Relational Networks of Conditional Preferences

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q @

Frederic Koriche Université Montpellier II - LIRMM, France

ILP Conference 31st July - 3rd August, 2011

Introduction

Preference Research: developing intelligent agents capable of tailoring their actions and recommendations to the preferences of human users

- Representation: expressing preferences in a compact and transparent form
- Reasoning: answering a broad range of queries
- Learning: predicting and extracting preferences

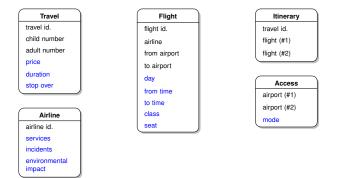
Related Work

		Representation Model	Reasoning Complexity	Learning Complexity
Directed models	Propositional	CP-nets (Boutilier et. al.,1999) known p		partially known
	Relational	unknown	unknown	unknown
Propositional		GAI-nets (Bacchus and Grove, 1995)	known	partially known
	Relational	GAIR-nets (Brafman, 2008)	unknown	unknown

Related Work

		Representation Model	Reasoning Complexity	Learning Complexity
Directed models	Propositional	CP-nets (Boutilier et. al.,1999) known part		partially known
	Relational	unknown	unknown	unknown
Propositional		GAI-nets (Bacchus and Grove, 1995)	known	partially known
	Relational	GAIR-nets (Brafman, 2008)	unknown	unknown

Challenge: Extending CP-nets to relational domains involving multiple, heterogeneous, and richly interconnected objects

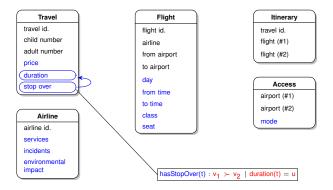


(日)

Language:

Relational schema: attributes, values, references, aggregators

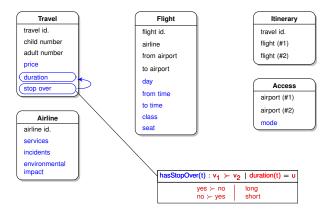
- CP-clause: specifies the dependencies between an attribute and its parents
- CP-table: specifies conditional permutations of values
- CPR-net: assigns a CP-clause and a CP-table to each attribute



(日)

Language:

- Relational schema: attributes, values, references, aggregators
- CP-clause: specifies the dependencies between an attribute and its parents
- CP-table: specifies conditional permutations of values
- CPR-net: assigns a CP-clause and a CP-table to each attribute

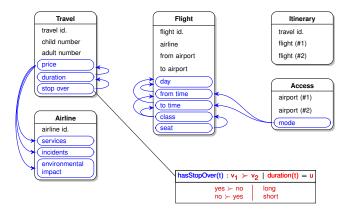


Language:

- Relational schema: attributes, values, references, aggregators
- CP-clause: specifies the dependencies between an attribute and its parents

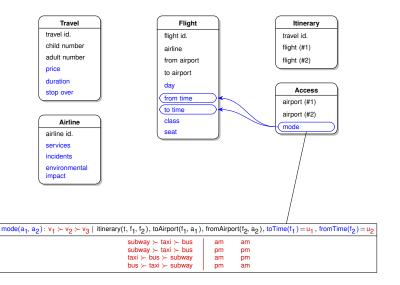
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

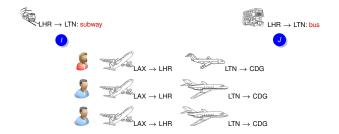
- CP-table: specifies conditional permutations of values
- CPR-net: assigns a CP-clause and a CP-table to each attribute



Language:

- Relational schema: attributes, values, references, aggregators
- CP-clause: specifies the dependencies between an attribute and its parents
- CP-table: specifies conditional permutations of values
- CPR-net: assigns a CP-clause and a CP-table to each attribute

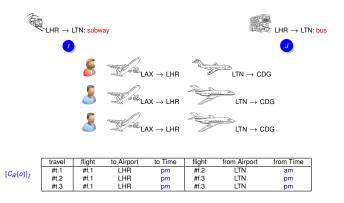




A D > A P > A D > A D >

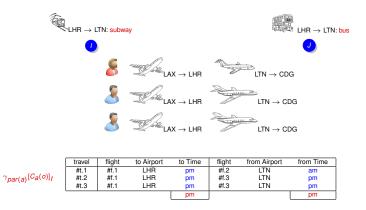
3

Flip: a pair (I, J) of interpretations that differ in only one ground attribute a(o)



