Learning to Assign Degrees of Belief in Relational Domains

Frederic Koriche

LIRMM, Université Montpellier 2, France

Inductive Logic Programming 2007

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Outline

Learning to Reason

- The Knowledge Representation Approach
- The Learning to Reason Approach

2 Exponentiated Gradient Learning to Reason

- Two Key Ideas
- The Algorithm
- Tractable Query Languages
 Decomposable Queries
 - Hitting Languages
 - Cluster Languages

Perspectives

→ ∃ →

Perspectives

KR Approach L2R Approach

Relational Vocabulary

A finite set of relation symbols, and a finite set of constants

- Background knowledge: a set B of ground atoms
- Relational interpretation: a subset I of B

Example

Consider a simple logistic domain

- Constants: 20 objects 5 trucks and 4 cities.
- Relations: ln(x, y), At(x, y).

The background knowledge contains 200 ground atoms

< ロ > < 同 > < 回 > < 回 >

KR Approach L2R Approach

Relational Vocabulary

A finite set of *relation symbols*, and a finite set of *constants*

- Background knowledge: a set B of ground atoms
- Relational interpretation: a subset I of B

Example

Consider a simple logistic domain

- Constants: 20 objects 5 trucks and 4 cities.
- Relations: ln(x, y), At(x, y).

The background knowledge contains 200 ground atoms

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

KR Approach

The reasoning agent is given a description of its environment

Environment

Distribution W on the space $2^{\mathcal{B}}$ of relational interpretations

Knowledge Base

A description KB of the environment W

イロト イ団ト イヨト イヨト

- Logical theory
- Bayesian network

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

KR Approach

The reasoning agent is given a description of its environment

Environment

Distribution W on the space $2^{\mathcal{B}}$ of relational interpretations

Knowledge Base

A description KB of the environment W

- Logical theory
- Bayesian network

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

KR Approach

The agent is expected to evaluate any query with perfect precision

Degree of Belief

For any query Q, the probability of Q according to KB is

$$\mathbf{Pr}_{KB}(\mathcal{Q}) = \sum_{I \models \mathcal{Q}} \mathbf{Pr}_{KB}(I)$$

Example

 $\mathbf{Pr}_{KB}(\ln(o_1, t_1)) = \frac{3}{4}$ the agent believes that object o_1 is in the truck t_1 with probability $\frac{3}{4}$

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

KR Approach

The agent is expected to evaluate any query with perfect precision

Degree of Belief

For any query Q, the probability of Q according to KB is

$$\mathbf{Pr}_{KB}(Q) = \sum_{I \models Q} \mathbf{Pr}_{KB}(I)$$

Example

 $\mathbf{Pr}_{KB}(\mathsf{ln}(\mathsf{o}_1,\mathsf{t}_1)) = \frac{3}{4}$ the agent believes that object o_1 is in the truck t_1 with probability $\frac{3}{4}$

KR Approach L2R Approach

Complexity

The problem of evaluating the degree of belief of any query is #P-Hard

Simple Query Languages

The complexity is unchanged for very simple queries:

- Quantified literals: $\forall x \ln(x, t_1)$
- Ground atoms: At(c₁, t₁)

Simple Representation Languages

The complexity is unchanged for simple representation languages:

- Horn Theories
- Monotone DNF Theories

KR Approach L2R Approach

Complexity

The problem of evaluating the degree of belief of any query is #P-Hard

Simple Query Languages

The complexity is unchanged for very simple queries:

- Quantified literals: $\forall x \ln(x, t_1)$
- Ground atoms: At(c₁, t₁)

Simple Representation Languages

The complexity is unchanged for simple representation languages:

- Horn Theories
- Monotone DNF Theories

KR Approach L2R Approach

Complexity

The problem of evaluating the degree of belief of any query is #P-Hard

Simple Query Languages

The complexity is unchanged for very simple queries:

- Quantified literals: $\forall x \ln(x, t_1)$
- Ground atoms: At(c₁, t₁)

