning algorithm
for a concept class CN with respect to an instance class O
if there are two polynomials p and q such that, for any tar-
get concept� in CN , after p(n) membership and equivalence
queries over O, and total running time in q(n), A outputs a
representation N ∈ N of �. It is attribute-efficient if the
number of queries p(n) is polynomial in the description size
of �, but only polylogarithmic in the number of variables n.

Given an instance class O, we say that a concept class
CN is attribute-efficiently learnable if there is an attribute-
efficient query learning algorithm for CN with respect to O.

Clearly, the strength of query-directed learning lies in
membership queries, which model not only the interaction
with a user, but also the careful crafting of experiments by a
decision-maker in order to observe the response of the user.
In order to demonstrate that a class of CP-nets is not learnable
with equivalence queries alone, we shall use the technique of
approximate fingerprints introduced in [Angluin, 1990].

Intuitively, a concept class CN has approximate finger-
prints if it includes a set C∗N such that for each hypothesis
N in CN supplied by the learner, the user can choose a coun-
terexample for N that eliminates only a superpolynomially
small fraction of candidate concepts in C∗N . By repeating this
process, the learner cannot be certain of the target concept in
C∗N after only polynomially many equivalence queries.

A pair (o, o′) of outcomes is called an α-fingerprint of a
concept class C∗N according to some concept �1 if

|{�2∈ C∗N : o �2 o
′ iff o �1 o

′}|
|C∗N |

< α

Formally, a concept class CN has approximate fingerprints
with respect to an instance classO if for any polynomial p(n),
CN includes a subclass C∗N such that for any sufficiently large
n, C∗N contains at least two concepts, and for all concepts� in
CN of description size bounded by p(n), there is an example
in O which is a 1

p(n) -fingerprint of C∗N according to �.

4 Learning Acyclic CP-nets with Queries
Acyclic CP-nets take a central part in preference research by
providing the right level of expressivity for many real-world
applications, while remaining tractable for certain reasoning
tasks such as outcome optimization [Domshlak et al., 2001;
Boutilier et al., 2004]. We begin with some useful properties.

Two outcomes form a swap if they differ in the value of
only one variable. Such examples correspond to simple sit-
uations of the form “for this car I prefer it red than white”,
where the color is one of the multiple attributes of the car.
The next property states that, in acyclic CP-nets, swaps can
be retrieved in linear time by simple rule matching.

Lemma 1. Let N be an acyclic CP-net and (o, o′) be a swap.
Then o �N o′ if and only if there is a CP-rule r in N such
that (o, o′) is a model of r.

Proof. The if direction is immediate. Conversely, if o �N o′,
then there is an improving sequence from o′ to o in N . As-
sume w.l.o.g. that o satisfies x1 and o′ = o[x1]. Using the suf-
fix fixing rule [Boutilier et al., 2004, Section 5.1], we can also
assume that the sequence affects only x1 and its ascendants
in N . By acyclicity, one of those ascendants xk is modified
but has none of its parents modified in the sequence. Thus,
xk cannot be modified back to its value in o′, which entails
xk = x1. So only x1 is modified, which concludes.

A CP-net N is a minimal representation of a concept � if
N represents � and |N | is minimal.

Lemma 2. For the class CACY of acyclic CP-nets, the minimal
representation of any concept is unique.

Proof. Let � be a concept in CACY and N a representation
of � satisfying the following: for any variables x and y, and
any rule r ∈ N on x, if y is a parent of x in N , then there
is a model (o, o′) of r such that exactly one of (o[y], o′[y])
and (o[y], o′[y]) is not a model of r. This amounts to say
that y is a relevant parent of x. Clearly, such a representation
exists: take any representation and remove all irrelevant par-
ents. Now let N ′ be any representation of �; we show that
N ′ subsumes N . Let r ∈ N be a rule of the form t : p � p.
Any swap (o, o′) for which o = o[t ∧ p] and o′ = o[p] is a
model of r. Since �N=�N ′ , by Lemma 1, (o, o′) must be
a model of some rule r′ in N ′ of the form t′ : p � p. If
t * t′, then there is a variable y ∈ var(t) \ var(t′) such that
(o[y], o′[y]) and (o[y], o′[y]) are both models of r′, but exactly
one of these pairs is not a model of r, contradicting the fact
that �N=�N ′ . So t ⊆ t′, and hence, N ′ subsumes N .

