
Online Closure-Based Learning of
Relational Theories

Frédéric Koriche

LIRMM, UMR 5506, Université Montpellier II CNRS
161, rue Ada 34392 Montpellier Cedex 5, France

koriche@lirmm.fr

Abstract. Online learning algorithms such as Winnow have received
much attention in Machine Learning. Their performance degrades only
logarithmically with the input dimension, making them useful in large
spaces such as relational theories. However, online first-order learners
are intrinsically limited by a computational barrier: even in the finite,
function-free case, the number of possible features grows exponentially
with the number of first-order atoms generated from the vocabulary. To
circumvent this issue, we exploit the paradigm of closure-based learning
which allows the learner to focus on the features that lie in the closure
space generated from the examples which have lead to a mistake. Based
on this idea, we develop an online algorithm for learning theories formed
by disjunctions of existentially quantified conjunctions of atoms. In this
setting, we show that the number of mistakes depends only logarithmi-
cally on the number of features. Furthermore, the computational cost is
essentially bounded by the size of the closure lattice.

1 Introduction

A recurrent theme in machine learning is the development of efficient online
learning algorithms, capable of producing better and better predictions in an
incremental way [4]. Such algorithms are “anytime learners” that can be inter-
rupted at each instant to provide a prediction whose correctness is related to
the number of mistakes that have been made so far. The underlying model takes
place in a sequence of trials. At any stage, the learner is first presented a new ex-
ample, next it is asked to predict its associated class, and then it is told whether
its prediction was correct or not. In case of mistake, an update procedure is
activated and the current hypothesis is refined accordingly.

In a landmark paper [16], Littlestone introduced an elegant algorithm for
learning k out of n variable disjunctions which he called Winnow. It resembles
the perceptron algorithm in its simplicity, but employs multiplicative, rather
than additive, weight updates on input variables. Consequently, the number of
mistakes grows essentially as k log n instead of kn. The fact that the dependence
on n is reduced to logarithmic, rather than linear, makes this algorithm poten-
tially applicable even if the number of variables is enormous. For example, the
SNoW algorithm, a variant of Winnow, has been shown to be effective in natural
language settings with ten of thousands of features [10].

This remarkable property has lead researchers to examine the possibility of
applying multiplicative update algorithms to large concept classes where the
number of patterns is exponential in the input dimension. In this setting, the
key question is: just how can we preserve attribute-efficiency in order to learn,
in a reasonable amount of time and space, a function of k relevant features in
presence of a possibly exponential number N − k of irrelevant features ?

Computational learning theory has supplied mixed results. On the one hand,
it has been shown that several geometrical classes are indeed attribute-efficient
learnable, using appropriate data structures [11, 17]. The basic idea is to exploit
commonalities among features, partitioning them into a polynomial number of
equivalence classes that are used for prediction. The number of mistakes still
depends only logarithmically on the number of patterns and the computational
cost remains essentially polynomial on the input dimension. On the other hand,
for logical theories such as monotone DNF formulas, Khardon et al. [14] have
recently shown that, unless P = #P , there is no polynomial time algorithm
capable of simulating Winnow over exponentially many conjunctive features.

Such a computational barrier does not necessarily imply that a brutal force
implementation of Winnow is the sole option to obtain complete correctness. In
fact, even if the resulting partition is not always guaranteed to be polynomial,
the idea of “compiling” a large space can be more efficient than systematically
exploring the set of N features. Furthermore, Blum [3] observed that, in many
situations the problem at hand exhibits a three-stage hierarchy: a small number
of relevant features in the target function, a larger number of features that
appear in each example, and an enormous number of possible features. In such
circumstances, the combined strategies of “focusing” on a limited fragment of
the space and “compiling” this fragment into a compact data structure seem to
provide a useful approach to circumvent the counting problem.

Following this research avenue, we investigate the paradigm of closure-based
learning which allows a learner to focus on the closure space generated by the
closure of the examples which have lead to a mistake. Based on a well-known
property of closure operators, the data structure maintained by the learner is a
complete lattice of features. During each trial, the learner first receives an unla-
beled example, next predicts its class according to its lattice, and then receives
the correct label. In case of mistake, the lattice is refined by taking the closure
of the data structure with the current observation.

This paradigm is applied to the problem of learning relational theories formed
by disjunctions of existentially quantified conjunctions of atoms. This class of
formulas have the same expressive power as select-project-join-union database
queries, which are the queries that occur most often in practice [1]. Furthermore,
relational theories provide a substrate for many ILP systems that operate in a
concept learning framework [18]. Namely, any existentially quantified conjunc-
tion of atoms can be regarded as a decision rule predicting the target concept.
If any of the conjunctions in some theory “fires” for a given example, then the
example is classified as positive. If none of them fires, the example is classified
as negative.

In the relational setting, each candidate “feature” is an existentially quan-
tified conjunction of atoms. Consequently, the number of possible features is
exponential in the number of first-order atoms. The central aim of closure-based
learning is to alleviate this combinatorial barrier by allowing the learner to limit
exploration in the space of first-order conjunctions. Based on this paradigm,
we develop an online algorithm that extends Winnow to relational theories. We
show that the number of mistakes still depends only logarithmically on the num-
ber of possible features. Furthermore, the computational cost is polynomial in
the size of the closure lattice. In the worst case, this structure can be exponen-
tial in the number of its maximal elements. Yet, experiments in formal concept
analysis reveal that this case rarely occurs in practice; on average, the size of
closure lattices increases polynomially with the number of atoms [5, 9]. These
encouraging results corroborate the practical applicability of our approach.

Outline. Section 2 introduces the necessary background about online relational
learning. Section 3 presents an algebraic setting for closure-based induction.
Section 4 is devoted to the development and the analysis of the closure-based
Winnow algorithm. Notably, a mistake bound and a computational bound for
this algorithm are reported in this section. Finally, section 5 compares the present
approach with other results in online relational learning, and concludes with
some perspectives of further research.