Simple Representation Languages

The complexity is unchanged for simple representation languages:

- Horn Theories
- Monotone DNF Theories

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

KR Approach

A sharp separation between *knowledge acquisition* and *query evaluation*. Knowledge is given a priori in order to correctly represent an environment

L2R Approach

The dependence between *knowledge acquisition* and *query evaluation* is made explicit. Knowledge is acquired a posteriori, by experience, in order to efficiently reason about queries

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

KR Approach

A sharp separation between *knowledge acquisition* and *query evaluation*. Knowledge is given a priori in order to correctly represent an environment

L2R Approach

The dependence between *knowledge acquisition* and *query evaluation* is made explicit. Knowledge is acquired a posteriori, by experience, in order to efficiently reason about queries

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Learning Interface

Help the agent in finding a representation *KB* of *W* that is computationally efficient for some target query language Q

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Grace Period

Repeated game between the agent and the interface

イロト イ団ト イヨト イヨト

- I Receive a query $Q \in Q$
- Predict $\hat{y} = \mathbf{Pr}_{KB}(Q)$
- 3 Receive $y = \mathbf{Pr}_W(Q)$

If $L(y, \hat{y}) > \epsilon$ update KB

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Grace Period

Repeated game between the agent and the interface

イロト イポト イヨト イヨト

() Receive a query $Q \in Q$

Predict $\hat{y} = \mathbf{Pr}_{KB}(Q)$

3 Receive $y = \mathbf{Pr}_W(Q)$

If $L(y, \hat{y}) > \epsilon$ update *KB*

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Grace Period

Repeated game between the agent and the interface

- **()** Receive a query $Q \in Q$
- **2** Predict $\hat{y} = \mathbf{Pr}_{KB}(Q)$

3 Receive $y = \mathbf{Pr}_W(Q)$

If $L(y, \hat{y}) > \epsilon$ update *KB*

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Grace Period

Repeated game between the agent and the interface

- **1** Receive a query $Q \in Q$
- **2** Predict $\hat{y} = \mathbf{Pr}_{KB}(Q)$
- Seceive $y = \mathbf{Pr}_W(Q)$
 - If $L(y, \hat{y}) > \epsilon$ update KB

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Operational Period

The reasoning performance of the agent is measured according to

• the same target query language \mathcal{Q}

• the same tolerance parameter ϵ

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Polynomial Mistake Bound

For any possible sequence of queries in Q, the total number of mistakes made by the L2R algorithm must be $poly(|\mathcal{B}|, \frac{1}{\epsilon})$

Polynomial Complexity

For any possible query Q in Q, the L2R algorithm must evaluate $\Pr_{KB}(Q)$ in $poly(|\mathcal{B}|, |Q|, \frac{1}{\epsilon})$ time

< ロ > < 同 > < 三 > < 三 > 、

Exponentiated Gradient L2R Tractable Query Languages Perspectives KR Approach L2R Approach

Polynomial Mistake Bound

For any possible sequence of queries in Q, the total number of mistakes made by the L2R algorithm must be $poly(|\mathcal{B}|, \frac{1}{\epsilon})$

Polynomial Complexity

For any possible query Q in Q, the L2R algorithm must evaluate $\Pr_{KB}(Q)$ in $poly(|\mathcal{B}|, |Q|, \frac{1}{\epsilon})$ time

Key Ideas The Algorithm

Outline

Learning to Reasor

- The Knowledge Representation Approach
- The Learning to Reason Approach

Exponentiated Gradient Learning to Reason

- Two Key Ideas
- The Algorithm
- Tractable Query Languages
 Decomposable Queries
 Hitting Languages
 - Cluster Languages

