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Preference Research: developing intelligent agents capable of tailoring their actions and recom-
mendations to the preferences of human users

m Representation: expressing preferences in a compact and transparent form
m Reasoning: answering a broad range of queries
m Learning: predicting and extracting preferences
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Propositional ((éi;rt:fetrset. al.1999) known partially known
Relational unknown unknown unknown
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Relational GAIR-nets unknown unknown

(Brafman, 2008)
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Challenge: Extending CP-nets to relational domains involving multiple, heterogeneous, and richly
interconnected objects
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Language:
m Relational schema: attributes, values, references, aggregators
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Language:
m Relational schema: attributes, values, references, aggregators
m CP-clause: specifies the dependencies between an attribute and its parents



CPR-Nets (Syntax)
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Travel Flight Itinerary
travel id. flight id. travel id.
child number airline flight (#1)
adult number from airport flight (#2)
price to airport

Ne—— from time airport (#1)
to time airport (#2)

Airline class mode
airline id. \_seat ) —
services
incidents
environmental
impact hasStopOver(t) : vy > vp | duration(t) = u

yes > no long
no > yes short

Language:
m Relational schema: attributes, values, references, aggregators

m CP-clause: specifies the dependencies between an attribute and its parents

m CP-table: specifies conditional permutations of values



CPR-Nets (Syntax)
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travel id.
child number
adult number
price
duration

stop over

U

Airline

airline id.
services
incidents

Language:

m Relational schema: attributes, values, references, aggregators

Flight
flight id.

airline

from airport

to airport
day
D)

Itinerary

travel id.
flight (#1)
flight (#2)

Access

airport (#1)
airport (#2)

N/

hasStopOver(t) : v{ > vp | duration(t) = u

yes = no
no > yes

long
short

m CP-clause: specifies the dependencies between an attribute and its parents

m CP-table: specifies conditional permutations of values

m CPR-net: assigns a CP-clause and a CP-table to each attribute



CPR-Nets (Syntax)
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adult number
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day

class
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travel id.
flight (#1)
flight (#2)

Access

airport (#1)
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mode

mode(aq, ap): vq = Vo = vg | itinerary(t, f1, fo), toAirport(fy, a4 ), fromAirport(fo, ap), toTime(fy ) =uy , fromTime(fy) = up

subway > taxi > bus am
subway > taxi > bus pm
taxi > bus > subway am

bus > taxi > subway pm

am
pm
pm
am




CPR-Nets (Semantics)
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LHR — LTN: subway @% LHR — LTN: bus

g

LTN — CDG
~ LTN — CDG
~LTN — CDG

Flip: a pair (/, J) of interpretations that differ in only one ground attribute a(o)



CPR-Nets (Semantics)
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#.3 #.1 LHR pm #.3 LTN pm

Conditioning:
m [Ca(0)]; is the set of all tuples v of values of par(a) for which the body of C4(o, v) is true in /



CPR-Nets (Semantics)

LHR — LTN: subway #05 LHR — LTN: bus

LTN — CDG

travel flight to Airport to Time flight from Airport from Time
#.1 #.1 LHR pm #.2 LTN am
Ypar(a)[Calo)] #.2 #.1 LHR pm #.3 LTN pm
#.3 #.1 LHR pm #.3 LTN pm
[ pm ] L pem |

Conditioning:
m [C,(0)]s is the set of all tuples v of values of par(a) for which the body of Ca(o, v) is true in /
B Ypar(a)[Ca(0)]; is the parent tuple of a(o)



CPR-Nets (Semantics)
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travel flight to Airport to Time flight from Airport from Time
#.1 #.1 LHR pm #.2 LTN am
Ypar(a)[Calo)l #2 #.1 LHR pm #3 LTN pm
#.3 #.1 LHR pm #.3 LTN pm
L pm | L om |
Conditioning:

m [C,(0)]s is the set of all tuples v of values of par(a) for which the body of Ca(o, v) is true in /
B Ypar(a)[Ca(0)]; is the parent tuple of a(o)

Dominance:

m [ >y Jif the value of a(0) specified by / is preferred to the one specified by J in the entry of
cpt(a) indexed by the parent tuple vpar(2)[Ca(0)]s



CPR-Nets (Semantics)
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Coherence:
m The transitive closure of >y must be a strict partial order



CPR-Nets (Semantics)

; =8
LHR — LTN: subway —N ¥ LHR — LTN: bus
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LTN — CDG

LTN — CDG

travel flight to Airport to Time flight from Airport from Time
#.1 #.1 LHR pm #.2 LTN am
Ypar(a)[Calo)l; #.2 #.1 LHR pm #.3 LTN pm
#.3 #.1 LHR pm #.3 LTN pm
[ pem ] L pm |

Coherence:
m The transitive closure of >y must be a strict partial order

Theorem 1: Any acyclic CPR-net is coherent



Reasoning

_ — airport: LHR airport: LHR
@Vt/ﬁi%i N airport: LTN airport: LTN
U;/ma(% P - mode: * mode: bus
airline: AA airline: BA airline: AA airline: BA

from airport: LAX from airport: LTN from airport: LAX from airport: LTN

to airport: LHR to airport: CDG to airport: LHR to airport: CDG

day: sun day: mon day: sun day: mon

from time: am from time: pm from time: am from time: pm

to time: am to time: pm to time: am to time: pm

class: * class: * class: 1 class: 2

seat: * seat: * seat: win seat: cor
Optimization:

m Input: X is a space of partial interpretations (allowing the value *)
m Output: Y is the space of all completions of elements in X

m Problem: Given a CPR-net N and a partial interpretation x, find a completion y of x which is
maximally preferred with respect to >y



