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Abstract. A central issue in relational learning is the choice of an
appropriate bias for limiting first-order induction. The purpose of this
study is to circumvent this issue within a uniform framework inspired
from the paradigm of windowing. Abias windowis a restricted sub-
class of the relational space determined by some parameters. The
idea is to learn a theory in a small window first, and iteratively adjust
the window in order to find the optimal bias from which to choose
the final theory. To this end, our model integrates a logical notion of
window-based induction, a learning algorithm that implements this
mechanism, and a windowing technique that monitors the learning
process using a metric-based criterion. Experiments on the Muta-
genesis dataset show that, after a period of underfitting, windowing
converges on hypotheses which are stable and very effective.

1 INTRODUCTION

The relational learning problem [11] seems to be caught between a
rock and hard place. On the one hand, relational domains typically
involve multiple objects and relationships between them. To this end,
first-order logic provides a very expressive language which enables
the learner to induce structural patterns in the observed sample, and
to represent this knowledge into a compact form. On the other hand,
first-order induction is very much demanding from a computational
point of view. Even in the finite, function-free case, the learner is
confronted with hypothesis spaces which are generally much larger
than concept classes usually addressed in propositional learning.

This dilemma is exacerbated still further by the statistical evidence
that induction in large hypothesis spaces can substantially reduce
both the accuracy and stability of classifiers. As explained by the
Bernoulli’s theorem in [18], the difference between the empirical er-
ror made by the learner on the training set and the generalization
error measured on a separated set of test data grows with the size of
the concept class. This stems from the fact that large spaces contain
many descriptions that behave similarly on the observed sample and
yet behave quite differently in larger populations, thus diminishing
the ability to distinguish relevant hypotheses from irrelevant ones.

In the ILP literature, two main approaches have been investi-
gated to handle these issues: theheuristic-basedapproach and the
representation-basedapproach. As to the former, the idea is to limit
exploration in hypothesis spaces by using strong procedural biases.
The blueprint is the top-down greedy search algorithm governed by
appropriate heuristics. However, although greedy-based learning is
very efficient, it is generally bound to miss relevant theories, espe-
cially in relational domains that lie in the phase transition [8]. Sev-
eral strategies have been proposed to address this myopic limitation,
including pruning methods [6] and genetic techniques [3]. Yet, these
strategies clearly cannot scale up beyond a limited context.
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In the later approach, the idea is to restrict the dimension of the
space in order to obtain tractable forms of induction. For this pur-
pose, a wide variety of representation biases have been proposed,
and range from standard syntactic parameters to complex grammars
that model relational languages [5]. Based on a bias that efficiently
narrows the hypothesis space for a given domain, the learner can
perform a systematic search in this space. Recent experiments have
shown that the resulting theories are often stable and effective [2].
However, a key issue, which is often deferred to the user, is to select
the “appropriate” representation bias for the problem. Since differ-
ent domains typically require different biases, it is important to make
further steps in the direction to automated methods of bias.

In this setting, the purpose of the present study is to investigate the
paradigm ofwindowing, a technique primarily due to Quinlan [14]
and which has recently been generalized by Fürnkranz in [7]. The
main concern of this paradigm is to provide a trade-off between ef-
ficiency and effectiveness by enabling the learner to concentrate on
different subparts of its data and/or hypothesis space. Regardless of
the specificity of the search space, the idea is to maintain a subclass
of this space, the so-calledwindow, from which a theory is learned.
If the quality is estimated insufficient, the window is adjusted by in-
creasing the search space, and a new theory is learned.

Most existing approaches to windowing aredata-orientedand aim
at reducing the size of large databases. Yet, windowing may also be
bias-orientedby reducing hypothesis spaces. Actually, CLINT [12]
and NINA [1] have adopted a similar idea by enabling the learner to
shift its bias from a predefined sequence of languages. Preliminary
results are encouraging and state that using a sequence of biases and
shifting the bias can be more economic and effective than learning in
the union of the languages in the sequence.

In this paper, we develop a model of bias windowing for relational
learning. The basic building block lies in the notion ofbias window,
which determines a restricted subclass of the relational space. Based
on this notion, the model integrates three key components:

• A logical notion of robust induction which enables the learner to
infer a theory givenanybias window available. In particular, the
learner may induce hypotheses even if they are not perfectly con-
sistent with the training examples.

• A learning algorithm that attempts to find, in time polynomially
bounded by the bias parameters, a solution in the window which
is as consistent as possible with the examples.