Perspectives

→ ∃ →

Key Ideas The Algorithm

1st Idea

Use an exponentiated gradient strategy to update knowledge

2nd Idea

Use a weighted model counting approach to evaluate queries

イロト イポト イヨト イヨト

Key Ideas The Algorithm

Weighted Atoms

The vocabulary is extended with a set $\{q_1, q_2, \ldots\}$ of weighted atoms

- Standard Atom: *weight*(a) = 1
- Weighted Atom: $weight(q) \ge 0$

Weighted Interpretation

An interpretation that possibly contains weighted atoms

weight(I) =
$$\prod_{A \in I} weight(A)$$

Weighted Formula

A relational expression F over the extended vocabulary

weight(F) =
$$\sum_{I \models \min F} weight(I)$$

Key Ideas The Algorithm

Weighted Atoms

The vocabulary is extended with a set $\{q_1, q_2, \ldots\}$ of weighted atoms

- Standard Atom: *weight*(a) = 1
- Weighted Atom: $weight(q) \ge 0$

Weighted Interpretation

An interpretation that possibly contains weighted atoms

$$weight(I) = \prod_{A \in I} weight(A)$$

Weighted Formula

A relational expression F over the extended vocabulary

$$weight(F) = \sum_{I \models \min F} weight(I)$$

Key Ideas The Algorithm

Weighted Atoms

The vocabulary is extended with a set $\{q_1, q_2, \ldots\}$ of weighted atoms

- Standard Atom: weight(a) = 1
- Weighted Atom: $weight(q) \ge 0$

Weighted Interpretation

An interpretation that possibly contains weighted atoms

$$weight(I) = \prod_{A \in I} weight(A)$$

Weighted Formula

A relational expression F over the extended vocabulary

$$weight(F) = \sum_{I \models \min F} weight(I)$$

< ロ > < 同 > < 回 > < 回 >

Key Ideas The Algorithm

The EG-L2R AlgorithmStart with $KB = \emptyset$. In each trial,Image: Start with $KB = \emptyset$. In each trial,Image: Start with $KB = \emptyset$. In each trial,Image: Start with $\widehat{y} = \psi$ Image: Start with $\widehat{y} = \psi$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Frederic Koriche Learning to Assign Degrees of Belief

Key Ideas The Algorithm

Key Ideas The Algorithm

Key Ideas The Algorithm

The EG-L2R Algorithm

Start with $KB = \emptyset$. In each trial,

- Seceive a query $Q \in Q$
- Predict $\hat{y} = \frac{weight(KB \land Q)}{weight(KB)}$
- Seceive y. If L(y, ŷ) > ε then expand KB with Q ↔ q where weight(q) = e^{η(y-ŷ)}

Key Ideas The Algorithm

Polynomial Mistake Bound

The total number of mistakes made by EG-L2R is bounded by

 $\frac{|\mathcal{B}|}{2\epsilon}$

Polynomial Size Representation

Let *l* be the largest size of any query in Q. Then the size of *KB* is bounded by

 $\frac{l|\mathcal{B}|}{2\epsilon}$

ecomposable Queries litting Languages luster Languages

Outline

Learning to Reason

- The Knowledge Representation Approach
- The Learning to Reason Approach

Exponentiated Gradient Learning to Reason

- Two Key Ideas
- The Algorithm
- Tractable Query Languages
 - Decomposable Queries
 - Hitting Languages
 - Cluster Languages

Perspectives

• • • • • • • • • • • • •

Decomposable Queries Hitting Languages Cluster Languages

Quantified Atom

Atomic formula where each variable occurs in the scope of a quantifier \forall or $\exists \forall x \ln(x, t_1)$ $\exists y \operatorname{At}(y, t_1))$

Decomposable Query

Conjunction (or disjunction) of pairwise independent quantified literals $\forall x \ln(x, t_1) \land \exists y \operatorname{At}(y, t_1)$

Complexity

The number of models of any decomposable query Q can be evaluated in $O(|\mathcal{B}||Q|)$ time

Decomposable Queries Hitting Languages Cluster Languages

Quantified Atom

Atomic formula where each variable occurs in the scope of a quantifier \forall or \exists