Reasoning
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from airport: LAX from airport: LTN from airport: LAX from airport: LTN
to airport: LHR to airport: CDG to airport: LHR to airport: CDG
day: sun day: mon day: sun day: mon
from time: am from time: pm from time: am from time: pm
to time: am to time: pm to time: am to time: pm
class: * class: * class: 1 class: 2
seat: * seat: * seat: win seat: cor

Optimization:
m Input: X is a space of partial interpretations (allowing the value *)
m Output: Y is the space of all completions of elements in X

m Problem: Given a CPR-net N and a partial interpretation x, find a completion y of x which is
maximally preferred with respect to >y

Theorem 2: For acyclic CPR-nets, optimization can be done in polynomial time



Reasoning

Ranking: an outcome set is a collection of interpretations defined over the same skeleton
m Input: X is a space of outcome sets of size m
m Output: Y is the symmetric group of all permutations over m elements

m Problem: Given a CPR-net N and an outcome set x, find a permutation y of x which is
consistent with respect to >y



Reasoning

Iy >y I3 if for each ground
attribute a(o) with the same par-
ent tuple in /y and /3 the value
v4 is preferred to the value v3

>N implies >

Ranking: an outcome set is a collection of interpretations defined over the same skeleton
m Input: X is a space of outcome sets of size m
m Output: Y is the symmetric group of all permutations over m elements

m Problem: Given a CPR-net N and an outcome set x, find a permutation y of x which is
consistent with respect to >y

Theorem 3: For acyclic CPR-nets, ranking can be done in polynomial time



Learning

N Qo

Hypothesis N; Best model

Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
according to a loss function ¢ (bounded by an integer \)
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Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
according to a loss function ¢ (bounded by an integer \)
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Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
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Learning
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Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
according to a loss function ¢ (bounded by an integer \)



Learning
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Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
according to a loss function ¢ (bounded by an integer \)



Learning

Xt

l I Ny(xt) ﬂ O/ \O
Hypothesis N; O 7 Best model
t

L(Ne(xt); Xt Yt)

Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
according to a loss function ¢ (bounded by an integer \)

m Convergence criterion: the regret of the algorithm must be sublinear as a function of the
number T of trials

m Complexity criterion: the computational cost of the algorithm must be polynomial in the
parameters of the hypothesis class and the reasoning task



Learning

Linear Losses: any CPR-net N is viewed as the set of entries of its CP-table

hasStopOver(t) : v{ > vy | duration(t) = u

permutation of the values of a

yes > no long
no > yes short
(Ca, Ta, Vpar(a)>
T hasStopOver(t) : yes > no | duration(t) = long
CP-clause parent .
for a tuple of a hasStopOver(t) : no >~ yes | duration(t) = short

A loss function £ is linear if £(N(x); x, y) = Z £(e(x); x,y)
eeN

Tree CPR-nets: with constant clause length ¢ and domain size d

Attributes a
References r
CP-clauses a-ar
Entries (a-ar®)-d-d

c




Learning

Initialization: e

For each e € Etree set L1(€) =0

(Cay = wy)
Trials: fort =1,2,... a
B Draw N; according to Py(N) ~ exp[f > L[(e)] e @
ecN
M Predict on instance (x;, y;) with N;
B Foreach e € E¢ree Set
Li1(0) = L1(6) + mee(x), o) (2 )
Expanded Hedge Weighted dependency graph

of all candidate clauses

Tree CPR-nets:
m The regret of the Expanded Hedge algorithm is

I ree —
M/% where |Nivee| < (a4 1)°'a® " (d1)?

m Using the Matrix-Tree Theorem, the cost of generating a directed random spanning tree at
random is polynomial in the number of candidate CP-clauses



Learning

Learning to Optimize: Let X be a space of partial interpretations, ) the corresponding space of
total interpretations and £y be the loss function defined as follows:

1 if y is a suboptimal choice for e on x
0 otherwise

Lopt(&(x); X, ¥) = {

Theorem 4: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable
from optimization tasks using £opt



Learning

Learning to Optimize: Let X be a space of partial interpretations, ) the corresponding space of
total interpretations and £y be the loss function defined as follows:

1 if y is a suboptimal choice for e on x
0 otherwise

Lopt(&(x); X, ¥) = {

Theorem 4: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable
from optimization tasks using £opt

Learning to rank: Let X be a space of outcome sets of size m, Y be the space of permutations
over m elements, and ¢, be the loss function defined as follows:

1 ifeithery = (h,k)and b >¢ l,ory = (k,h)and ly >¢ b
0 otherwise

Lrank(8(X); X, ¥) = {

Theorem 5: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable
from ranking tasks using £ ank



Conclusions

Summary: The family of CPR-nets

m Representation: CPR-nets maintain the spirit of CP-nets by representing relational
preferences in a compact and a transparent form

m Reasoning: acyclic CPR-nets (of constant in-degree) support tractable inference for both
optimization and ranking tasks

m Learning: tree CPR-nets (of constant clause length and domain size) are efficiently online
learnable from both optimization and ranking tasks

Ongoing Research:

m Comparing relational preference models: CPR-nets versus GAIR-nets on optimization and
ranking problems (flight and movie recommenders)

m Improving the learning algorithm: (Hedge versus Following the Perturbed Leader) and
spanning tree generation algorithms (Determinant-based algorithms vs. Markov chains)

m Investigating the issue of cyclic CPR-nets: important applications in social networks
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