• A windowing algorithm that monitors the learning progress. The
method uses a metric-based selection principle, inspired from
[15], which attempts to identify the best window for the domain.

The paper is organized as follows. In section 2, we introduce the
logical part of the model. Sections 3 and 4 are devoted to the algo-
rithmic aspects. Experiments on the mutagenesis dataset are reported
in section 5. Finally section 6 concludes the paper.



2 BIAS WINDOWS

This section introduces the logical setting of windowing. As stated
earlier, the key component lies in the notion of bias window which
captures the hypothesis class available to the learner. For sake of gen-
erality, we need a corresponding form of induction that enables the
learner to infer theories given any bias window available. The main
motivation here is to allow the learner to robustly induce hypotheses
which, albeit not necessarily consistent with the training data, can
capture enough important patterns to be accurate on test data. We
thus begin to review the standard notion of induction, and then, we
extend this notion to robust induction.

2.1 Basic Terminology

Our framework basically addresses two-class learning problems. In
this setting, relational theories are usually represented in first-order
DNF, i.e., disjunction of conjunctive formulas.

In this paper, arelational vocabularyconsists in a set of predi-
cates and a set of constants. For sake of simplicity, we shall assume
throughout that the sets of predicates and constants, and all the arities
are finite. Furthermore, we suppose that the maximum of the arities
in the set of predicates is fixed. A term is a variable or a constant.
An atom is a predicate whose arguments are terms. A literal is an
atom or its negation. Arule is an existentially quantified conjunction
of literals and ahypothesisis a disjunction of rules. In following, we
represent rules as sets of literals and hypotheses as sets of rules.

Now, we need to formalize the notion of bias window. As stated
earlier, several bias languages have been proposed in the literature.
In this paper, we exploit a simple bias scheme inspired from the so-
calledxk-DNF concept class introduced by Valiant in [16]. Abias
windowconsists in a pair[x, k] wherex andk are positive integers.
Thewindow spaceof [x, k], denotedHxk, is the space of all hypothe-
ses composed of rules which contain at mostx distinct variables per
rule and at mostk literals per rule. In the following, any rule gener-
ated from the window bias[x, y] is called axk-rule. Intuitively, the
parameterx is used to limit the complexity of the covering test, while
k is used to reduce the dimension of the relational space.

2.2 Standard Induction

Various formalizations of relational induction have been proposed in
the ILP setting. Our framework uses the learning from interpretations
principle. An expression is called ground if it does not contain any
occurrence of variable. A ground substitution is a mapping from vari-
ables to constants. Aninterpretationis a set of ground atoms. Given
a ground substitutionγ, an instanceAγ of an atomA is true in an
interpretationI if Aγ ∈ I. A negative literal¬Aγ is true in I is
Aγ 6∈ I. A rule R is true inI if there exists a ground substitutionγ
such that all literals inRγ are true inI. Finally, a hypothesisH is
true inI if there exists a ruleR ∈ H such thatR is true inI.

Let I denote the set of all possible interpretations generated from
the vocabulary. Aclassifieris an assignment fromI to {0, 1}, where
0 is the negative class and1 the positive class. Any hypothesisH
can be extended to a classifier, also denotedH, such thatH(I) = 1
iff I is true inH. An exampleis a paire = (Ie, ce) whereIe is an
interpretation andce ∈ {0, 1}. An examplee is called positive if
ce = 1 and negative otherwise.

Definition 1. Given a set of examplesE and a bias window[x, k],
thestandard version spaceof E w.r.t. [x, k] is given by:

Hxk(E) = {H ∈ Hxk : H(Ie) = ce for everye ∈ E}.

A bias window [x, k] is called consistentwith a sampleE if
Hxk(E) is nonempty, andinconsistentotherwise. The consistency
criterion cannot always be guaranteed especially in presence of
strong representation biases. In fact, if[x, k] is inconsistent withE,
then the version space collapses and induction fails into triviality. So,
we need to make appropriate formal steps in this direction.

2.3 Robust Induction

In presence of inconsistency, we need to introduce a metric in the hy-
pothesis space in order to select the theories which are as consistent
as possible with the observed sample of examples given the available
representation bias. To this end, the standard empirical error measure
meets our requirements. Given a hypothesisH and a training setE,
the distance betweenH andE is defined by:

d(H, E) =
|{e ∈ E : H(Ie) 6= ce}|

|E|
It can be shown that this measure induces a total pre-ordering≤E

between hypotheses, whereH ≤E H ′ iff d(H, E) ≤ d(H ′, E).
Thus, the aim of robust induction is to retain those hypotheses in the
window space which are minimal according to≤E .