We now show that acyclic and complete CP-nets have
approximate fingerprints, even if examples are restricted to
swaps. Thus, by applying Theorem 1 in [Angluin, 1990],
they are not learnable with equivalence queries alone.

Theorem 1. The class CACC of acyclic complete CP-nets has
approximate fingerprints with respect to swap examples.

Proof. Let C∗ACC be the class of all concepts represented by
a CP-net N∗ with log n root nodes xj pointing to the same
fixed child node x1. Each table cpt(xj) has the rule xj � xj .
The table cpt(x1) includes one rule s : x1 � x1, where s is
the conjunction of all positive literals in Pa(x1), and n − 1
rules s′ : x1 � x1, where s′ is any maximal term of Pa(x1)
with at least one negative literal. Clearly N∗ is acyclic and
complete. Furthermore, |C∗ACC| =

(
n−1
logn

)
. Now, let p(n) = nk

for some constant k, and let N ∈ CACC with |N | ≤ p(n).



The fingerprint (o, o′) is defined as follows. If N does not
include any rule of the form t : x1 � x1, then we let o = 1
and o′ = o[x1]. Then o �N o′ but o � o′ for any concept �
in C∗ACC. So (o, o′) is an α-fingerprint of C∗ACC for any α > 0.

Now, if N includes a rule of the form t :x1�x1, then o is
any outcome satisfying t∧ x1 and containing k log n positive
literals excluding x1, which can be constructed as follows.
Because N is complete, the size of its table on x1 is more
than 2|t|. Since |N | ≤ nk we get |t| ≤ k log n. Thus, o can
be constructed by satisfying t first and filling the rest as nec-
essary. Again, o′ = o[x1]. So o �N o′ and o has k log n
positive literals (excluding x1). Hence, the number of con-
cepts � in C∗ACC for which o � o′ is

(
k logn
logn

)
. Using a−i

b−i ≤
a
b ,

|{�∈ C∗ACC : o � o′}|
|C∗ACC|

=
logn−1∏
i=0

k log(n− i)
n− 1− i

≤ (k log n)logn

(n− 1)logn

Taking logarithms, this proportion is less than 1
nk if and only

if n−1
logn > k2k, which is true for sufficiently large n.

When membership queries are available, we can provide
an attribute-efficient algorithm for learning acyclic, and pos-
sibly incomplete, CP-nets, provided that the supplied exam-
ples are restricted to swaps. As specified in Algorithm 1, the
learner iteratively updates her hypothesisN by asking equiva-
lence queries. On seeing a counterexample (o, o′), the learner
checks whether N includes a rule that covers either (o′, o) or
(o, o′). If this is indeed the case, she asks membership queries
in order to refine the condition of that rule. Otherwise, she ex-
pands her net with a new rule. Here, each rule r of the form
t : pi � pi is associated with an outcome or, called the sup-
port of r, and such that (or[pi], or[pi]) is a model of r.

The key routine SEARCHPARENT finds a new parent of
some misclassifying rule r, using only a logarithmic number
of membership queries. Using the support or of r and the last
counterexample (o, o′), it operates a binary search on the se-
quence (o1, · · · , on) where oj is formed by the first j literals
occurring in or and the last n − j literals occurring in o. As
shown in the lemma below, SEARCHPARENT is guaranteed
to find a new parent in the rule r, by maintaining the invari-
ant that for each explored subsequence (oa, · · · , ob), we have
both oa[pi]�oa[pi] and ob[pi]�ob[pi] in the target concept.

Lemma 3. Let � be a concept of CACY, oa, ob be two out-
comes, and pi, pi be a pair of opposite literals for some vari-
able xi. If we have oa[pi] � oa[pi] and ob[pi] � ob[pi], then
there is a parent xj of xi in the minimal representation N∗ of
� whose value is different in oa and ob.

Proof. Consider the outcome sequence (o0, · · · , on) where
oj = oa[tj ] with tj the conjunction of the first j literals in
ob. Since o0 = oa and on = ob, there is some j > 0 such that
oj−1[pi] � oj−1[pi] and oj [pi] � oj [pi]. So there is a rule
t : pi � pi in N∗ such that oj satisfies t but oj−1 does not.
Since they differ only on xj , we get xj ∈ var(t).