Conditioning:

- $[C_a(o)]_I$ is the set of all tuples v of values of par(a) for which the body of $C_a(o, v)$ is true in I
- $\gamma_{par(a)}[C_a(o)]_I$ is the parent tuple of a(o)



Conditioning:

- $[C_a(o)]_I$ is the set of all tuples v of values of par(a) for which the body of $C_a(o, v)$ is true in I
- $\gamma_{par(a)}[C_a(o)]_I$ is the parent tuple of a(o)

	LHR → LTN: subway			≻N					
		8		$X \rightarrow LHR$		$LTN \rightarrow CD$	G		
		8		$X \rightarrow LHR$			DG		
		8		$X \to LHR$			DG		
	travel	flight	to Airport	to Time	flight	from Airport	from Time		
[((a)]	#t.1	#f.1	LHR	pm	#f.2	LTN	am		
_(a) [C _a (o)] ₁	#t.2 #t.3	#f.1 #f.1	LHR LHR	pm pm	#f.3 #f.3	LTN LTN	pm pm		
			2.111	pm		2.14	pm		

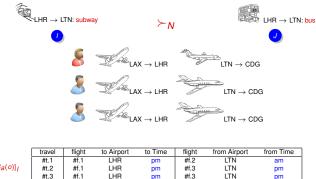
Conditioning:

 $\gamma_{par(}$

- $[C_a(o)]_I$ is the set of all tuples v of values of par(a) for which the body of $C_a(o, v)$ is true in I
- $\gamma_{par(a)}[C_a(o)]_I$ is the parent tuple of a(o)

Dominance:

■ $I \succ_N J$ if the value of a(o) specified by I is preferred to the one specified by J in the entry of cpt(a) indexed by the parent tuple $\gamma_{par(a)}[C_a(o)]_I$



pm

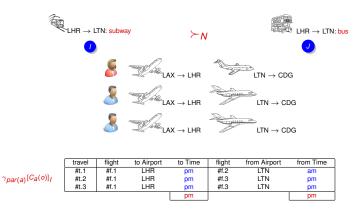
 $\gamma_{par(a)}[C_a(o)]_I$

Coherence:

• The transitive closure of \succ_N must be a strict partial order

pm

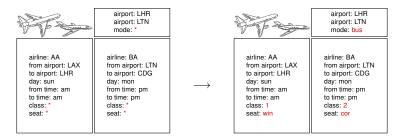
pm



Coherence:

• The transitive closure of \succ_N must be a strict partial order

Theorem 1: Any acyclic CPR-net is coherent



Optimization:

- Input: \mathcal{X} is a space of partial interpretations (allowing the value *)
- \blacksquare Output: $\mathcal Y$ is the space of all completions of elements in $\mathcal X$
- Problem: Given a CPR-net N and a partial interpretation x, find a completion y of x which is maximally preferred with respect to \succ_N

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

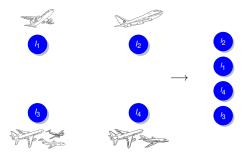
	airport: LHR airport: LTN mode: *			airport: LHR airport: LTN mode: bus
airfine: AA	airline: BA	\rightarrow	airline: AA	airline: BA
from airport: LAX	from airport: LTN		from airport: LAX	from airport: LTN
to airport: LHR	to airport: CDG		to airport: LHR	to airport: CDG
day: sun	day: mon		day: sun	day: mon
from time: am	from time: pm		from time: am	from time: pm
to time: am	to time: pm		to time: am	to time: pm
class: *	class: *		class: 1	class: 2
seat: *	seat: *		seat: win	seat: cor

Optimization:

- Input: X is a space of partial interpretations (allowing the value *)
- \blacksquare Output: $\mathcal Y$ is the space of all completions of elements in $\mathcal X$
- Problem: Given a CPR-net N and a partial interpretation x, find a completion y of x which is maximally preferred with respect to \succ_N

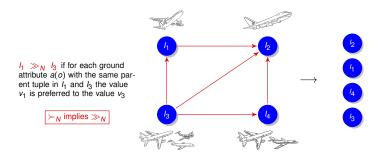
< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem 2: For acyclic CPR-nets, optimization can be done in polynomial time



