
Learning Ordinal Preferences on Multiattribute
Domains: the Case of CP-nets

Yann Chevaleyre Frédéric Koriche Jérôme Lang
Jérôme Mengin Bruno Zanuttini∗

Abstract

A recurrent issue in automated decision making is to extract a preference struc-
ture from a set of examples. In this paper, we investigate the problem of learning
ordinal preference orderings over discrete multi-attribute, or combinatorial, do-
mains. Specifically, we concentrate on the learnability issue of conditional pref-
erence networks, or CP-nets, that have recently emerged as a popular graphical
language for representing ordinal preferences in a concise and intuitive manner.
This paper provides results in both passive and active learning. In passive learn-
ing, the learner aims at finding a CP-net compatible with a given set of examples,
while in active learning the learner searches for the cheapest interaction policy with
the user for acquiring the target CP-net.

1 Introduction
A recurrent issue in both Artificial Intelligence (AI) and Decision Theory (DT) is to
devise learning algorithms capable of extracting a preference structure from the user’s
behavior in presence of different alternatives. In many applications, such as electronic
commerce, the space of alternatives has a combinatorial structure, due to the fact that
each alternative is defined over a potentially large number of attributes.

For instance, suppose we observe a user expressing her preferences about airplane
tickets: (a) she prefers an Aeroflot flight landing at Heathrow to a KLM flight landing
at Gatwick and (b) she prefers an Aeroflot flight landing at Heathrow to a KLM flight
landing at Heathrow. An intuitively correct hypothesis that explains her behavior is
that she prefers Aeroflot to KLM unconditionally, and Heathrow to Gatwick, again un-
conditionally. Such an hypothesis allows for predicting that she will prefer an Aeroflot
flight landing at Heathrow to anything else, and an Aeroflot flight landing at Gatwick to
a KLM flight landing at Gatwick. Yet, this hypothesis is not able to predict whether she
will prefer an Aeroflot flight landing at Gatwick or a KLM flight landing at Heathrow.
Now, if we observe later that she prefers a KLM flight landing at Gatwick to a KLM
flight landing at Heathrow, the previous hypothesis must be updated. A new possible
hypothesis, among others, could be that she prefers Aeroflot to KLM, and Heathrow to
Gatwick when flying on Aeroflot and vice versa when flying on KLM.

A key notion underlying this example is conditional preferential independence,
which stems from multiattribute decision theory [21]. In the first hypothesis above,

∗Partially supported by the ANR projects CANAR (ANR-06-BLAN-0383-02) and PHAC (ANR-05-
BLAN-0384-01

1

the preference over the values of each attribute is independent of the values of other
attributes – in such a case, the user’s preference relation is said to be separable. The
second hypothesis is not separable, because the user’s preference between airports is
conditioned by the airline company.

The process of inducing a model of the user’s preferences as in the above toy ex-
ample is generally called learning from examples or passive learning. The latter term
emphasizes the fact that the learner has no control over the set of examples the user will
provide. In another context, we may have the opportunity to learn the local preference
relations (on airline companies and airports) by actively querying the user rather than
by observing her. In this case we have to find the optimal sequence of queries. This
problem, known as learning by queries, is related to preference elicitation: the system
interacts with the user by asking her specific requests, until she has found her target
object or left the system [12]. Yet in other contexts, it is relevant to mix both active
and passive learning. Consider for instance a system helping a user finding a flat from
a large database, such as in [30, 31]. A flat is described by attributes such as price,
location, size etc. The system can start to extract a pool of preferences by observing
the user’s behavior, and then use queries so as to help her finding her ideal flat while
minimizing the number of interactions.

In all the contexts we considered above, the system has to learn preferences of a
user over a set of alternatives that possesses a combinatorial structure. Preferences over
combinatorial domains have been investigated in detail by researchers in multiattribute
Decision Theory and Artificial Intelligence. Researchers in multiattribute DT have
focused on modeling preferences, that is, giving axiomatic characterizations of classes
of preference relations or utility functions, while researchers in AI have concentrated
on the development of languages for representing preferences that are computationally
efficient; such languages have to express preferences as succinctly as possible, and to
come with fast algorithms for finding optimal alternatives.

These classes of models and languages can be partitioned by examining the math-
ematical nature of the preferences they consider. Namely, a distinction is made be-
tween ordinal preferences that consist in ranking the alternatives, and numerical pref-
erences consisting of utility functions mapping each alternative to some number. There
have been a number of works for learning or eliciting numerical preferences on mul-
tiattribute domains. Elicitation of multi-attribute utility functions is considered in
[19, 10, 11, 17, 8]. A related stream of work is preference elicitation in the context
of combinatorial auctions [27]: what has to be learnt is the valuation function of every
buyer, which associates with every combination of goods the maximum value that she
is ready to pay for it. Recently, there has been a growing interest for learning pref-
erences from ordinal comparisons using numerical models. Many standard machine
learning methods, such as neural networks [9] or support vector machines [15], have
been adapted to this framework, often called learning to rank instances by the machine
learning community.