2 Preliminaries

In this section, we begin to introduce a logical setting for relational theories
and next, we present the “standard” Winnow algorithm applied to relational
theories. We conclude this section by bringing to the fore the main computational
bottleneck of online relational learning.

2.1 Relational Logic

The linguistic component of this study is an existential positive fragment of
first-order logic defined from a finite and pre-fixed vocabulary. Function symbols
including constants, are not allowed. The vocabulary consists in a finite set of
predicate symbols {p1, · · · , pp} and a finite set of variables {x1, · · · , xk}. Each
predicate symbol has a finite arity, which is the number of its arguments. We
consider that the maximum arity over all predicate symbols is bounded by a
constant a. Such an assumption is commonly advocated in the relational learning
literature [12, 22]. An atom p(x1, · · · , xt) is a t-ary predicate symbol followed by
a bracketed t-tuple of variables. The set of all distinct atoms generated from
the vocabulary is denoted A. Using the above notations, we remark that the
cardinality of A is upper bounded by pka, which is polynomial in the number of
predicate symbols and the number of variables.

A relational conjunction (henceforth called feature) is a closed formula in
prenex normal form, containing only existential quantifiers, and whose matrix
is a conjunction of atoms. A relational theory (or theory) is a disjunction of
relational conjunctions. For convenience, we shall sometimes represent theories
as sets of features and features as sets of atoms. The size of a feature F , denoted
|F |, is the number of all atoms occurring in it. Note that the restriction on the
number of variables does not limit the size of features to be constant. Indeed,
long conjunctions of size O(pka) can be constructed since variables can appear in
more than one atom. The space of all features constructed from the vocabulary
is denoted F. The cardinality of this space is denoted N . Notably, we observe
that N is upper bounded by 2pka

.

Example 1. Our running example is a variant of the so-called Bongard problem
(see e.g. [13]). In this problem, the learner is presented some scenes involving
objects and geometrical relationships among them. The underlying task is to
distinguish positive scenes from negative ones. We consider here the vocabulary
composed by the unary predicate symbols circle, square and triangle, the binary
predicate symbols left, in and larger, and the variables x1 and x2. The theory T
below involves three relational conjunctions.

∃x1∃x2(circle(x1) ∧ square(x2) ∧ in(x1, x2)),
∃x1∃x2(circle(x1) ∧ square(x2) ∧ larger(x2, x1)),
∃x1∃x2(circle(x1) ∧ circle(x2) ∧ in(x1, x2))

Examples are interpretations that involve objects and relationships among
them. A domain is a finite set of objects. A ground atom over a domain D is an
expression p(o1, · · · , ot), where p is a t-ary predicate symbol and o1, . . . , ot are
objects in the domain D. An interpretation is a pair I = (DI , P I) where DI is a
domain and P I is a set of ground atoms over DI . An interpretation I is a model
of a relational conjunction F if there is a substitution θ mapping variables in
the feature F to objects in DI and such that Aθ ∈ P I for each atom A in F .
By extension, an interpretation I is a model of a relational theory T if there is
a relational conjunction F in T such that I is a model of F .

Example 2. Consider the following interpretation I involving three objects. We
can observe that I is a model of the theory T examined in example 1. Indeed,
we notice that I is a model of the first two conjunctions described in T .

I = ({1, 2, 3}, {circle(1), circle(2), square(3), in(1, 3), larger(1, 3)})

Given an interpretation I, the feature space of I, denoted F(I), is the set
of all features F in F such that I is a model of F . An element F of F(I) is
called a maximal feature if there is no proper superset F ′ of F in F(I). The
set of all maximal features of I is called the basis of I and denoted B(I). The
following property states that the problem of checking whether I is a model of
some feature F can be reduced to a covering test of F in the basis of I.

Proposition 1. Let I be an interpretation and F a relational conjunction. Then
I is a model of F if and only if there is a feature F ′ in B(I) such that F ⊆ F ′.

Proof. First, suppose that I is a model of F . Then F is an element of F(I) and
hence, F is covered by at least one maximal feature in B(I). Now, suppose that
I is a model of a maximal feature F ′ in B(I) such that F ⊆ F ′. Then, there is a
substitution θ mapping variables in F ′ to objects in DI and such that F ′θ ⊆ P I .
It follows that Fθ ⊆ P I and hence, I is a model of F . ut

Interestingly, we remark that the cardinality of the basis of I is bounded by
dk, which is the number of possible substitutions over DI . The basis of I can
be found time quadratic in dk. Namely, for each substitution θ over DI , we first
generate the saturated feature F formed by all atoms A in the language such
that Aθ ∈ I. Next, we check whether a proper superset of F is present in the
current basis of I. If this is not the case, we add F to the basis and we eliminate
from it all proper subsets of F .

Example 3. The basis of the interpretation I specified in example 2 is given by
the four following features.

∃x1∃x2(circle(x1) ∧ circle(x2))
∃x1∃x2(square(x1) ∧ square(x2))

∃x1∃x2(circle(x1) ∧ square(x2) ∧ in(x1, x2) ∧ larger(x1, x2))
∃x1∃x2(circle(x2) ∧ square(x1) ∧ in(x2, x1) ∧ larger(x2, x1))

2.2 Online Relational Learning

The online learning model can be regarded as a game between two players, the
learner and the environment. A target relational theory T ∗ containing r features,
is fixed by the environment and hidden from the learner. During each trial, the
learner first receives an interpretation from the environment, next it makes a
prediction based on its current hypothesis and then the learner receives the
correct response. In the setting of online relational learning, the quantities that
the learner would like to minimize are the number of mistakes it makes and
the computational resources it spends along the process. Notice that learner is
merely passive and cannot ask membership queries or statistical queries.