Definition 2. Given a training setE and a bias window[x, k], the
robust version spaceof E w.r.t. [x, k] is given by:

H∗
xk(E) = min(Hxk,≤E).

We now examine several semantical properties that clarify the in-
terest of this model in the setting of windowing. In the following
result, the first property assures that a robust version-space is always
nonempty and well-defined. The second property suggests that, if
possible, the result of robust induction is simply the standard version
space. The third property embodies aquasi-decomposabilityprinci-
ple which is particularly useful for covering algorithms. Intuitively,
if we could find two subgroups of examples which agree on at least
one hypothesis, then the result of robust induction will be exactly
those hypotheses the two groups agree on. The last property captures
a notion ofquasi-monotonicitywhich advocates the use of specific-
to-general windowing techniques. Namely, it states that if two bias
windows, a small one and a large one, agree on at least one hypothe-
sis, then any solution returned by the small window is guaranteed to
be a solution for the large window.

Proposition 3. LetE, F , G be sets of examples such thatF∩G = ∅
andF ∪ G = E, and letx, x1, x2 and letk, k1, k2 be representa-
tion biases such thatx1 ≤ x2 and k1 ≤ k2. Then window-based
induction satisfies the following properties:

1 ∅ ⊂ H∗
xk(E) ⊆ Hxk

2 If Hxk(E) 6= ∅ thenH∗
xk(E) = Hxk(E)

3 If H∗
xk(F ) ∩H∗

xk(G) 6= ∅ thenH∗
xk(E) = H∗

xk(F ) ∩H∗
xk(G)

4 If H∗
x1k1(E) ∩H∗

x2k2(E) 6= ∅ thenH∗
x1k1(E) ⊆ H∗

x2k2(E)

Proof. Property 1 follows from definition 2 and the fact thatHxk is
never empty (even whenx = 0 andk = 0). Property 2 stems from
the fact thatd(H, E) = 0 for anyH ∈ Hxk(E). For property 3, we
only prove thatH∗

xk(F ) ∩ H∗
xk(G) ⊆ H∗

xk(E) since an analogue
strategy holds for the dual part. Suppose thatH ∈ LHS andH 6∈
RHS. Then, there must existH ′ ∈ H∗

xk(E) such thatd(H ′, E) <
d(H, E). Sinced(H ′, E) = d(H ′, F ) + d(H ′, G) it follows that
eitherd(H ′, F ) < d(H, F ) or d(H ′, G) < d(H, G). In both cases,
this contradicts the initial assumption. Finally, for property 4, letH ∈
H∗

x1k1(E) ∩ H∗
x2k2(E). Then, for anyH ′ ∈ H∗

x1k1(E), we have
d(H ′, E) = d(H, E). Hence, it follows thatH ′ ∈ H∗

x2k2(E).



3 WINDOW-BASED LEARNING

In the previous section, we examined window-based induction at the
logical level: a process that determines the set of possible theories
given the available data and bias. In this section, we examine this no-
tion at the algorithmic level. The problem can be formulated as fol-
lows: given a sampleE and a bias window[x, k], find a hypothesisH
such thatd(H, E) is minimal. Interestingly, this problem is closely
related to theagnostic learning[9] issue, in which no assumption is
made on the target function. An important point is that, for most in-
teresting classes, agnostic learning is known to be intractable. Even
the class of monotone monomials is not efficiently learnable unless
RP = NP. Using similar arguments (i.e. reduction to “Set-Cover”),
the window-based learning problem can be shown NP-hard.

This computational barrier incites us to seek forapproximation
algorithmsthat run in polynomial time and yet guarantee a bound on
the suboptimal solution for the problem. In light of this approach, we
develop an approximation algorithm for the window-based learning
problem which can be seen as a generalization of the greedy cover
method used to find the simplest theories in Occam learning.

To this end, we need additional definitions. LetP (E) (N(E)) be
the set of positive (negative) examples which occur in the sample
E. Given a ruleR, let P (R, E) (N(R, E)) be the set of all positive
(negative) examplese in E such thatR is true inIe. Given a bias
window [x, k] and a training setE, thepositive costα of [x, k] w.r.t.
E is the maximum number of positives|P (R, E)| covered by any
xk-rule R. The negative costβ of [x, k] w.r.t. E is the maximum
ratio of negatives|N(R1, E) ∩N(R2, E)|/|E| which are mutually
covered by two distinctxk-rulesR1 andR2.