 $\forall x \ln(x, t_1) \qquad \exists y \operatorname{At}(y, t_1))$

Decomposable Query

 $\begin{array}{l} \mbox{Conjunction (or disjunction) of pairwise independent quantified literals} \\ \hline \forall x \mbox{ In}(x,t_1) \land \exists y \mbox{At}(y,t_1) \end{array}$

Complexity

The number of models of any decomposable query Q can be evaluated in $O(|\mathcal{B}||Q|)$ time

Decomposable Queries Hitting Languages Cluster Languages

Quantified Atom

Atomic formula where each variable occurs in the scope of a quantifier \forall or \exists

 $\forall x \ln(x, t_1) \qquad \exists y \operatorname{At}(y, t_1))$

Decomposable Query

 $\begin{array}{l} \mbox{Conjunction (or disjunction) of pairwise independent quantified literals} \\ \hline \forall x \mbox{ In}(x,t_1) \land \exists y \mbox{At}(y,t_1) \end{array}$

Complexity

The number of models of any decomposable query Q can be evaluated in $O(|\mathcal{B}||Q|)$ time

Hitting Language

 $\forall x \ln(x, t_1) \land \forall y \neg \mathsf{At}(y, t_1) \land \exists z \mathsf{At}(z, t_2)$

Set of decomposable queries that are pairwise comparable under entailment or insatisfiable

 $\forall x \ln(x, t_1) \land \forall y \neg \mathsf{At}(y, t_1) \land \forall z \neg \mathsf{At}(z, t_2)$

イロト イポト イヨト イヨト

Hitting Language

Set of decomposable queries that are pairwise comparable under entailment or insatisfiable

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Hitting Language

Set of decomposable queries that are pairwise comparable under entailment or insatisfiable

Learnability

There exists an efficient L2R algorithm for any probabilistic reasoning problem (W, Q) where Q is an hitting query language

Set $\mathcal Q$ of decomposable queries that are pairwise comparable or independent or insatisfiable

<ロト <回ト < 回ト < 回ト :

Set $\mathcal Q$ of decomposable queries that are pairwise comparable or independent or insatisfiable

イロト イポト イヨト イヨト

Set $\mathcal Q$ of decomposable queries that are pairwise comparable or independent or insatisfiable

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Set $\mathcal Q$ of decomposable queries that are pairwise comparable or independent or insatisfiable

Learnability

There exists an efficient L2R algorithm for any probabilistic reasoning problem (W, Q) where Q is a cluster query language

イロン イロン イヨン イヨン

Outline

Learning to Reason

- The Knowledge Representation Approach
- The Learning to Reason Approach

2 Exponentiated Gradient Learning to Reason

- Two Key Ideas
- The Algorithm
- Tractable Query Languages
 - Decomposable Queries
 - Hitting Languages
 - Cluster Languages

Perspectives

→ Ξ →

Application

Inductive Knowledge Compilation: Learning a computationally efficient representation of a logical theory (or Bayesian network) for some frequent queries supplied by users

Extensions

Extending the scope of quantifiers

 $\forall x, y (\ln(x, y) \rightarrow \operatorname{Truck}(x))$

Parameterized Cluster-Width

 $\forall x \ln(x, \mathbf{t}_1) \land \exists y \mathbf{At}(y, \mathbf{t}_1)$

 $\exists x \ln(x, \mathbf{t}_2) \wedge \mathsf{At}(\mathbf{c}_1, \mathbf{t}_1)$

Application

Inductive Knowledge Compilation: Learning a computationally efficient representation of a logical theory (or Bayesian network) for some frequent queries supplied by users

Extensions

Extending the scope of quantifiers

 $\forall x, y (\ln(x, y) \rightarrow \operatorname{Truck}(x))$

Parameterized Cluster-Width

 $\forall x \ln(x, \mathbf{t}_1) \land \exists y \mathsf{At}(y, \mathbf{t}_1)$

 $\exists x \ln(x, \mathbf{t}_2) \land \mathbf{At}(\mathbf{c}_1, \mathbf{t}_1)$