Before presenting the algorithm, we need additional definitions. Given a fea-
ture F , the classifier of F is a map that assigns to each interpretation I a boolean
value given by: F (I) = 1 if I is a model of F , and F (I) = 0 otherwise. Similarly,
given a theory T , the classifier of T is a map that assigns to each interpretation
I the value T (I) = 1 if I is a model of T , and the value T (I) = 0 otherwise. A
linear threshold function of F is a function Φ that associates to each feature F
in F a weight in R+. Intuitively, Φ(F) captures the degree of relevance of the
feature F in the learning process. The classifier of Φ is a map that assigns to
each interpretation I a boolean value defined as follows:

Φ(I) =

{
1 if

(∑
F∈F Φ(F) · F (I)

)
≥ N, and

0 otherwise

Initialization

0 Set Φ(F)← 2 for each relational conjunction F ∈ F

Trials

1 Receive an interpretation I

2 If
(∑

F∈F Φ(F) · F (I)
)
≥ N then

predict Φ(I)← 1

else

predict Φ(I)← 0

3 Receive T ∗(I). If T ∗(I) 6= Φ(I) then for each F such that F (I) = 1 do

Demotion: if Φ(I) = 1 then set Φ(F)← 1
2 Φ(F)

Promotion: if Φ(I) = 0 then set Φ(F)← 2 Φ(F)

Fig 1: Standard Relational Winnow

We have now all notions in hand to present the standard Winnow algorithm.
The key idea is to maintain a linear threshold function that approximates the
target theory. The algorithm is presented in figure 1. Initially, Φ(F) = 2 for each
feature in F. On each received interpretation I, if Φ(I) predicts the correct class
of I then no change is made. If Φ(I) = 1 and I is a negative example, then
a demotion occurs: the weights of each feature involved in the prediction are
divided by 2. Dually, if Φ(I) = 0 and I is a positive example, then a promotion
occurs: the weights of each feature that predicted correctly are multiplied by 2.
By an adaptation of Littlestone’s analysis, the number of mistakes made by the
learner depends on N only logarithmically and on r polynomially.

Although “feature-efficient”, the standard Winnow algorithm is confronted
with an important computational barrier. Namely, an explicit representation
of a linear threshold function of F takes Ω(2pka

) size. The complexity issue is
exacerbated still further by the fact that for any received interpretation I, a
covering test must be done for each candidate feature F in the space F. This
test can be performed by enumeration in O(|F |dk) time, where d is the number
of objects in the domain DI . A similar result is obtained if the test is performed
by computing the basis of I. Based on these considerations, the prediction step
takes O(dk2pka

) time. Consequently, even for constant values of a and k, a brutal
force implementation of relational Winnow is clearly infeasible.

Example 4. Let us consider the vocabulary presented in example 1. Given 2
variables, 3 unary predicate symbols and 3 binary predicate symbols, the number
of atoms is 18. If 64 bits are needed to encode each weight, then an explicit
representation of a linear relational threshold function would require 224 bits.
For 3 and 4 variables, we would need 244 bits and 266 bits. The last requirement is
well beyond the capacity of computational machinery into the foreseeable future.

3 Closure-Based Induction

As observed in the previous section, the main computational bottleneck of online
relational learning lies in the cardinality of the feature space. To alleviate this
barrier, we advocate the paradigm of closure-based induction that allows the
learner to “focus” on a limited portion of its feature space and to “compile”
this portion into a semantically equivalent data structure. In this section, we
introduce a formal setting for closure-based induction. We begin to examine
the notion of relational closure space, next we define a projection operator over
closure spaces, and then we concentrate on linear functions of closure spaces.

3.1 Relational Closure Spaces

Let T be a relational theory. Then we say that T is closed if for any nonempty
subset S of T , the feature

⋂
S is an element of T . Furthermore, we say that T is

a closure space if T is closed and contains the maximal feature A. Interestingly,
we remark that any relational closure space is a Moore family of subsets of A.
Consequently, by an application of a well-known theorem about Moore families
of subsets (see e.g. [2, 8]), any relational closure space forms a complete lattice
under set-inclusion.

Given a relational theory T , the feature space of T , denoted F(T), is the set
of all features F in F such that F is included in some element F ′ of T . We can
see that if T is a closure space, then its feature space covers all elements in F.
Now, given a feature F in F(T), the closure of F with respect to T , denoted
CT (F), is the feature formed by the intersection of all supersets of F in T :

CT (F) =
⋂
{F ′ ∈ T : F ⊆ F ′}

The closure of T , denoted C(T) is given by the set {CT (F) : F ∈ F(T)}. The
following property states that the “closure” of a relational theory is necessarily
“closed” under intersection.

Proposition 2. Let T be a relational theory. Then T is closed iff T = C(T).

Proof. Let T ′ = C(T) and T ′′ = {
⋂

S : S ⊆ T}. We must show that T ′ = T ′′.
Let F be an element of T ′. By construction of T ′, there exists a feature F ′ in
F such that F = CT (F ′). Let S be the set of all supersets of F ′ in T . Since
CT (F ′) =

⋂
S, it follows that F =

⋂
S. Therefore, F ∈ T ′′. Now, let F be an

element of T ′′ and V be the set of all supersets of F in T . By construction of
T ′′, there exists a subset S of T such that F =

⋂
S. Since S ⊆ V and S 6= ∅ it

follows that
⋂

V ⊆
⋂

S. Hence, CT (F) ⊆ F . Furthermore, for every element F ′

in V , we have F ⊆ F ′. It follows that F ⊆
⋂

V . Thus F ⊆ CT (F). By combining
the two results, we obtain F = CT (F), and hence F ∈ T ′. ut

Given two closed relational theories T and T ′, the intersection product of T
and T ′, denoted T ◦ T ′, is defined by the set {F ∩ F ′ : F ∈ T and F ′ ∈ T}.
The intersection product provides a natural operator for constructing composite
closed theories from basic building blocks. The following proposition states that
the intersection product of two closed theories is necessarily a closed theory.