The algorithm is shown in figure 1. It is important to remark
here that the method performs a greedy search in the space ofxk-
hypotheses, yet a systematic search in the space ofxk-rules. Despite
its apparent simplicity, the algorithm embodies the property that it
tends to approximate the optimal error to within a logarithmic factor
plusan additional inclusion-exclusion penalty.

Theorem 4. Let [x, k] be a bias window, letE be a set of examples,
and letα and β be the positive cost and the negative cost of[x, k]
w.r.t. E. Now, letG be the hypothesis returned byLEARN(E, x, k).
Then for any hypothesisH ∈ H∗

xk(E)

d(G, E) ≤ ln(α)

(
d(H, E) + β

(
1√

|H| log(|H|)

))
Proof. The demonstration closely follows the “weighted set cover
approximation” proof [4], with two important variations: (1) the cov-
ers can be incomplete and (2) the weights can be dynamic. Part 1 is
handled using a simple completion method. Part 2 is circumvented
using an inclusion-exclusion approximation technique [13].

We assume here thatE is clear from the context. Thus,P (E) is
abbreviated asP , P (R) is abbreviated asR, and so on. LetR be the
smallest set defined by the following conditions: (1) anyxk-rule R
is an element ofR and (2) any subsetS of P is an element ofR. By
definition, we setP (S) = S andN(S) = S.

Now, letG = {R1, · · · , Rg} be the solution found by the greedy
algorithm and letG∗ = G ∪ {Rg+1} be an extension ofG such that
Rg+1 is the set of positives not covered byG. For each positivee
in P , let τ(e) be the iteration wheree is covered the first time. Each
positive is assigned a cost only once, when it is covered the first time.
Let c(e) be the cost ofe. If e is covered the first time byRτ(e) then

c(e) =
|N(Rτ(e))− (N(R1) ∪ · · · ∪N(Rτ(e)−1))|
|P (Rτ(e))− (P (R1) ∪ · · · ∪ P (Rτ(e)−1))|

.

Input : A training setE and a window bias[x, k].

1. setH = ∅;

2. if P (E) = ∅ then goto step 5;

3. find a xk-rule R that minimizes the quotient|N(R,E)|
|P (R,E)| ; in

case of tie, takeR which maximizes|P (R, E)|;
4. if |N(R, E)| < |P (R, E)| then setH = H ∪ {R}, set
E = E − (P (R, E) ∪N(R, E)) and return to step 2;

5. returnH;

Figure 1: LEARN(E, x, k)

Let R be any member ofR and lett = max{τ(e) : e ∈ P (R)},
be the iteration when the last positive ofR is covered by the algo-
rithm. Letpi = |P (R)− (P (R1) ∪ · · · ∪ P (Ri−1))|. We have∑
e∈P (R)

c(e) =

t∑
i=1

∑
{c(e) : e ∈ P (e), τ(e) = i}

=

t∑
i=1

|N(Ri)−(N(R1)∪· · ·∪N(Ri−1))|
|P (Ri)−(P (R1)∪· · ·∪P (Ri−1))|

(pi−pi+1)

≤ |N(R)|
t∑

i=1

pi − pi+1

pi

≤ |N(R)| ln(α)

Notice that the first inequality arises from the heuristic of the greedy
algorithm chosen in step 3. Now letH = {R′

1, · · · , R′
h} be an opti-

mal solution and letH∗ = H ∪ {Rh+1} be an extension ofH such
thatRh+1 is the set of positives not covered byH. We have

d(G, E) =

g+1∑
i=1

|N(Ri)− (N(R1) ∪ · · · ∪N(Ri−1))|
|E|

=

g+1∑
i=1

∑ {c(e) : τ(e) = i}
|E|

≤ ln(α)

h+1∑
i=1

|N(R′
i)|

|E|

≤ ln(α)

(
d(H, E) + β

Ω

(
1√

h log(h)

))
The last inequality uses the inclusion-exclusion approximation tech-
nique. Notice that ifβ, the ratio of false positives shared betweenxk-
rules, is small then the inclusion-exclusion term is close to zero.