In contrast, the learning of preferences using ordinal models has received much
less attention. In fact, the most studied model up to now is lexicographic preferences
for binary attributes. The problem is first addressed in [14], which investigate sev-
eral problems regarding learning lexicographical preference relations. First they give a
polynomial-time algorithm which, from a set of pairwise comparisons between vectors
of values, determines the importance order of the criteria if it is possible, or decides
whether the sample is insufficient or inconsistent. Then they consider query-based
learning and give an oracle based algorithm. Finally, they investigate the worst case
situation and deal with adversarial models. Then, [28] show that although it is possible

2

to determine in polynomial time whether there exists a lexicographical model com-
patible with a set of examples, described as pairwise comparisons between tuples of
values, the corresponding optimization problem is NP-hard, and can even not be ap-
proximated in polynomial time to within a constant factor. They also determine the
Vapnik-Chervonenkis dimension of lexicographical preference relations: they show
that it is equal to the number of attributes. Finally, Yaman et al. [33] do not commit
to a single lexicographic preference relation but approximate the target using the votes
of a collection of consistent lexicographic preference relations. In a nutshell, learning
lexicographic preference relations proves not to be so hard, but this comes with a price,
namely, the hypothesis made is highly restrictive. Indeed, lexicographic preferences
are a very specific form of preferences that is not often met in practice.

In this paper we focus on learning another class of preference relations, where
the hypotheses we make bear on the preferential dependence structure. As we said
above, a key point, when dealing with ordinal preferences on combinatorial domains,
is the dependence structure between attributes. Now, conditional preference networks
or CP-nets are a graphical language for representing preferences based on conditional
preferential independence [6]. A CP-net is composed of a directed graph representing
the preferential dependencies between variables, and a set of conditional tables (one
for each variable), expressing, for each variable, the local preference on the values of
its domain given all possible combinations of values of its parents. The transitive clo-
sure of these local preferences is a partial order over the set of alternatives, which can
be extended into several total orders. CP-nets and their generalizations are probably
the most popular compact representation language for ordinal preferences in multiat-
tribute domains. The local tables in a CP-net express the local preferences for each
attribute, given the values of the attributes they depend of. Therefore, learning a pref-
erence relation on a multiattribute domain, given some hypothesis on the dependence
structure that the preference relation enjoys, comes down, at least to some extent, to
learning a CP-net. Note that, while many facets of CP-nets have been studied, such as
consistency, dominance checking, and optimization (constrained and unconstrained),
learning a CP-net from a user has only rarely, and very recently, been addressed. One
exception is [5], who proposed an algorithm that, given a set of examples, outputs a
CP-net that implies them (see Section 5 for more details). Although not directly con-
cerned with CP-nets, a related work is [26], which proposes to learn a preference theory
in the sense of [16], consistent with a set of examples.

The aim of this position paper is to examine the problem of CP-net learning ac-
cording to several dimensions, and to give a few learnability results. A first dimension
that naturally emerges from preference learning is to consider whether the user’s pref-
erences are representable, or not, by a CP-net. If the target preference relation can be
described by a CP-net, the goal is to identify this network. Alternatively, if the tar-
get preference relation is not representable by a CP-net, we can only hope finding an
approximation of it. Among the candidate approximations, some of them are particu-
larly relevant from a reasoning viewpoint. From this perspective, we shall concentrate
on finding CP-nets for which the target relation is a “completion” of the hypothesized
relation. Orthogonally, a second dimension in CP-net learning is to consider whether
the learning process is merely passive, by simply observing examples, or active, by
allowing the learner to ask membership queries.

In the different learning models that arise from these dimensions, we will investi-
gate the learnability issues in terms of the worst-case number of resources required to
converge toward the desired CP-net, where resources refer both to the running time,
the sample complexity in passive learning, and the query complexity in active learning.

3

Section 2 provides the necessary background about CP-nets. In Section 3, we extend
the paradigm of concept learning to preference learning and introduce two frameworks,
one for the problem of learning partial orderings that are representable by a CP-net, and
the other for the problem of learning linear orderings that are not representable by a CP-
net. Our learnability results lie in the next three sections. Namely, section 4 focuses
on the VC-dimension and the approximate fingerprint property for classes of CP-nets.
Section 5 addresses passive learning of CP-nets. Section 6 considers active learning of
CP-nets. Finally, section 7 briefly discusses issues for further work.

Given that this is a position paper, the proofs of the results are only sketched, or
even omitted. They can be found in the technical reports [13, 22, 24].

2 Conditional Preference Networks
We assume that we have a finite set V = {X1, . . . , Xn} of n variables, or attributes,
with associated finite domains D1, . . . , Dn. Then D = D1 × . . .×Dn is the set of all
complete assignments, called outcomes.