Ranking: an outcome set is a collection of interpretations defined over the same skeleton

- Input: X is a space of outcome sets of size m
- Output: *Y* is the symmetric group of all permutations over *m* elements
- Problem: Given a CPR-net N and an outcome set x, find a permutation y of x which is consistent with respect to \succ_N



Ranking: an outcome set is a collection of interpretations defined over the same skeleton

- Input: X is a space of outcome sets of size m
- Output: *Y* is the symmetric group of all permutations over *m* elements
- Problem: Given a CPR-net N and an outcome set x, find a permutation y of x which is consistent with respect to ≻_N

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem 3: For acyclic CPR-nets, ranking can be done in polynomial time

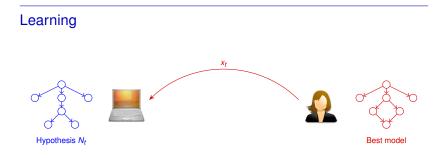
イロト イポト イヨト イヨト

3

Best model

Online Learning: the decision maker learns to be competent at a reasoning task by observing instances and feedbacks in a sequential manner. The performance of the algorithm is measured according to a loss function ℓ (bounded by an integer λ)

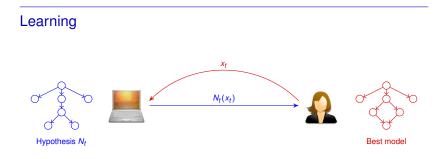
- Convergence criterion: the regret of the algorithm must be sublinear as a function of the number T of trials
- Complexity criterion: the computational cost of the algorithm must be polynomial in the parameters of the hypothesis class and the reasoning task



Online Learning: the decision maker learns to be competent at a reasoning task by observing instances and feedbacks in a sequential manner. The performance of the algorithm is measured according to a loss function ℓ (bounded by an integer λ)

- Convergence criterion: the regret of the algorithm must be sublinear as a function of the number T of trials
- Complexity criterion: the computational cost of the algorithm must be polynomial in the parameters of the hypothesis class and the reasoning task

(日)



Online Learning: the decision maker learns to be competent at a reasoning task by observing instances and feedbacks in a sequential manner. The performance of the algorithm is measured according to a loss function ℓ (bounded by an integer λ)

- Convergence criterion: the regret of the algorithm must be sublinear as a function of the number T of trials
- Complexity criterion: the computational cost of the algorithm must be polynomial in the parameters of the hypothesis class and the reasoning task

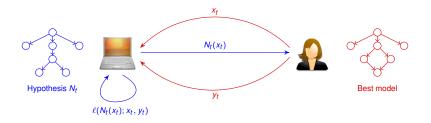
・ロット (雪) (日) (日) (日)

Learning x_t $N_t(x_t)$ $N_t(x_t)$ Y_t $N_t(x_t)$ $N_t($

Online Learning: the decision maker learns to be competent at a reasoning task by observing instances and feedbacks in a sequential manner. The performance of the algorithm is measured according to a loss function ℓ (bounded by an integer λ)

- Convergence criterion: the regret of the algorithm must be sublinear as a function of the number T of trials
- Complexity criterion: the computational cost of the algorithm must be polynomial in the parameters of the hypothesis class and the reasoning task

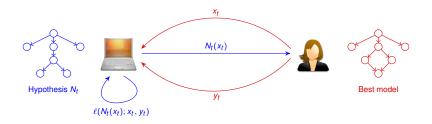
・ロット (雪) (日) (日) (日)



Online Learning: the decision maker learns to be competent at a reasoning task by observing instances and feedbacks in a sequential manner. The performance of the algorithm is measured according to a loss function ℓ (bounded by an integer λ)

- Convergence criterion: the regret of the algorithm must be sublinear as a function of the number T of trials
- Complexity criterion: the computational cost of the algorithm must be polynomial in the parameters of the hypothesis class and the reasoning task

・ロット (雪) (日) (日) (日)



Online Learning: the decision maker learns to be competent at a reasoning task by observing instances and feedbacks in a sequential manner. The performance of the algorithm is measured according to a loss function ℓ (bounded by an integer λ)

- Convergence criterion: the regret of the algorithm must be sublinear as a function of the number *T* of trials
- Complexity criterion: the computational cost of the algorithm must be polynomial in the parameters of the hypothesis class and the reasoning task