Lemma 4. Let � be a target concept in the class CACY. Then
Algorithm 1 maintains an acyclic CP-net N which is always
subsumed by the minimal representation N∗ of �.

Algorithm 1: Learning Acyclic CP-nets
N ← ∅
while (o, o′)← [EQ(N) 6= Yes] do

let xi be the variable s.t. pi ∈ o and pi ∈ o′
if (o′, o) is a model of some rule 〈r, or〉 in N then

(o, o′)← (o′, o)
if (o, o′) is a model of some rule 〈r, or〉 in N then

/∗ The counterexample is negative ∗/
xj ← SEARCHPARENT(xi, pi, o, or, 0, n)
foreach rule 〈r′, or′〉 in the table of xi expand the
condition of r′ with the literal of xj in or′

else
/∗ The counterexample is positive ∗/
add the rule 〈t : pi � pi, o〉 to N where t is the
projection of o onto the set Pa(xi) in N

return N

Procedure SEARCHPARENT(xi, pi, o, o′, a, b)

if a = b+ 1 then return xb
j ← b(a+ b)/2c
oj ← o[tj ] where tj are the first j literals occurring in o′
if MQ(oj [pi], oj [pi]) = Yes then

return SEARCHPARENT(xi, pi, o, o′, a, j)
else

return SEARCHPARENT(xi, pi, o, o′, j, b)

Proof. Initially, N = ∅, so the property holds. Now, con-
sider an iteration of the main loop and suppose by induction
hypothesis (I.H.) that N is subsumed by N∗ before calling
EQ. If EQ returns a positive counterexample (o, o′), then
by Lemma 1 N∗ includes a rule t∗ : pi � pi for which
o = o[t∗ ∧ pi] and o′ = o[pi]. Then N is expanded with
t : pi � pi where t is the projection of o onto the parent set
Pa(xi) of xi inN . Since (by I.H.)N is subsumed byN∗, we
have Pa(xi) ⊆ Pa∗(xi), where Pa∗ is the parent set in N∗.
Therefore t ⊆ t∗, and hence, the invariant is preserved.

Dually, if EQ returns a negative counterexample (o, o′),
then by Lemma 1 N includes a rule r of the form t : pi � pi
for which o = o[t∧pi] and o′ = o[pi]. By construction, for the
support or of r we also have or = or[t∧ pi], and or � or[pi].
So by Lemma 3, SEARCHPARENT returns a parent xj of xi
in N∗. Now, let r′ be any rule of the form t′ : p′i � p′i. Since
the support or′ of r′ satisfies or′ [p′i] � or′ [p′i], by I.H., there
is a rule t∗ : p′i � p′i in N∗ such that t′ ⊆ t∗ and or′ satisfies
t∗. This together with the fact that xj is a parent of xi in N∗
ensures t′ ∪ {pj} ⊆ t∗, so the invariant is preserved.

Now let us examine the complexity of Algorithm 1. For
equivalence queries, each counterexample allows us to find a
new rule t : pi � pi or a new literal pj of some rule in the
minimal representationN∗ of the target concept. Because the
hypothesis N is always subsumed by N∗, this can happen at
most |N∗| times. For membership queries, at most log n of
these are used in each call of SEARCHPARENT, which always
uncovers a new parent of some variable. So the number of
these queries is at most e log n, where e =

∑
i Pa(xi).



Theorem 2. The class CACY is attribute-efficiently learnable
from equivalence and membership queries over swaps: any
concept� in CACY can be identified in polynomial time, using
at most |N∗| + 1 equivalence queries and edlog ne member-
ship queries, where N∗ is the minimal representation of �,
and e is the number of edges in N∗.

5 Learning Tree CP-nets with Queries
Binary-valued tree-structured CP-nets constitute a restricted,
yet important, class of preference networks for which dom-
inance testing on arbitrary pairs of outcomes is solvable
in quadratic time using a backtrack-free search technique
[Boutilier et al., 2004]. It is therefore legitimate to study the
learnability issues of this class in the general setting where
the examples supplied to the learner are arbitrary preference
situations. In this context, we first show that tree-structured
CP-nets are not learnable with equivalence queries alone.

Theorem 3. The class CTREE of tree CP-nets has approximate
fingerprints with respect to arbitrary outcome pairs.