For any nonempty subset X of V , we let DX = ×Xi∈XDi. Elements of DX are
called X -assignments and denoted using vectorial notation, e.g., x. For any disjoint
subsets X and Y of V , x ∈ DX and y ∈ DY , the concatenation of x and y, xy, is
formally defined as x∪ y – i.e., it is the X ∪ Y -assignment which assigns to attributes
in X (resp. Y) the value assigned by x (resp. y). An attribute Xi is binary if Di has
two elements, which by convention we note xi and xi.

A preference relation on a multiattribute domain D is a weak order on D, that is,
a reflexive and transitive binary relation �. If furthermore � is connected, that is, if
for every x,y ∈ D we have either x � y or y � x then � is a complete preference
relation. A strict preference relation � is an order on D, that is, an irreflexive and
transitive (thus asymmetric) binary relation. If moreover � is connected then � is a
linear preference relation. From a preference relation � we define a strict preference
relation in the usual way: x � y iff x � y and not (y � x).

Preferences between outcomes that differ in the value of one attribute only, all other
attributes being equal (or ceteris paribus) are often easy to assert, and to understand.
CP-nets [6] are a graphical language for representing such preferences. Informally,
a CP-net is composed of a directed graph representing the preferential dependencies
between attributes, and a set of conditional preference tables (one for each attribute),
expressing, for each attribute, the local preference on the values of its domain given all
possible combinations of values of its parents.

Let us call a swap any pair of outcomes {x,y} that differ in the value of one
attribute only, and let us then call swapped attribute the attribute that has different
values in x and y. A CP-net specifies, for every swap {x,y}, which of x � y or y � x
is true. This can be achieved in a compact manner when there are many independencies
among attributes.

Example 1 Consider three attributes A, B and C, with respective domains {a, a},
{b, b} and {c, c}, and suppose that the four swaps on B are ordered as follows: abc �
abc, abc � abc, abc � abc, abc � abc. We can see that, irrespective of the value of
C, if a is the case, then b is preferred to b, whereas if a is the case, then b is preferred
to b. We can represent this ordering on the B-swaps with two conditional preferences:
a : b > b and a : b > b, and say that, given A, B is (conditionally) preferentially
independent of C.

4

Definition 2 Let {X ,Y,Z} be a partition of the set V and � a linear preference rela-
tion over D. X is (conditionally) preferentially independent of Y given Z (w.r.t. �) if
and only if for all x1,x2 ∈ DX , y1,y2 ∈ DY , z ∈ DZ ,

x1y1z � x2y1z iff x1y2z � x2y2z

Definition 3 A CP-net over attributes V = {X1, . . . , Xn} with domains D1, . . . , Dn

is a pair N = 〈G,P 〉 where G is a directed graph over X1, . . . , Xn and P is a set of
conditional preference tables, one CPT (Xi) for each Xi ∈ V . For attribute Xi, we
denote by Pa(Xi) (resp. NonPa(Xi)) the set of parents of Xi in G (resp. V − ({Xi}∪
Pa(Xi))). Each conditional preference table is a list of rows (also called entries or
rules) of the form u : x(1)

i > · · · > x
(m)
i , where u is an instantiation of Pa(Xi) and

x
(1)
i > · · · > x

(m)
i is a linear ordering of the domain Di (with m = |Di|). It indicates

that uzx
(j)
i � uzx

(j+1)
i for every possible instantiation z of NonPa(Xi).

Example 4 A CP-net over attributes A, B and C, with respective domains {a, a},
{b, b} and {c, c} is:

A

a > a

B

a : b > b

a : b > b

C

b : c > c

b : c > c

where X Y means “X is a parent of Y ”. The associated ordering of the
swaps is:

abc abc abc

abc

abc

abc abc abc

where x y means “x is preferred to y”.

The size of a CP-net N , denoted by |N |, is the number of entries in the preference
tables of N ; if the dependency graph of N is G then |N | =

∑
Xi∈V

∏
Xj∈Pa(Xi)

|Dj |,
which in the case of binary CP-nets boils down to |N | =

∑
Xi∈V 2|Pa(Xi)|.

Although a CP-net only specifies an ordering of all swaps, we are naturally inter-
ested in the transitive closure of this ordering; for a CP-net N , we write �N for this
transitive closure. Note that this relation�N may not be total, and it may not be a strict
order since it may contain cycles, and thus not be irreflexive. We know from [6] that
if G is acyclic, then �N is a strict order (i.e. contains no cycles). In this case we say
that N is consistent; �N may still not be total, it can then be completed in a number of
linear preference relations. If � is one of them, we say that � is a completion of N , or
that it is compatible withN . When�N is not irreflexive, we say thatN is inconsistent.

Note that several CP-nets can induce the same preference relation: for example, if
a CP-net N over A,B contains the table b : a > a and b : a > a, then the CP-net N ′

in which A has no parent and the table a > a is equivalent to N . In general, for every

5

consistent CP-net N there a unique CP-net N ′ equivalent to N that is minimal in the
number of parents/table entries for each variable.