Proposition 3. Let T and T ′ be two closed theories. Then T ◦ T ′ is closed.

Proof. Let T ′′ denote T ◦ T ′. By proposition 2, T ′′ is closed if and only if for
every nonempty subset S of T ′′, the feature

⋂
S is an element of T ′′. Since

the relational vocabulary is finite, we consider without loss of generality that
S = {F ′′

1 , · · · , F ′′
n }. By construction, F ′′

i = Fi ∩ F ′
i for some Fi in T and F ′

i in
T ′. It follows that

⋂
S = (

⋂n
i=1 Fi)∩ (

⋂n
i=1 F ′

i). Since T and T ′ are closed, then
the feature

⋂n
i=1 Fi is an element of T and the feature

⋂n
i=1 F ′

i is an element of
T ′. Therefore

⋂
S is an element of T ′′. ut

The congruence relation of a theory T , denoted ∼T , is the binary relation on
F(T) defined by following condition: F ∼T F ′ if and only if CT (F) = CT (F ′).
Based on the axioms of equality, ∼T is an equivalence relation on F(T). The
congruence class of a feature F with respect to T , denoted [F]T , is the set of
all features F ′ in F(T) such that F ∼T F ′. In the following, the cardinality of
[F]T is denoted ‖F‖T . The following property states that congruence relations
can be refined using the product operation.

Proposition 4. Let T and T ′ be two closed theories. Then ∼T◦T ′=∼T ∩ ∼T ′ .

Proof. Let T ′′ be T ◦ T ′ and F be a feature in F(T ′′). We must prove that
CT ′′(F) = CT (F) ∩ CT ′(F). Let S′′ be the set of all supersets of F in T ′′.
By construction, there exists a subset S of T and a subset S′ of T ′ such that⋂

S′′ =
⋂

S ∩
⋂

S′. Let us show that CT (F) =
⋂

S. Let V be the set of all
supersets of F in T . Obviously, S ⊆ V . Let G be an element of V . We know
that F ⊆ G. Furthermore, F ⊆ F ′ for at least one element F ′ in S′. Therefore,
F ⊆ G ∩ F ′ and hence, G must be an element of S. It follows that V ⊆ S.
Therefore, S = V and hence, CT (F) =

⋂
S. Based on an analogue strategy, we

can show that CT ′(F) =
⋂

S′. Since CT ′′(F) =
⋂

S′′, the result follows. ut

We conclude this part by an important topological property of the closure
operation. The following result states that the closure of a theory generates a
complete partitioning of its feature space; the number of equivalence classes is
determined by the size of the closure of the theory.

Proposition 5. Let T be a relational theory. Then the congruence relation of
T induces a complete partitioning of F(T) into |C(T)| congruence classes.

Proof. We know that the relation ∼T is an equivalence relation on the space
F(T). Therefore, ∼T induce a complete partitioning of F(T). Now, let T ′ = C(T)
and T ′′ = {[F]T : F ∈ F}. We must show that |T ′| = |T ′′|. Let f be the function
that maps to each feature F in T ′ the congruence class f(F) = [F]T in T ′′. Let
F and F ′ be two distinct elements of T ′. Since CT (F) 6= CT (F ′) it follows that
f(F) 6= f(F ′). Thus, f is injective and hence, |T ′| ≤ |T ′′|. Dually, let g be a
function that associates to each class [F]T of T ′′ the feature g([F]T) in T ′ such
that g([F]T) = CT (F). Let [F]T and [F ′]T be two distinct congruence classes
of T ′′. Since CT (F) 6= CT (F ′), it follows that g([F]T) 6= g([F ′]T). Thus g is
injective and hence, |T ′′| ≤ |T ′|. ut

3.2 The Projection Operation

The key idea of closure-based induction is to enable the learner to focus on
limited regions of its feature space and to compile these regions into compact
structures. This idea is captured by a projection operator that takes as input
a closure space maintained by the learner and an interpretation sent by the
environment, and that returns as output a closed theory which partitions the
feature space of the interpretation into a set of congruence classes.

Let T be a closure space and I be an interpretation. Then, the projection
of T onto I, denoted P (T, I), is given by the intersection product of T and the
closure of B(I). In formal terms: P (T, I) = T ◦C(B(I)). The update of T by I,
denoted U(T, I), is given by the set T ∪ P (T, I). The next property states that
the theories generated from projection and update are closed.

Proposition 6. Let T be a closure space and I be an interpretation. Then
P (T, I) is closed and U(T, I) is a closure space.

Proof. By application of proposition 3, we know that P (T, I) is closed. Let us
examine U(T, I). By definition:

U(T, I) = T ∪
(
T ◦ C(B(I))

)
We remark that T = T ◦ {A}. By reporting this observation in the equation:

U(T, I) = (T ◦ {A}) ∪
(
T ◦ C(B(I))

)
By factorizing, we obtain:

U(T, I) = T ◦
(
C(B(I)) ∪ {A}

)
Since

⋂
S =

⋂
(S ∪ {A}) for any nonempty subset S of features, it follows that:

U(T, I) = T ◦
(
C(B(I) ∪ {A})

)
The two terms in the right hand side of the equation are closed theories contain-
ing the element A. Hence, by proposition 3, U(T, I) is a closure space. ut

The salient characteristic of the projection operator is to compile the feature
space F(I) of an interpretation I into a structure that exploits the commonalities
between features. This is formalized in the next property.

Proposition 7. Let T be a closure space and I be an interpretation. Then
the congruence relation of P (T, I) induces a complete partitioning of F(I) into
|P (T, I)| congruence classes.