Proof. We assume w.l.o.g. that n is even to avoid floors and
ceilings. To each permutation π of (x1, · · · , xn) we associate
the smallest set of rules Nπ such that xπ(1) � xπ(1) is in Nπ ,
and for each i > 1, Nπ includes xπ(i−1) : xπ(i) � xπ(i).
Let C∗TREE be the class of all concepts represented by someNπ
specified as above. Clearly, |C∗TREE| = n!. Now, let p(n) = nk

for some constant k and let N ∈ CTREE with |N | ≤ p(n).1
The fingerprint (o, o′) is defined as follows. Assume first

that there is an outcome o1 containing at least n/2 ones and
such that (o1,0) is a model of N . Then there is an improving
sequence from 0 to o1 in N , and since variables are flipped
one by one, it must contain an outcome o with exactly n/2
ones. Moreover, by construction o �N 0 holds. Let o′ = 0.
We claim that (o, o′) is an 1

nk -fingerprint of C∗TREE w.r.t. �N .
Indeed, a concept Nπ in C∗TREE has (o, o′) as a model if and
only if the first n/2 variables according to π are exactly those
assigned 1 by o. Otherwise, any improving sequence in Nπ
should flip at least one variable assigned 0 by both o and o′,
with no way back, a contradiction. It follows that there are
(n/2)!(n/2)! concepts in C∗TREE with (o, o′) as a model, hence

|{�∈ C∗TREE : o � o′}|
|C∗TREE|

=

(
n
2 !
)2

n!
=
(
n
n
2

)−1

≤
√

2n
2n

which is clearly less than 1
nk for sufficiently large n. Now,

assume that there is no o1 as above. Let o = 1 and o′ = 0.
So o �N o′, but o � o′ holds for every concept � in C∗TREE.
Hence, (o, o′) is an α-fingerprint of C∗TREE for any α > 0.

As further evidence for the utility of membership queries,
we now give an attribute-efficient algorithm for eliciting tree
CP-nets in presence of arbitrary examples. Let 4(o, o′) be
the set of all variables whose value differ in two outcomes o
and o′. Algorithm 2 uses the fact that considering only vari-
ables in ∆(o, o′) and their ascendants is enough for searching

1For a tree CP-net N , |N | ≤ 6|var(N)| (two rules of size 3 per
variable), so if p(n) ≥ 6n, N can be any tree CP-net.

Algorithm 2: Learning tree CP-nets
N ← ∅
while (o, o′)← [EQ(N) 6= Yes] do

/∗ The counterexample is necessarily positive ∗/
for each x ∈ 4(o, o′) do PROPAGATE(x)

return N

Procedure PROPAGATE(x)
if x ∈ var(N) then return
var(N)← var(N) ∪ {x}
for o, p ∈ {0,1} × {x, x} do prefo,p ← MQ(o[p], o[p])
if pref0,p = pref1,p = Yes for some p ∈ {x, x} then

parents ← ∅
else if pref0,p = Yes for some p ∈ {x, x} then

parents ← {SEARCHPARENT(x, p,1,0, 0, n)}
else if pref1,p = Yes for some p ∈ {x, x} then

parents ← {SEARCHPARENT(x, p,0,1, 0, n)}
else

parents ← ∅
add to N a table for x with parents parents and the rules
satisfied by the prefo,p’s
if parents = {y} then PROPAGATE(y)

an improving sequence from o′ to o. Thus, on seeing a coun-
terexample (o, o′), the learner computes the tables for each
such variable. Because any variable has at most one parent,
its table can be found using few membership queries.

From a practical perspective, note that the examples used
in MQ’s are restricted to swaps in order to minimize the cog-
nitive effort spent by the user in comparing outcomes.2

Lemma 5. Let N∗ be a minimal representation of the target
concept in CTREE. Then PROPAGATE is called only on vari-
ables x in var(N∗), and always extracts the table of x in N∗.

Proof. By construction, when PROPAGATE(xi) is called by
Algorithm 2, we must have x ∈ 4(o, o′) and o � o′. So
x ∈ var(N∗), because otherwise it would have no table in
N∗ and hence, its value could not change along any improv-
ing sequence from o′ to o. Now given x ∈ var(N∗), we show
that PROPAGATE computes the right set of parents for x.