Importantly, note that every linear preference relation is compatible with exactly
one (minimal) CP-net. For instance, ab � ab � ab � ab is compatible with the CP-net
N = {a : b � b, a : b � b, b : a � a, b : a � a}.

The following property will be frequently used in the remaining sections.

Proposition 5 ([6]) LetN be an acyclic CP-net and x, y two outcomes. Then x �N y
iff there is a sequence of swaps {x0,x1}, {x1,x2}, . . . , {xk−1,xk} such that x0 = x,
xk = y, and for every 0 ≤ i < k, xi �N xi+1, that is, if Xji is the attribute swapped
between xi and xi+1, and if u is the vector of values commonly assigned by x and y
to the parents of Xji , then N contains u : xiji > xi+1

ji
;

Though a CP-net is usually defined as above, most of the results presented here
extend to possibly incomplete CP-nets. Such a CP-net is one in which each conditional
preference table CPT (Xi) contains at most one conditional preference rule per instan-
tiation of Pa(Xi) (instead of exactly one). A particular case is when some of the tables
are empty. The semantics of an incomplete CP-net is still given by the transitive clo-
sure of the dominance relation on swaps induced by the rules. An important difference
is that in an incomplete CP-net, not all swaps are comparable.

The rationale for considering incomplete CP-nets can be understood with the fol-
lowing example. A user may well know that she prefers traveling by bus rather than
in the subway in Paris, vice-versa in London, but be unable to state her preference for
a city in which she has never been, say Madrid. This does not mean that she would
not have a preference, rather that she does not know it (so far). In this case, a vari-
able encoding the transportation means (with values subway and bus) would have the
variable encoding the city as its parent, with values Paris , London , and Madrid , but
would contain only two rules.

3 Learning CP-nets: learning what?
The problem of concept learning is to extrapolate from a collection of examples, each
labeled as either positive or negative by some unknown target concept, a representation
of this concept that accurately labels future, unlabeled examples. Most concept learn-
ing algorithms operate over some concept class, which captures the set of concepts that
the learner can potentially generate over all possible sets of training examples.

In the setting suggested by our framework, a concept is a preference relation� over
DV . We say that a concept � is representable by a CP-net N if the induced ordering
�N coincides with �, that is, �=�N . For example, the preference relation � defined
by {ab � ab, ab � ab, ab � ab, ab � ab} is representable by the CP-net N specified
by {a : b � b, a : b � b, b : a � a, b : a � a}. A representation class is a collection
N of CP-nets, and the concept class CN defined over N is the set of all preference
relations � that are representable by a CP-net N in N .

The concept class CACY of all preference relations that are representable by an
acyclic CP-net will play a fundamental role in this study. Since acyclic CP-nets are
necessarily consistent, any target concept� in this class can be represented by a unique
minimal CP-net N . So, with a slight abuse of language, we shall simply say that CACY

is the class of all acyclic CP-nets. Similar considerations will be applied to subclasses
of CACY such as, for example, the class CTREE of tree-structured CP-nets.

6

With these notions in hand, we assume that the user has in mind a target preference
ordering �, and the learner has at its disposal a prefixed and known class of CP-nets
CN . In this study, we shall consider two different types of target concepts.

(A) The target concept is a preference relation� that belongs to the learner’s concept
class CN . In other words, there is a CP-net N in CN , such that �N coincides
with �. In this context, the goal of the learner is to find N .

(B) The target concept is a preference relation � that does not necessarily belong
to the learner’s concept class CN . For example, we can easily observe that the
linear ordering � defined by {ab � ab � ab � ab} cannot be represented by
any CP-net. Still, we shall make the assumption that � is a completion of some
representation inN . Specifically, we say that� is a completion of a CP-net N if
x �N y implies x � y for any pair of outcomes (x,y). For example, the above
ordering � is a completion of N = {a : b � b, a : b � b, b : a � a, b : a � a}.
In this “agnostic” setting, the goal of the learner is to find a CP-net N for which
� is a completion of it.

Note that the distinction between (A) and (B) is not on the set of objects we want
to learn, but on their interpretation, which has crucial consequences on how examples
are interpreted.

3.1 Learning a preference relation induced by a CP-net
Let us start with context (A) where the target concept is representable by a CP-net N
of some given representation class N . Here, an instance, or example, is a pair (x,y)
of outcomes, and an instance class is a set E of examples. Given a target concept �N ,
and an example (x,y), we say that (x,y) is positive for �N if x �N y, that is, x
dominates y according to �N . Dually, (x,y) is negative for �N if x �N y. It is
important to keep in mind that, in general, if the pair (x,y) is a negative example of
�N then the reverse pair (y,x) is not necessarily a positive example of �N .

In this context, our learning problem can be seen as a standard concept learning
problem: given positive and negative examples, we want to find a CP-net that “implies”
all positive examples and no negative example.