Proof. By proposition 6, P (T, I) is closed. Thus, by proposition 5, it follows that
the congruence relation of P (T, I) induces a complete partitioning of the feature
space of P (T, I) into |P (T, I)| congruence classes. So, we simply need to show
that F(P (T, I)) = F(I). Let F be an element of F(P (T, I)). By construction,
F ⊆ F ′ for some element in F ′ in P (T, I), and F ′ ⊆ F ′′ for some element F ′′

in C(B(I)). Thus, F is covered by some maximal element in the basis of I and
hence, by proposition 1, F ∈ F(I). Conversely, let F be an element of F(I).
Then, by proposition 1, F ⊆ F ′ for some element F ′ in B(I). Since F ′∩A = F ′,
it follows that F ′ ∈ P (T, I). Hence, F ∈ F(P (T, I)). ut

•∅

•
circle(x1)

•
square(x2)

•
circle(x2)

•
square(x1)

•
circle(x1) circle(x2)

•
square(x1) square(x2)

•
circle(x1) square(x2) in(x1,x2) large(x1,x2)

•
circle(x2) square(x1) in(x2,x1) large(x2,x1)

◦
A

Fig. 2. Update of T by I

Example 5. Let T = {A} and consider the interpretation I given in example 2.
The update of T by I is represented by the lattice in figure 2. The projection
of T by I is formed by the set of all “•” nodes. Based on the above result,
P (T, I) induces a complete partitioning of F(I) into 9 congruence classes. By
comparison, F(I) contains 33 features.

3.3 Linear Functions of Closed Theories

We have now all elements in hand to define online relational predictors in the
setting of closure-based induction. Let T be a closure space. A linear threshold
function of T is a map H that associates to each feature F in T a weight in
R+. Intuitively, T can be regarded as a complied representation of F that is
iteratively constructed during the mistakes made by the learner. The function
H simply labels each closed feature F in T according to its degree of relevance.
The classifier of H is a map that assigns to each interpretation I the boolean
value H(I) defined according to the following condition:

H(I) =

{
1 if

(∑
F∈P (T,I) H(CT (F)) · ‖F‖P (T,I)

)
≥ N, and

0 otherwise

The prediction obtained from the classifier H can be explained as follows.
Initially, the learner has at its disposal a closure space T and a linear threshold
function H of T . Given an observation I, the learner first computes the projection
of T onto I. Then, for each feature F in the projected set, the learner evaluates
the degree of relevance of the congruence class of F . In doing so, the learner
considers that each element in the class has the same weight, which is given by
the feature CT (F) in T . Thus, the learner only needs to multiply this weight by
the number of features in the congruence class. This strategy is applied for all
congruence classes and the overall sum is compared with the threshold N .

We conclude this section by establishing a one-to-one correspondence between
the two forms of linear functions investigated in this study. Let Φ be a linear
threshold function of F and H be a linear threshold function of some given
closure space T . Then, we say that H is a closure-based representation of Φ if
Φ(F) = H(CT (F)) for every feature F in the space F.

Proposition 8. Let T be a closure space. Let Φ and H be linear threshold func-
tions of F and T , respectively. If H is a closure-based representation of Φ, then
for each interpretation I, Φ(I) = H(I).

Proof. Suppose that H is a closure-based representation of Φ. Let F be an
element of P (T, I). By proposition 4, we know that [F]P (T,I) ⊆ [F]T . Since
Φ(F) = H(CT (F)), then for each feature F ′ in the congruence class [F]P (T,I)

we have Φ(F ′) = H(CT (F ′)) = H(CT (F)). By adding up all weights:∑
{Φ(F ′) : F ′ ∈ [F]P (T,I)} = H(CT (F)) · ‖F‖P (T,I)

Furthermore, by proposition 7, we know that the congruence relation of P (T, I)
induces a complete partitioning of F(I). It follows that:∑

F∈F(I)

Φ(F) =
∑

F∈P (T,I)

H(CT (F)) · ‖F‖P (T,I)

Using the definition of Φ, we therefore obtain:∑
F∈F

Φ(F) · F (I) =
∑

F∈P (T,I)

H(CT (F)) · ‖F‖P (T,I)

Finally, since the classifiers Φ and H are defined on the same threshold N , we
must have Φ(I) = H(I). ut
Example 6. Consider the following scenario. The learner starts from the theory
T = {A} and the linear function H such that H(A) = 2. After receiving the
interpretation I given in example 2, the projection of T onto I forms the theory
represented in figure 2. We remark that:

∑
F∈P (T,I) H(CT (F)) · ‖F‖P (T,I) = 66.

Since N = 218, the example I is classified as negative. Suppose that I is, in
fact, a positive example of the target concept. In this case, we consider that the
new closure space T is obtained from the update of the initial theory {A} by I.
Furthermore, we consider that the new linear function H is obtained from the
original function by multiplying by 2 the weight of each feature F in P (T, I).
Now suppose that the learner receives a new interpretation J given by:

J = ({1, 2}, {triangle(1), triangle(2), larger(1, 2), left(1, 2)})

The projection of T onto J is represented by the set of all “•” nodes in figure 3.
We remark that:

∑
F∈P (T,J) H(CT (F)) · ‖F‖P (T,J) = 62. Again, the example is

classified as negative. Suppose that J is, in fact, positive. Then, the new closure
space T is obtained from the update of the original theory by J . This theory
is represented by the complete lattice in figure 3. We notably remark that T
partitions the feature space F into 15 congruences classes. By comparison, F
contains 262, 144 features.

