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Preference Research: developing intelligent agents capable of tailoring their actions and recom-
mendations to the preferences of human users

Representation: expressing preferences in a compact and transparent form

Reasoning: answering a broad range of queries

Learning: predicting and extracting preferences
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Challenge: Extending CP-nets to relational domains involving multiple, heterogeneous, and richly
interconnected objects
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Language:

Relational schema: attributes, values, references, aggregators

CP-clause: specifies the dependencies between an attribute and its parents

CP-table: specifies conditional permutations of values

CPR-net: assigns a CP-clause and a CP-table to each attribute
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mode(a1, a2) : v1� v2� v3 | itinerary(t, f1, f2), toAirport(f1, a1), fromAirport(f2, a2), toTime(f1)=u1, fromTime(f2)=u2
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CPR-Nets (Semantics)

LAX→ LHR LTN→ CDG

LAX→ LHR LTN→ CDG

LAX→ LHR LTN→ CDG

I

LHR→ LTN: subway

J

LHR→ LTN: bus

Flip: a pair (I, J) of interpretations that differ in only one ground attribute a(o)
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[Ca(o)]I is the set of all tuples v of values of par(a) for which the body of Ca(o, v) is true in I

γpar(a)[Ca(o)]I is the parent tuple of a(o)
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Dominance:

I �N J if the value of a(o) specified by I is preferred to the one specified by J in the entry of
cpt(a) indexed by the parent tuple γpar(a)[Ca(o)]I
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Coherence:

The transitive closure of �N must be a strict partial order

Theorem 1: Any acyclic CPR-net is coherent



Reasoning

airline: AA
from airport: LAX
to airport: LHR
day: sun
from time: am
to time: am
class: *
seat: *

airline: BA
from airport: LTN
to airport: CDG
day: mon
from time: pm
to time: pm
class: *
seat: *

airport: LHR
airport: LTN
mode: *

−→

airline: AA
from airport: LAX
to airport: LHR
day: sun
from time: am
to time: am
class: 1
seat: win

airline: BA
from airport: LTN
to airport: CDG
day: mon
from time: pm
to time: pm
class: 2
seat: cor

airport: LHR
airport: LTN
mode: bus

Optimization:

Input: X is a space of partial interpretations (allowing the value * )

Output: Y is the space of all completions of elements in X

Problem: Given a CPR-net N and a partial interpretation x , find a completion y of x which is
maximally preferred with respect to �N
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Theorem 2: For acyclic CPR-nets, optimization can be done in polynomial time



Reasoning

I1 I2

I3 I4

−→
I1

I2

I4

I3

Ranking: an outcome set is a collection of interpretations defined over the same skeleton

Input: X is a space of outcome sets of size m

Output: Y is the symmetric group of all permutations over m elements

Problem: Given a CPR-net N and an outcome set x , find a permutation y of x which is
consistent with respect to �N
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I1 �N I3 if for each ground
attribute a(o) with the same par-
ent tuple in I1 and I3 the value
v1 is preferred to the value v3

�N implies�N

Ranking: an outcome set is a collection of interpretations defined over the same skeleton

Input: X is a space of outcome sets of size m

Output: Y is the symmetric group of all permutations over m elements

Problem: Given a CPR-net N and an outcome set x , find a permutation y of x which is
consistent with respect to �N

Theorem 3: For acyclic CPR-nets, ranking can be done in polynomial time



Learning

Hypothesis Nt Best model

Online Learning: the decision maker learns to be competent at a reasoning task by observing
instances and feedbacks in a sequential manner. The performance of the algorithm is measured
according to a loss function ` (bounded by an integer λ)

Convergence criterion: the regret of the algorithm must be sublinear as a function of the
number T of trials

Complexity criterion: the computational cost of the algorithm must be polynomial in the
parameters of the hypothesis class and the reasoning task
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Learning

Linear Losses: any CPR-net N is viewed as the set of entries of its CP-table

πa,

permutation of the values of a

〈Ca, vpar(a)〉

CP-clause
for a

parent
tuple of a

hasStopOver(t) : v1 � v2 | duration(t) = u

yes� no long
no� yes short

hasStopOver(t) : yes � no | duration(t) = long

hasStopOver(t) : no � yes | duration(t) = short

A loss function ` is linear if `(N(x); x, y) =
∑
e∈N

`(e(x); x, y)

Tree CPR-nets: with constant clause length c and domain size d

Attributes a
References r
CP-clauses a · arc

Entries (a · arc ) · d! · d



Learning

Initialization:

For each e ∈ Etree set L1(e) = 0

Trials: for t = 1, 2, . . .

� Draw Nt according to Pt (N) ∼ exp
[
−
∑
e∈N

Lt (e)
]

� Predict on instance (xt , yt ) with Nt

� For each e ∈ Etree set
xxxxxxxxLt+1(e) = Lt (e) + ηt `(e(xt ), yt )

Expanded Hedge

>

a1 a2

a3

(Ca1 : w1)

(Ca2 : w2)

Weighted dependency graph
of all candidate clauses

Tree CPR-nets:

The regret of the Expanded Hedge algorithm is

λ

√
ln |Ntree|

T
where |Ntree| ≤ (a + 1)a−1aa2 rc

(d!)d

Using the Matrix-Tree Theorem, the cost of generating a directed random spanning tree at
random is polynomial in the number of candidate CP-clauses



Learning

Learning to Optimize: Let X be a space of partial interpretations, Y the corresponding space of
total interpretations and `opt be the loss function defined as follows:

`opt (e(x); x, y) =

{
1 if y is a suboptimal choice for e on x
0 otherwise

Theorem 4: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable
from optimization tasks using `opt

Learning to rank: Let X be a space of outcome sets of size m, Y be the space of permutations
over m elements, and `rank be the loss function defined as follows:

`rank(e(x); x, y) =

{
1 if either y = (I1, I2) and I2 �e I1, or y = (I2, I1) and I1 �e I2
0 otherwise

Theorem 5: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable
from ranking tasks using `rank
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Conclusions

Summary: The family of CPR-nets

Representation: CPR-nets maintain the spirit of CP-nets by representing relational
preferences in a compact and a transparent form

Reasoning: acyclic CPR-nets (of constant in-degree) support tractable inference for both
optimization and ranking tasks

Learning: tree CPR-nets (of constant clause length and domain size) are efficiently online
learnable from both optimization and ranking tasks

Ongoing Research:

Comparing relational preference models: CPR-nets versus GAIR-nets on optimization and
ranking problems (flight and movie recommenders)

Improving the learning algorithm: (Hedge versus Following the Perturbed Leader) and
spanning tree generation algorithms (Determinant-based algorithms vs. Markov chains)

Investigating the issue of cyclic CPR-nets: important applications in social networks
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