Definition 6 LetN be a CP-net over V . An example (x,y) is entailed byN if x �N y.
A set of examples E is implicatively consistent with N , or implied by N , if

• all positive examples in E are entailed by N ;

• no negative example in E is entailed by N .

Finally, we shall say that a training set E is implicatively compatible if it is implied
by at least one CP-net.

3.2 Learning a CP-net which approximates the user’s preferences
Now, we turn to context (B) and make the assumption that the user’s preference relation
� is a linear order, in general not exactly representable by any CP-net. In this frame-
work, we start by examining an appropriate notion of consistency between a CP-net
and a training set. Consider the following example:

7

Example 7 We have two binary attributes X1 and X2 (with domains {x1, x1} and
{x2, x2}), and the set of positive examples

E = {x1x2 � x1x2, x1x2 � x1x2, x1x2 � x1x2}

What do we expect to learn from the above set of examples E? The transitive
closure of E is the complete preference relation x1x2 � x1x2 � x1x2 � x1x2. This
preference relation is separable (the agent unconditionally prefers x1 to x1 and x2 to
x2). The fact that x1x2 is preferred to x1x2 simply means that when asked to choose
between X1 and X2, the agent prefers to give up X2 (think of X1 meaning “getting
rich” andX2 meaning “beautiful weather tomorrow”). Intuitively, sinceE is separable,
we expect to output a structure N that contains x1 � x1 and x2 � x2. However,
no CP-net implies E, whatever the dependencies. The structure N induces a partial
preference relation in which x1x2 and x1x2 are incomparable. More generally, no
ceteris paribus structure can “explain” that x1 � x1 is “more important” than x2 � x2

(i.e., with no intermediate alternative). Therefore, if we look for a structure implying
all the examples, we will simply output “failure”. On the other hand, if we look for a
separable CP structure that is simply contingent with the examples, i.e., that does not
imply the contrary of the examples, we will output N .

The explanation is that when an agent expresses a CP-net, the preference relation
induced by this CP-net is not meant to be the whole agent’s preference relation, but
a subset (or a lower approximation) of it. In other terms, when an agent expresses
the CP-net N , she simply expresses that she prefers x1 to x1 ceteris paribus (i.e., for
a fixed value of X2) and similarly for the preference x2 � x2; the fact that x1x2 and
x1x2 are incomparable inN surely does not mean that the user really sees them incom-
parable, but, more technically, that CP-nets are not expressive enough for representing
the missing preference x1x2 � x1x2

1.
Therefore, rather than looking for a CP-net that implies the examples, we should

rather look for a CP-net whose preference relation is contingent with the examples. A
first way of understanding consistency is to require that the learnt CP-net N be such
that the examples are consistent with at least one preference relation extending N . Yet,
there are cases where it may even be too strong to require that one of the completions
of �N contains all the examples, in particular if they come from multiple users (given
that we want to learn the generic preferences of a group of users), or a single user in
different contexts:

Example 8 Suppose that we learn that all users in a group unconditionally prefer x1

to x1 and x2 to x2, whereas their preferences between x1x2 and x1x2 may differ (think
as x1 and x2 as, respectively, “being invited to a fine dinner” and “receiving a $50
award”): then E ⊇ {x1x2 � x1x2, x1x2 � x1x2}. E is clearly inconsistent, so there
cannot be any preference structure whose ordering can be completed into a linear
preference relation that contains E. However, if N = {x1 � x1, x2 � x2}, then each
example in E is (individually) contained in at least one completion of �N .

Such considerations lead us to define two new notions of compatibility of a CP-net
with a set of examples. Note that because the target concept is a linear order, (x,y) is
a negative example if and only if (y,x) is a positive one. For this reason, we can make
the assumption that all examples in the learner’s training set E are positive, with the
implicit knowledge that the reverse (y,x) of any pair (x,y) in E is negative.

1If we want to do this, we have to resort to a more expressive language such as TCP-nets [7] or conditional
preference theories [32].

8

Definition 9 LetN be a CP-net over V . An example (x,y) is consistent by completion
with N if there is a completion � of �N such that x � y. Furthermore, we will say
that a set of examples E is:

• strongly consistent by completion with N if there is a completion � of �N such
that for all (x,y) ∈ E, x � y;

• weakly consistent by completion with N if every example (x,y) ∈ E is individ-
ually consistent by completion with N .

Lastly, we will say that E is strongly / weakly compatible if it is strongly / weakly
consistent by completion with at least one CP-net. Clearly, strong compatibility implies
weak compatibility. Moreover, since an example (x,y) is consistent by completion
with a CP-net N if and only if (y,x) is not implied by N , implicative compatibility
implies strong compatibility.

As it stands, it turns out to be significantly more difficult to search for a CP-net
strongly or weakly consistent with a set of examples than to search for a CP-net im-
plicatively consistent with it. Therefore, we mainly focus on implicative compatibility;
strong and weak compatibility will only be discussed in the context of separable CP-
nets, that is, CP-nets where all variables are independent.