•∅:4

◦
circle(x1):4

◦
square(x2):4

◦
circle(x2):4

◦
square(x1):4

•
larger(x1,x2):4

•
larger(x2,x1):4

◦
circle(x1) circle(x2):4

•
triangle(x1) triangle(x2):2

◦
square(x1) square(x2):4

triangle(x1) triangle(x2) larger(x1,x2) left(x1,x2):2
• •

triangle(x1) triangle(x2) larger(x2,x1) left(x2,x1):2

◦
circle(x1) square(x2) in(x1,x2) larger(x1,x2):4

◦
circle(x2) square(x1) in(x2,x1) larger(x2,x1):4

◦
A:2

Fig. 3. Update of T by J

4 Online Closure-Based Learning

After an excursion into the algebraic aspects of our framework, we now focus on
closure-based relational learning. In this section, we begin to present an online
learning algorithm for relational committees, next we provide a mistake bound
for this algorithm, and then we examine its computational cost.

The algorithm is specified in figure 4. The learner starts with the closure space
{A}, where H({A}) is set to 2. The order of the events in any trial is organized
as follows. First, the learner receives an interpretation I from its environment.
Next it predicts a class label for I by projecting its closure space T onto I and by
computing the value H(I) of its corresponding classifier. In doing so, the learner
exploits the topological structure of its closure space T in order to determine the
overall weight of the feature space F(I). Finally, the learner receives the correct
label. If the algorithm has made a mistake, then it updates its linear threshold
function H and its theory T . The learner starts by expanding the domain of H
to P (T, I). The weights of the features are increased or decreased, according to
the type of mistake that has been made. Then, the learner updates its closure
space T by I, and waits for a new example.

Initialization

0 Set T ← {A} and H(A)← 2

Trials

1 Receive an interpretation I

2 If
(∑

F∈P (T,I) H(CT (F)) · ‖F‖P (T,I)

)
≥ N, then

predict H(I)← 1

else

predict H(I)← 0

3 Receive T ∗(I). If T ∗(I) 6= H(I) then

Demotion: if H(I) = 1 then ∀F ∈ P (T, I), set H(F)← 1
2 H(CT (F))

Promotion: if H(I) = 0 then ∀F ∈ P (T, I), set H(F)← 2 H(CT (F))

Set T ← T ∪ P (T, I)

Fig 4: Closure-Based Relational Winnow

4.1 Mistake Bound

We have now all elements in hand to provide the first main result of this study. In
the next theorem, we consider that the target expression T ∗ is a relational theory
containing r relational conjunctions. The goal for the learner is to identify these
r relevant features in a feature space F containing an exponential number N − r
of irrelevant features. Based on a natural correspondence between the standard
algorithm and the closure-based algorithm, we can state that the number of
mistakes depends only logarithmically on N and linearly on r.

Theorem 1. For the class of relational theories containing r existentially quan-
tified conjunctions of atoms defined over p predicate symbols and k variables,
online closure-based Winnow has a mistake bound of:

2(rpka + 1)

Proof. Let Φ and H be the linear threshold functions maintained by the standard
algorithm (fig. 2) and the closure-based algorithm (fig. 4). We show that, if both
algorithms have received the same sequence I of examples, then for any new
received example J , we have Φ(J) = H(J). Based on proposition 8, a sufficient
condition for this is to prove that H is a closure-based representation of Φ. This
is demonstrated by induction on the size of the sequence I.

First, suppose that the sequence I is empty. We remark that for each feature F
in F, Φ(F) = H(A) = 2. Since C{A}(F) = A, it follows that Φ(F) = H(CT (F)).
Hence, H is a closure-based representation of Φ.

Now, suppose that I is not empty. We focus on the last trial in the sequence. Let
I be the example observed during this trial. Let Ebef and Eaft denote the expres-
sion E at the beginning of the trial and at the end of the trial. Finally, let F be a
feature in F. By induction hypothesis, we assume that Φbef(F) = Hbef(CTbef (F))
at the beginning of the trial. We must show that Φaft(F) = Haft(CTaft(F)). If
this condition holds, then H is still a closure-based representation of Φ at the
end of the last trial of the sequence. Consequently, Φ(J) = H(J) during any new
trial involving J . Suppose that no mistake occurred. In this case, Φaft = Φbef .
Similarly, Haft = Hbef and Taft = Tbef . Hence, we have Φaft(F) = Haft(CTaft(F)).
Suppose that a mistake occurred. Then both classifiers are either “demoted” or
“promoted”. We only examine the demotion case, since an analogue strategy
applies to the promotion case.

We know that Taft = Tbef∪P (Tbef , I). First, consider that F 6∈ F(I). In this case,
Φaft(F) = Φbef(F). Furthermore, F must be an element of some congruence class
in Tbef . Therefore, CTaft(F) = CTbef (F). Since Haft(CTbef (F)) = Hbef(CTbef (F)),
we have Haft(CTaft(F)) = Hbef(CTbef (F)). Hence, Φaft(F) = Haft(CTaft(F)).
Now, consider that F ∈ F(I). In this case, we must have Φaft(F) = 1

2Φbef(F).
Furthermore, F is an element of some congruence class in P (Tbef , I). It follows
that, CTaft(F) = CP (Tbef ,I)(F). Since Haft(CP (Tbef ,I)(F)) = 1

2Hbef(CTbef (F)), we
have Haft(CTaft(F)) = 1

2Hbef(CTbef (F)). Therefore, Φaft(F) = Haft(CTaft(F)).

We thus have shown that closure-based Winnow is a simulation of standard
Winnow. Consequently, if the later algorithm has a mistake-bound of m, then
the former algorithm must have a mistake bound of m. By an adaptation of
Littlestone’s analysis (see also [21]), standard Winnow has a mistake bound of
2(r log2 N + 1). Since N is upper bounded by 2pka

, the result follows. ut

4.2 Computational Complexity

Obviously, the main source of complexity in closure-based Winnow resides in
the prediction phase. This phase can be divided into two steps. Namely, given a
closure space T and an interpretation I, the learner computes first the projec-
tion of T onto I. Then, for each closed feature F in the projection, the learner
evaluates the weight of F and the cardinality of the congruence class of F . The
following property suggests a simple incremental procedure to build projections.