A second important aspect of this algorithm is that its complexity
is polynomially bounded by the window parametersx andk. Let p
be the total number of predicates,c the total number of constants, and
a the maximum of the arities in the set of predicates. Letm be the
number of examples inE andg the maximal number of ground atoms
in any example. Notice thatg is in O(pca). For anyxk-rule R and
any examplee, one can test whetherR is true ine by enumeration in
time O(kgx). Moreover, the total numberr of xk-rules is bounded
by (p(x + c)a)k. If we assume thatx is very small by comparison
with c, thenr is in O(gk). Thus, using onlyO(mg) space, step 3
requires at mostO(mrgx+k) time. Step 4 requires onlyO(m) time.
Finally, since there are at mostO(m) iterations in the main loop, the
overall time bound is thereforeO(km2gx+k).



4 WINDOWING

Based on the learning algorithm developed in the previous section,
we now turn to the main windowing scheme. The idea is to start from
a small window[x0, k0] and to induce a hypothesis from this bias. We
then adjust the window by modifying the parametersx andk, and
induce a new theory from this window. This process is iterated until
the best current hypothesis is judged satisfying or a maximal bound
[xn, kn] is reached. In formal terms, thewindow selectionproblem
can be stated as follows: given a set of examples and a collection of
windows[x0, k0] ≤ [x1, k1] ≤ · · · ≤ [xn, kn] organized in a lattice,
identify the optimal window from which to choose the final theory.

This setting is the realm ofmodel selectiontechniques used to
find the optimal hypothesis class for a given problem. These meth-
ods can broadly being divided into three categories.Data-oriented
methods, like cross-validation, use separate data to learn and validate
hypotheses. Yet, they are often computationally intensive and reduce
the available data for learning.Complexity penalization methodsseek
to avoid this problem by using the same data for training and valida-
tion, but penalize the hypotheses which are likely to overfit using a
complexity parameter, such as the VC dimension. However, they typ-
ically produce overly broad bounds especially in relational learning.
Finally, metric-based methods[15] lie in-between by taking advan-
tage of theunlabeledexamples, in order to introduce a complexity
penalty. Since real-world databases typically contain large amounts
of unlabeled data not used by supervised learners, this technique is
worth to be investigated in relational learning.

In our framework, a metric-based method can easily be conceived
by taking opportunity of the metric introduced in window spaces.
Given two hypothesesH, H ′ and a set of examplesE, let

dE(H, H ′) =
|{e ∈ E : H(Ie) 6= H ′(Ie)}|

|E|
Now, suppose we are given a training setE and a setU that con-

tainsE anda nonempty set of unlabeled interpretations. LetHxk be
the hypothesis induced by the learning algorithm onE and [x, k].
Theadjusted distancebetweenHxk andE (w.r.t. U ) is defined by

d̂(Hxk, E) = d(Hxk, E) max
[x0,k0]≤[xi,ki]<[x,k]

dU (Hxk, Hxiki)

dE(Hxk, Hxiki)

Intuitively, the method attempts to penalize complex hypotheses
which have an erratic behavior by comparison with simpler theories
generated previously. The windowing algorithm, presented in figure
2, is based on this principle. It operates a lexicographic search in the
lattice of windows and iteratively attempts to identify the best current
theory using the notion of adjusted distance. The EXTRACT proce-
dure implements the quasi-monotonicity property of window spaces.
Given a hypothesisH = {R1, · · · , Rh}, the procedure returns the
maximal subsequenceR1, · · · , Ri of rules which contain no false
positive (i.e.N(Rj , E) = ∅, 1 ≤ j ≤ i).

A key feature of metric-based selection is to provide a guarantee
on the performance of the algorithm. Letε(H) be thegeneralization
error of H. Then, under some reasonable assumptions, the algorithm
cannot overfit the optimal error by a factor much greater than3.

Theorem 5. Let Hxk be the optimal theory in the sequence gener-
ated by the algorithm and letHx′k′ be the hypothesis selected by the
algorithm. If [x, k] ≤ [x′, k′] and d̂(Hxk, E) ≤ ε(Hxk) then

ε(Hxk) ≤
(

2 +
d(Hx′k′ , E)

d(Hxk, E)

)
ε(Hx′k′)

Proof. By specialization of proposition 2 in [15].