4 Learnability of CP-nets
In this section we investigate the theoretical limits concerning the learnability issue of
CP-nets. In essence, the Vapnik-Chervonenkis dimension of a class gives upper bounds
on the difficulty to learn, in terms of numbers of examples, while the approximate
fingerprint property gives lower bounds.

4.1 Vapnik-Chervonenkis dimension
The Vapnik-Chervonenkis (VC) dimension of a class of concepts is a fundamental com-
plexity measure used in theoretical machine learning. Intuitively, the VC-dimension
of C is the maximum number of informative examples which can be received by the
learner, where an “informative” example is an observation that helps the learner reduc-
ing the number of consistent hypotheses.

Formally, let C be a concept class defined over some representation class R. A set
of instancesE is said to be shattered by C if, whatever the partition ofE intoE+∪E−,
there is a concept N ∈ C which admits all instances in E+ as positive examples and
all instances in E− as negative examples. The Vapnik-Chervonenkis dimension of C,
denoted V C(C), is the maximum size of a set of examples E which is shattered by C.
The intuition is that for such a set E, as long as the learner ignores the label of at least
one example, at least two concepts in C are consistent with the labels it has seen so far.

When the learner has access only to a certain kind of example (e.g., swap ex-
amples), it makes sense to adapt the notion of VC-dimension. So if E is a class of
instances, we write V CE(C) for the VC-dimension of C with respect to E , that is,
the maximum size of a E ⊆ E which is shattered by C. Clearly, if E ⊆ E ′, then
V CE(C) ≤ V CE′(C).

Observe that, as there are 2m partitions of a set of m examples into positive and
negative examples, each of which must be captured by a different concept, V C(C) ≤
log2 |C| always holds (whatever the class of examples).

9

We now give the VC-dimension of the class of all CP-nets which have a fixed graph.
The intuition here is that since the parents of each variable are known, the quantity of
information needed to characterize a CP-net is exactly 1 per possible rule in the CP-net,
namely, one pair of outcomes which dictates the conclusion of the rule.

Proposition 10 Let G be a graph, and let CG be the class of all concepts which are
representable by a binary complete CP-net whose graph is G. Then the VC-dimension
of CG with respect to swap examples is exactly the number of conditional preference
rules in any such CP-net. If CP-nets are possibly incomplete, then the VC-dimension
(w.r.t. swap examples) is still the number of rules in any complete CP-net on G.

This property can help us finding an upper bound of the VC-dimension of acyclic
CP-nets. Intuitively, the number of acyclic graphs with indegree at most k is lower
bounded by |CG|, and upper bounded by (n − 1)n(k+1). Since any binary-valued CP-
net built over an acyclic graph of degree at most k allows at most n2k entries, there are
at most (n − 1)n(k+1)2n2k

binary-valued acyclic CP-nets with degree at most k. We
therefore obtain the following result.

Corollary 11 Let k ∈ o(n), and let Ckacy be the class of all concepts which are rep-
resentable by a possibly incomplete binary CP-net whose graph is acyclic and with
indegree at most k. Then, the VC-dimension of Ckacy with respect to swap or arbitrary
examples is Θ̃(n2k).

Finally, without any restriction over the degree, it can be shown that the VC-
dimension grows as Θ(2n), which is still much below the VC-dimension of the class
of all possible CP-nets.

Corollary 12 Let Cacy be the class of all concepts which are representable by a possi-
bly incomplete binary CP-net whose graph is acyclic. Then, the VC-dimension of Cacy
with respect to swap examples is Θ(2n).

4.2 Approximate fingerprints
Approximate fingerprints are another powerful tool for obtaining non learnability re-
sults in active learning. Intuitively, a class of concepts C has the approximate fingerprint
property if there is a subset C∗ of C such that for any concept N ∈ C, there is an exam-
ple with whichN is consistent, but with which only a superpolynomially small fraction
of the concepts in C∗ are also consistent.

This property can be used to show that in an interactive learning setting, a hypothe-
sis N̂ ∈ C may fail on an example which only gives clues about superpolynomially few
candidate hypotheses. Hence, if the learner only gets information from such failures,
in the worst case it necessarily makes an exponential number of errors before correctly
identifying the target concept. We refer the reader to [2] for formal details.

Obviously, as for the VC-dimension, the definition of approximate fingerprints can
be restricted to instance classes E . Observe that if E ⊆ E ′ and C has the approximate
fingerprint property with respect to E , then it also has this property with respect to E ′.

Proposition 13 ([22]) Let Cacy be the class of all concepts which are representable by
a binary-valued complete CP-net whose graph is acyclic. Then Cacy has the approxi-
mate fingerprint property with respect to swap examples.

10

Proposition 14 ([22]) Let Ctree be the class of all concepts which are representable by
a binary-valued complete CP-net whose graph is a tree. Then Ctree has the approxi-
mate fingerprint property with respect to arbitrary examples.