Proposition 9. Let T be a closure space and I be an interpretation. Suppose
that the basis of I is given by the set {F1, · · · , Fn} and let (P0, · · · , Pn) be the
sequence of sets of features recursively defined as follows:

(1) P0 = ∅,
(2) Pn = Pn−1 ∪ {F ∩ Fi : F ∈ T ∪ Pi−1}.

Then Pn is the projection of T onto I.

Proof. Let Bn denote the set {F1, · · · , Fn}. The proof is done by induction on
n. First, suppose that n = 1. In this case, we know that C(B1) = B1 = {F1}.
Since P1 = {F ∩ F1 : F ∈ T}, it follows that T ◦ C(B1) = P1, as desired.

Now, consider that n > 1 and, by induction hypothesis, assume that Pn−1 is
given by T ◦ C(Bn−1(I)). We first prove that

C(Bn) = C(Bn−1) ∪ (C(Bn−1) ◦ {Fn}) ∪ {Fn}

We know that C(Bn) is closed under intersection. Let Cn denote the set of
all intersections of nonempty subsets of Bn containing Fn. By construction,
Cn is given by {Fn} ∪ {

⋂
S ∩ Fn : ∅ ⊂ S ⊆ Bn−1}. Since C(Bn−1) is the set

{
⋂

S : ∅ ⊂ S ⊆ Bn−1}, it follows that: Cn = {Fn} ∪ {Fn ∩ F : F ∈ C(Bn−1)}.
Finally, since the second term corresponds to C(Bn−1)◦{Fn}, the result follows.
Now, we examine the main property. By construction, we have:

T ◦ C(Bn) = (T ◦ C(Bn−1)) ∪ (T ◦ {Fn}) ∪ (T ◦ C(Bn−1) ◦ {Fn})

By induction hypothesis, we know that T ◦ C(Bn) = Pn−1. By reporting this
result, T ◦C(Bn) is Pn−1∪ (T ◦ {Fn})∪ (Pn−1 ◦ {Fn}) . By factorizing, it follows
that T ◦ C(Bn) = Pn−1 ∪ ((T ∪ Pn−1) ◦ {Fn}) . Since the second term is the set
{F ∩ Fn : F ∈ T ∪ Pi−1}, the result follows. ut

The following property suggests a simple method to evaluate the cardinality
of any congruence class of a closed set.

Proposition 10. Let T be a closed theory and {F1, · · · , Fn} be a linear ordering
of T where Fi ⊂ Fj implies i ≤ j for any pair of indexes i and j. Then the
cardinality of each congruence class in T is recursively determined as follows:

(1) ‖F1‖ = 2|F1|,
(2) ‖Fn‖ = 2|Fn| −

∑
{‖Fi‖ : 1 ≤ i < n and Fi ⊆ Fn}.

Proof. Let Tn and Fn denote the sets of every subset of Fn in T and F(T),
respectively. By proposition 5, we know that the congruence relation of T induces
a complete partitioning of F(T). Since each element in Fn must be covered by
some congruence class in Tn, it follows that the congruence relation of Tn induces
a complete partitioning of Fn. We thus have,

Fn =
⋃
{[Fi] : 1 ≤ i ≤ n and Fi ⊆ Fn}

We now examine the main property. First, consider that n = 1. In this case,
|F1| = ‖F1‖. Since |F1| = 2|F1|, the result follows. Now, consider that n > 1.
From the previous equation, we have:

[Fn] = Fn −
⋃
{[Fi] : 1 ≤ i < n and Fi ⊆ Fn}

Since |Fn| = 2|Fn| and congruence classes are mutually disjoint, we obtain:

‖Fn‖ = 2|Fn| −
∑
{‖Fi‖ : 1 ≤ i < n and Fi ⊆ Fn}

Based on these considerations, we are now in position to present the second
key result of this paper. The next theorem states that the computational cost is
polynomial in the size of the closure lattice.

Theorem 2. Let s be the size of the closure space maintained by the learner
at the beginning of some trial. Let d and b denote the number of objects and
the size of the closure of the basis of the received interpretation. Then, the time
complexity of the trial is in O(b2s2 + d2k).

Proof. Let T be the closure space maintained by the learner and I be the received
interpretation at the beginning of the trial (line 1). We assume that elements in
T are sorted. We first examine the complexity of the prediction step (line 2). As
observed earlier, the construction of the basis takes O(d2k) time. Based on the
method suggested by proposition 9, the projection of T onto I takes O(bs) time.
Furthermore, the resulting theory is sorted and contains at most bs features. For
each feature F in P (T, I), the weight H(CT (F)) can be evaluated in O(s) time.
Furthermore, using the method suggested in proposition 10, the value ‖F‖P (T,I)

can be obtained in O(bs) time. Since there are at most bs features in P (T, I),
the counting task takes O(bs(s + bs)) time, which is in O(b2s2). We now turn
to the complexity of the update step (line 3). Updating the linear function H
requires O(bs) time since the weights were already computed in the prediction
step. The update of T by I requires O(bs log2(s)) time. ut

If we consider constant values of the maximum arity a and the number of
variables k, then the computational cost is essentially dependent on the size of
the closure space T . This space T is isomorphic to a concept lattice [8] formed
by the context (G, M, I) where the set of “objects” G is given by the set B(T) of
all maximal elements of T with respect to set-inclusion, the set of “attributes”
M is given by A and the “incidence relation” I is given by the membership
relation between A and B(T). Following [15], this lattice can be exponential
in the number of its maximal elements. Yet, as stressed in introduction to this
paper, experiments in formal concept analysis suggest that such an exponential
bound is rarely observed in practice. On average, the size of a closure lattice
tends to be quadratic in the number of the attributes (or atoms) [5, 9].