Input : A training setE, an unlabeled setU , a minimal window
[x0, k0] and a maximal window[xn, kn]

1. set[x, k] = [x0, k0], E′ = E, G′ = ∅ andd̂min = ∞;

2. setG = G′ ∪ LEARN(E′, x, k) andd̂g = d̂(G, E);

3. setG′ = G′ ∪ EXTRACT(G) andE′ = E′ − P (G′);

4. if d̂g < d̂min then setH = G andd̂min = d̂g;

5. lexicographically increment[x, k];

6. if P (E′) 6= ∅ and[x, k] ≤ [xn, kn] then return to step 2;

7. returnH;

Figure 2: Relational Bias Windowing

5 EXPERIMENTS

We have evaluated the windowing algorithm by performing experi-
ments on the Mutagenesis dataset, a well-known ILP problem used
as a benchmark test [10]. In the dataset, each example consists of a
structural description of a molecule, and some numerical information
describing its biochemical properties. The available data consists of
233 molecules of which 188 are “regression-friendly” and used for
training and validation, and 45 are “regression-unfriendly” and gen-
erally not used by ILP learners. In our setting, the first pool is viewed
as a labeled set of examples, which have to be classified into muta-
genic and non-mutagenic ones, while the second pool is an unlabeled
set examples used by the metric-based selection heuristic.

Four different sets of background knowledge have been identi-
fied for this problem and range fromB1 which uses only informa-
tion on atoms and bonds toB4 which involves high-level informa-
tion on the molecules. We have focused on descriptionsB2, B3 and
B4. For numerical data we have employed an “equal-width binning
method” and for estimating predictive accuracy we have used the 10-
fold cross-validation suggested by the authors.

Figure 3 reports the accuracy and run-time results obtained by
the windowing algorithm. The times are measured on a Pentium IV
1GHz. For each experiment, the maximal window[xn, kn] is pro-
gressively incremented until reaching a upper bound of3 variables
per rule and5 literals per rule. In light of these results, we remark
that bias windowing provides a natural trade-off between accuracy
and efficiency. Indeed, the learner is able to return accurate theories
even for strong biases. Furthermore, we observe that after a period
of underfitting the algorithm converge on hypotheses which are sta-
ble and effective. Interestingly, the length of this period is correlated
with background knowledge. For poorly informed domains suchB2,
the algorithm needs large windows to provide accurate learners. On
the other hand, forB4 the algorithm quickly converges on small
windows that lead to very accurate hypotheses. This phenomenon is
closely related to phase transition effects reported in [8]. In particular,
the variance of underfitting periods observed in windowing corrobo-
rates the evidence that an appropriate use of background knowledge
tends to limit phase transition effects.

The table below compares the performance of windowing with the
standard learners FOIL and PROGOL, a recent greedy-based learner
ICL [17] and the genetic learner G-NET [3]. Note that ICL provides
a multi-class theory that combines the hypotheses learned from each
separate class. From this table, it can be concluded that windowing
generates theories which are stable and very accurate. Notably, for
descriptionsB3 andB4, windowing finds in few seconds theories
for which effectiveness encompasses the best current techniques.
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Figure 3: Results in the Mutagenesis domain

Accuracies
B2 B3 B4

FOIL 61± 6 83± 3 86± 3
PROGOL 81± 3 83± 3 88± 2
ICL 82± 7 87± 10 88± 8
G-NET NA NA 92± 8
WINDOWING [3, 5] 84± 3 92± 3 96± 2

6 CONCLUSION

It has long been recognized that representation biases can help to cir-
cumvent the computational issue involved in relational learning by
substantially reducing the hypothesis space. Moreover, if used appro-
priately, a representation bias can limit overfitting effects by enabling
the learner to focus on small theories which are stable and accurate.
However, choosing the good representation bias for the domain at
hand is a notoriously hard task which is often left to the user.

This work is an attempt to automatically select small classes from
which theories are learned. Our model of “bias windowing” is log-
ically settled on a notion of robust induction that allows the learner
to infer hypotheses given any bias available. The algorithmic part
integrates two components: a learning method that attempts to ap-
proximate the best hypothesis for a given window, and a selection
technique which attempts to identify the best window for a given do-
main. The only proviso is that sufficient unlabeled training data be
available. Experiments on the Mutagenesis dataset reveal that win-
dowing tends to converge on stable and accurate hypotheses.

Several directions of future research are possible. Clearly, more
experiments need to be done to study the performance profiles of
windowing. The development of a competence map for phase tran-
sition problems is a subject of on-going research. Furthermore, the
efficiency of window-based learning could be improved by using a
beam search strategy whose width progressively decreases as the size
of the window is enlarged. Finally, the notion of bias window could
be extended by incorporating the atoms which are relevant for the
application domain (see e.g. [2]). In this setting, forward selection
approaches such as feature selection would be particularly interest-
ing for governing exploration in the lattice of windows.
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