5 Passive learning of CP-Nets
In this section, we investigate passive learning of CP-nets. In this setting, the only
information about the target concept available to the learner is a set of examples. We
shall concentrate here on the widely studied Probably Approximately Correct (PAC)
learning model introduced by [29]. The intent of this model is to obtain with high
probability a representation that is a good approximation of the target concept. To
formalize the notion of good approximation, we need to assume that there is some
fixed, but unknown, probability distribution D defined on the example space E , from
which the available examples were drawn. In our case, D would define a probability
over each instance (x,y). Given a target concept �, we then define the error of an
hypothesized CP-net N̂ as the probability that � and �N̂ disagree on an example:

error(N) = Pr(x,y)∼D
[(

x � y and x �N̂ y
)

or
(
x � y and x �N̂ y

)]
How does one generate a good approximation? In the PAC model, one does this by

looking at an example set, in which each example (x,y) has been drawn independently
from the random distribution D, and labeled with a “+” (positive) if x � y and with
“−” (negative) if x � y.

Thus, in the PAC setting, training and testing use the same distribution, and there
is no noise in either phase. A learning algorithm is then a computational procedure
that takes a sample of the target concept �, consisting of a sequence of independent
random examples of �, and returns an hypothesis. We can define PAC learnability of
CP-nets as follows.

Definition 15 (PAC learning) A concept class CN is PAC learnable by an example
class E if there is a polynomial time learning algorithm A and a polynomial p(·, ·, ·)
such that for any target concept � in CN over n variables, any probability distribu-
tion D over I, and any parameters δ, ε ∈ (0, 1), if the algorithm A is given at least
p(n, 1

ε ,
1
δ) independent random examples of � drawn according to D, then with prob-

ability at least 1− δ, A returns a hypothesis N̂ ∈ N with error(N̂) ≤ ε. The smallest
such polynomial p is called the sample complexity of the learning algorithm A.

The intent of this definition is that the learning algorithm must process the examples
in polynomial time, and must be able to produce a good approximation of the target
concept with high probability using only a reasonable number of training examples.

It is important to emphasize that our learnability results are defined over specific
instance classes. In particular, if E is the class of all swap instances, then any dis-
tribution D over E will assign a zero probability to any “non-swap” instance. This
restriction has deep consequences on the predictive power of P-nets. Namely, even if a
positive learnability result with swap instances guarantees that the hypothesized CP-net
N̂ is expected to correctly classify “swap” instances drawn independently at random
according to the distribution D, such a result does not ensure that the learner will cor-
rectly classify arbitrary outcome pairs. Indeed, even if the probability of making a
mistake on swaps is low, the probability of making a mistake on an arbitrary instance
(x,y) may increase along an improving sequence from y to x.

11

Many positive learnability results in the PAC model are obtained by showing that
(1) there is an efficient algorithm capable of finding an hypothesized representation that
is consistent by implication with a given sample of the target concept (called a consis-
tent algorithm), and (2) the sample complexity of any such algorithm is polynomial.

The sample complexity of a consistent learning algorithm is usually measured using
the VC-dimension of the concept class CN . Indeed, it is shown in [4] that the sample
complexity of a consistent learning algorithm is at most

1
ε(1−

√
ε)

(
2VC(CN) ln

6
ε

+ ln
2
δ

)
(1)

A preliminary work on the passive learning of CP-nets is [5]. They give an al-
gorithm which, given a set of positive examples, outputs a CP-net that implies them,
under some conditions. It is not entirely clear yet which class of CP-nets is learned by
this algorithm.

5.1 PAC Learning of Acyclic CP-Nets
We first investigate PAC learnability of various classes of acyclic CP-nets when the
examples provided to the learner are swaps. Recall that for such examples, the domi-
nance test with acyclic CP-nets is linear-time solvable (simple lookup in the conditional
preference table), contrary to the general case.

We first show that even for the restricted class of concepts which are representable
by a CP-net whose graph is a chain, the consistency problem is NP-complete. It follows
directly that this class is not PAC-learnable with the very weak restriction that the
produced hypothesis classifies correctly the examples received.

Proposition 16 Deciding whether there is a binary-valued complete CP-net whose
graph is a chain and which implies a given set of swaps is NP-complete. The result
holds even if all examples are positive.

A proof based on a reduction from the hamiltonian path problem can be found
in [13]. Another interesting class of CP-nets is that of acyclic singly-connected CP-
nets [6], that is, those acyclic CP-nets in whose graph each pair of vertices is connected
by at most one directed path. Unfortunately, again we have a negative result for PAC
learnability of such CP-nets.

Proposition 17 Deciding whether there is a binary-valued complete CP-net whose
graph is acyclic singly-connected and which implies a given set of swaps is NP-complete.
The result holds even if all examples are positive.

This result [13] can be proven with a reduction from propositional satisfiability
(SAT). We conjecture that a similar negative result holds for more general classes of
acyclic CP-nets.