5 Conclusions

Online relational learning is intrinsically characterized by a dilemma between
effectiveness and computational complexity. On the one hand, the mistake bound
of multiplicative weight algorithms is only logarithmic in the input dimension,
making them useful to handle large spaces such as relational theories. On the
other hand, standard online relational learners are fundamentally limited by the
counting problem that requires a systematic exploration of these spaces. The
key contribution of this study is to provide a model of closure-based learning
that allows a learner to focus on limited regions of its hypothesis space and to
compile these regions into a closure lattice. This paradigm was applied to the
development of an online algorithm for learning relational theory. The number
of mistakes depends only logarithmically on the number of features and the
computational cost is polynomially bounded by the size of the closure lattice.

Related Work. In the past few years, there have been an increased an significant
interest in the development of online learning algorithms for relational domains.
In a seminal work, Golding and Roth [10] developed a relational architecture,
the SNoW system, that learns linear threshold functions with quantified proposi-
tions. This architecture has been applied to several structured domains, including
visual recognition [19] and information extraction [20]. The basic idea underlying
the notion of quantified proposition is to limit the scope of each quantifier to a
single predicate. In other words, only atoms are quantified and thus, any formula
can be treated essentially as a logical combination of boolean variables [7]. Based
on this representation, the number of mistakes still depends only logarithmically
on the number of quantified atoms. Soon afterwards, Valiant [21, 22] extended
this approach by addressing the class of quantified projections, an intermediate
class between quantified disjunctions and quantified DNF formulas. Based on
a combination of Winnow algorithms, the method preserves attribute-efficiency
by exhibiting a logarithmic dependence on the number of quantified atoms.

The main interest of these approaches is to extend the expressiveness of pure
propositional systems while maintaining a polynomial cost during the learning
phase. By comparison, our paradigm is orthogonal to these approaches. Namely,
the use of multi-class, first-order decision rules provides a far more expressive
language. In particular, existentially quantified conjunctions of atoms are able to
capture both relations among objects and dependencies between relations. Yet,
despite the use of closure-based operations, the dependence of the computational
cost on the input dimension is not guaranteed to be polynomial.

Finally, the recent work by Chawla et. al. [6] is also concerned with gen-
eralizing Winnow algorithms to large spaces. But their approach is essentially
propositional and uses a randomized approximation technique that does not
always guarantee complete correctness of the learning system.

Perspectives. Several directions of future research are possible. First and top-
most, the practical issue of online closure-based learning needs to be explored.
In particular, the development of a competence map for our algorithm is the
subject of ongoing research. A second interesting research avenue is to develop
pruning techniques for closure spaces. A potential strategy is to merge congru-
ence classes that have the same weight vectors. An other approach is to use
lower and upper bounds on the possible weights in order to limit the number
of distributions. Third and finally, the framework described suggests a broader
variety of relational classes that might be handled using the paradigm of closure-
based learning. In particular, the extension of this approach to first-order Horn
theories looks promising.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] G. Birkhoff. Lattice Theory. American Mathematical Society, Third Edition, 1967.

[3] A. Blum. Learning boolean functions in an infinite attribute space. Machine
Learning, 9(4):373–386, 1992.

[4] A. Blum. On-line algorithms in machine learning. In Online Algorithms, volume
1442 of Lecture Notes in Computer Science, pages 306–325, 1998.

[5] C. Carpineto, G. Romano, and P. d’Amado. Inferring dependencies from rela-
tions: a conceptual clustering approach. Computational Intelligence, 15(4):415–
441, 1999.

[6] D. Chawla, L. Li, and S. Scott. Efficiently approximating weighted sums with
exponentially many terms. In Proceedings of the 14th Annual Conference on
Computational Learning Theory, pages 82–98, 2001.

[7] C. M. Cumby and D. Roth. Relational representations that facilitate learning.
In Principles of Knowledge Representation and Reasoning: Proceedings of the 7th
International Conference, pages 425–434, 2000.

[8] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, 1997.

[9] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms
based on Galois lattices. Computational Intelligence, 11:246–267, 1995.

[10] A. R. Golding and D. Roth. A Winnow-based approach to context-sensitive
spelling correction. Machine Learning, 34:107–130, 1999.

[11] S. A. Goldman, S. Kwek, and S. D. Scott. Agnostic learning of geometric patterns.
Journal of Computer and System Sciences, 62(1):123–151, 2001.

[12] D. Haussler. Learning conjunctive concepts in structural domains. Machine Learn-
ing, 4:7–40, 1989.

[13] R. Khardon. Learning horn expressions with LogAn-H. In Proceedings of the 17th
International Conference on Machine Learning, pages 471–478, 2000.

[14] R. Khardon, D. Roth, and R. A. Servedio. Efficiency versus convergence of boolean
kernels for on-line learning algorithms. In Advances in Neural Information Pro-
cessing Systems, volume 14, pages 423–430, 2001.

[15] S. Kuznetsov. On computing the size of a lattice and related decision problems.
Order, 18(4):313–321, 2001.

[16] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[17] W. Maass and M. K. Warmuth. Efficient learning with virtual threshold gates.
Information and Computation, 141(1):66–83, 1998.

[18] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226,
1982.

[19] D. Roth, M.-H. Yang, and N. Ahuja. Learning to recognize three-dimensional
objects. Neural Computation, 14(5):1071–1103, 2002.

[20] D. Roth and W. Yih. Relational learning via propositional algorithms: An in-
formation extraction case study. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence, pages 1257–1263, 2001.

[21] L. G. Valiant. Projection learning. Machine Learning, 37(2):115–130, 1999.
[22] L. G. Valiant. Robust logics. Artificial Intelligence, 117(2):231–253, 2000.