First, let MQ(0[p],0[p]) = MQ(1[p],1[p]) = Yes. Then
by Lemma 1 there is a rule t : p � p in N∗ such that both 0
and 1 satisfy t. Hence t is empty. Now to the second case.
Here MQ(0[p],0[p]) = Yes and MQ(1[p],1[p]) = No, so
by Lemma 3 there is a parent y of x in N∗, which is found
by SEARCHPARENT. The third case is symmetric. In the last
case, all queries answer No, so there is no rule on x in N∗,
and hence, x has no parent in N∗.

Consequently, in all cases PROPAGATE computes the right
set of (at most one) parents. Because each possible rule is
validated by one of the queries MQ(o[p], o[p]), the table com-
puted for x is the correct one. Furthermore, since each recur-
sive call of PROPAGATE is on a variable y which is the parent
of some variable in var(N∗), we have y ∈ var(N∗).

2In addition, the outcomes 1 and 0 used in PROPAGATE can be
replaced by any suitable pair (o, o) for which o = {p : p ∈ o}.



By Lemma 5, it follows that all counterexamples supplied
to the learner are positive. Moreover, from the structure of
the algorithm it is easily seen that after treating (o, o′), the
hypothesis N contains the correct tables for all ascendants of
all variables in 4(o, o′). This together with the suffix fixing
principle [Boutilier et al., 2004, Section 5.1] ensures that N
now agrees with o � o′, and so that the algorithm converges.

Concerning the complexity of our learning algorithm, the
number of equivalence queries is at most |var(N∗)|+ 1, be-
cause each counterexample allows the learner to treat at least
one new variable in N∗. Likewise, the routine PROPAGATE
treats each variable in var(N∗) exactly once, using at most
log n + 4 membership queries for computing the pref o,p’s
plus searching for a parent. Finally, the hypothesis main-
tained by the learner is always a subtree of N∗, and hence,
dominance testing can be evaluated in quadratic time.

Theorem 4. The class CTREE is attribute-efficiently learnable
from equivalence and membership queries over arbitrary out-
come pairs: any concept � in this class can be identified in
polynomial time using at most k+ 1 equivalence queries and
kdlog ne+ 4k membership queries, where k is the number of
nodes in the minimal representation of �.

6 Discussion
Along the lines of making query-directed learning applicable
to preference elicitation, we have provided a model for learn-
ing preference networks from equivalence and membership
queries, together with significant learnability results. Taking
into account the cognitive effort required by human users to
answer queries, our model is distinguished by the close way
in which it integrates learning and dominance testing, and the
insistence on having convergence bounds that are polynomial
in the minimal description size of the target concept, but only
polylogarithmic in the total number of attributes. In essence,
our results reveal that membership queries are essential for
extracting both acyclic CP-nets from restricted outcome pairs,
and tree CP-nets from arbitrary outcome pairs. Importantly,
the examples used by these queries can be limited to “swaps”
in order to facilitate their comparison.

To the best of our knowledge, this work provides the first
connection between active learning and graphical preference
languages. Some authors, though, have recently focused on
passive learning, where the goal is to extract a CP-net from a
set of examples [Athienitou and Dimopoulos, 2007]. Yet, in
this “offline” passive learning model, the problem of finding
an acyclic CP-net consistent with a set of arbitrary outcome
pairs is NP-hard, even if the dependence graph is known in
advance [Lang and Mengin, 2009]. Note that in the “online”
passive learning model, acyclic CP-nets are not predictable
with a polynomial mistake bound, even if examples are re-
stricted to swaps; this is a direct corollary of Theorem 1, that
follows from a standard conversion between online learning
and exact learning with EQ’s alone [Littlestone, 1988].

Perhaps the closest framework to ours is due to Sachdev
[2007], who investigates some preference logics in different
learning models. Although encouraging, his results do not
take into account the cost of dominance testing, and the query
complexity grows exponentially with the size of rules.

A direction of research that naturally emerges from our
study is to extend the learnability results to larger classes of
preference networks. Algorithm 1 can provide a starting point
for attacking multi-valued acyclic CP-nets. Similarly, Algo-
rithm 2 might be extended to directed-path singly-connected
CP-nets. Less obvious, however, is to efficiently learn cyclic
CP-nets even with swap examples. Finally, the problem of
revising CP-nets with queries looks challenging.
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