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Linear Losses: any CPR-net N is viewed as the set of entries of its CP-table

A loss function
$$\ell$$
 is linear if $\ell(N(x); x, y) = \sum_{e \in N} \ell(e(x); x, y)$

Tree CPR-nets: with constant clause length c and domain size d

Attributes	а
References	r
CP-clauses	a ⋅ ar ^c
Entries	$(a \cdot ar^c) \cdot d! \cdot d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Initialization:

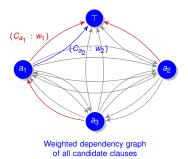
For each $e \in \mathcal{E}_{tree}$ set $L_1(e) = 0$

Trials: for *t* = 1, 2, . . .

■ Draw
$$N_t$$
 according to $\mathbb{P}_t(N) \sim \exp\left[-\sum_{e \in N} L_t(e)\right]$

- **Predict on instance** (x_t, y_t) with N_t
- For each $e \in \mathcal{E}_{tree}$ set $L_{t+1}(e) = L_t(e) + \eta_t \ell(e(x_t), y_t)$

Expanded Hedge



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Tree CPR-nets:

The regret of the Expanded Hedge algorithm is

$$\lambda \sqrt{rac{\ln |\mathcal{N}_{ ext{tree}}|}{T}}$$
 where $|\mathcal{N}_{ ext{tree}}| \le (a+1)^{a-1} a^{a^2 r^c} (d!)^d$

 Using the Matrix-Tree Theorem, the cost of generating a directed random spanning tree at random is polynomial in the number of candidate CP-clauses

Learning to Optimize: Let \mathcal{X} be a space of partial interpretations, \mathcal{Y} the corresponding space of total interpretations and ℓ_{opt} be the loss function defined as follows:

$$\ell_{opt}(e(x); x, y) = \begin{cases} 1 & \text{if } y \text{ is a suboptimal choice for } e \text{ on } x \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable from optimization tasks using l_{opt}

Learning to rank: Let \mathcal{X} be a space of outcome sets of size m, \mathcal{Y} be the space of permutations over m elements, and ℓ_{rank} be the loss function defined as follows:

$$\ell_{\mathrm{rank}}(e(x); x, y) = \begin{cases} 1 & \text{if either } y = (l_1, l_2) \text{ and } l_2 \gg_e l_1, \text{ or } y = (l_2, l_1) \text{ and } l_1 \gg_e l_2 \\ 0 & \text{otherwise} \end{cases}$$

Theorem 5: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable from ranking tasks using $\ell_{\rm rank}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Learning to Optimize: Let \mathcal{X} be a space of partial interpretations, \mathcal{Y} the corresponding space of total interpretations and ℓ_{opt} be the loss function defined as follows:

$$\ell_{opt}(e(x); x, y) = \begin{cases} 1 & \text{if } y \text{ is a suboptimal choice for } e \text{ on } x \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable from optimization tasks using ℓ_{opt}

Learning to rank: Let \mathcal{X} be a space of outcome sets of size m, \mathcal{Y} be the space of permutations over m elements, and ℓ_{rank} be the loss function defined as follows:

$$\ell_{\mathrm{rank}}(e(x); x, y) = \begin{cases} 1 & \text{if either } y = (l_1, l_2) \text{ and } l_2 \gg_e l_1, \text{ or } y = (l_2, l_1) \text{ and } l_1 \gg_e l_2 \\ 0 & \text{otherwise} \end{cases}$$

Theorem 5: Tree CPR-nets (with constant clause length and domain size) are efficiently learnable from ranking tasks using $\ell_{\rm rank}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Conclusions

Summary: The family of CPR-nets

- Representation: CPR-nets maintain the spirit of CP-nets by representing relational preferences in a compact and a transparent form
- Reasoning: acyclic CPR-nets (of constant in-degree) support tractable inference for both optimization and ranking tasks
- Learning: tree CPR-nets (of constant clause length and domain size) are efficiently online learnable from both optimization and ranking tasks

Ongoing Research:

 Comparing relational preference models: CPR-nets versus GAIR-nets on optimization and ranking problems (flight and movie recommenders)

- Improving the learning algorithm: (Hedge versus Following the Perturbed Leader) and spanning tree generation algorithms (Determinant-based algorithms vs. Markov chains)
- Investigating the issue of cyclic CPR-nets: important applications in social networks