We now turn to positive results with swaps. Observe that if CN is PAC learnable
with swaps and CN ⊆ CN ′ , then CN ′ is not necessarily PAC learnable with swaps, as
well. So our positive results do not contradict the negative ones. The main result is that
tree CP-nets are PAC-learnable from swaps.

Proposition 18 The class of all concepts which are representable by a (possibly in-
complete) tree binary-valued CP-net is PAC-learnable from swap examples.

12

In addition, the learning the structure of such a CP-net can be reduced to finding a
spanning tree in a directed graph [13]. Since in general there may be several CP-nets
which imply a given set of examples, it is interesting to impose some restrictions, e.g.,
on the degree of the forest (maximum number of children of a node). The next result
states that the class of CP-nets whose graph is a forest with degree at most k is improp-
erly PAC-learnable (in quasi-polynomial time) [13]. That is, it is “PAC-learnable”, but
the hypothesis may be in a larger representation class than the target concept.

Proposition 19 There is a quasi-polynomial time algorithm which, given a set of swaps
E over n variables implied by a (possibly incomplete) binary-valued CP-net whose
graph is a forest of degree k, computes a binary-valued CP-net which implies E and
whose graph is a forest of degree at most k + log n.

Finally, we give a more general result about tree CP-nets with a bounded number
of tables on arbitrary examples. By Cayley’s formula, we know that there are kk−1

rooted trees with k vertices. Each root is labeled by an unconditional rule of the form
p � p, and all other nodes are labeled by conditional rules of the form p′ : p � p, where
p and p′ are literals. There are 2n (possibly incomplete) tables with no condition per
rule and 6n(n− 1) tables with one condition per rule. It follows that the number Ck of
CP-trees with at most k tables is bounded by

∑k
i=0 2n(6kn(n− 1) + 1)k−1, which is

indeed polynomial in k. So the VC-dimension of such CP-trees is polynomial in n.
Based on this result, we can use a simple consistent algorithm specified as follows.

Start with the hypothesis setN of all CP-trees with at most k tables. For each example
(x,y) inE, remove any hypothesisN inN that is inconsistent with (x,y), that is, any
hypothesis N for which the dominance test over (x,y) disagrees with its label. If the
resulting set N is empty then E is not consistent with N . Otherwise, pick an arbitrary
tree from N . Because the dominance test is quadratic in the number of variables for
binary-valued CP-trees, the running time is polynomial in Ck.

Proposition 20 The class CkTREE of all concepts representable by a (possibly incom-
plete) binary-valued CP-tree with at most k tables is PAC learnable from arbitrary
examples.

5.2 PAC Learning of Separable CP-nets
We now consider the task of learning a CP-net of the simplest form: the variables are
independent. With binary variables, this means that if the possible values for variable
X are x and x, then the preference table for X contains either x � x or x � x. In this
case, checking if a given CP-net N entails x �N y for an arbitrary example is easy:
let Diff(x,y) = {xi | (x)i = xi and (y)i = xi} ∪ {xi | (x)i = xi and (y)i = xi};
we can then use the following characterization of�N (a corollary of Theorems 7 and 8
by [6]):

Lemma 21 Let N be a separable CP-net over binary variables, and y 6= x. Then
x �N y if and only if N contains xi � xi for every xi ∈ Diff(x,y) and xi � xi for
every xi ∈ Diff(x,y).

Now, with each example (x,y) we associate the clause C−x,y that contains ¬xi iff
xi ∈ Diff(x,y) and xi iff xi ∈ Diff(x,y). The intended meaning of the literal ¬xi is
that xi is preferred to xi, whereas the meaning of the literal xi is that xi is preferred

13

to xi; hence the meaning of the clause C−x,y is that x 6�N y for every separable CP-
net N in which at least one of these local preferences is true, by virtue of the lemma
above. For instance, if x=x1x2x3x4 and y=x1x2x3x4 then Diff(x,y) = {x1, x2, x4}
and C−x,y = x1 ∨ ¬x2 ∨ x4. This clause expresses that x1 is preferred to x1, or x2 is
preferred to x2, or x4 is preferred to x4.

With each positive example (x,y) we can also associate the cube (conjunction of
literals) C+

x,y ≡ ¬C−y,x. Given a set of examples E, let ΓE =
∧
{C∗e | e ∈ E},

where C∗x,y = C+
x,y if (x,y) is a positive example, and C∗x,y = C−x,y if the example

si negative. Clearly, ΓE is equivalent to a set of clauses.
We now define the following one-to-one correspondence between truth assignments

over {x1, . . . , xn} and separable CP-nets over V . If M is such a truth assignment,
then NM contains the preference xi � xi for every i such that M |= xi and the
preference xi � xi for every i such that M |= ¬xi. For instance, if M(x1) = >,
M(x2) = ⊥, M(x3) = ⊥ and M(x4) = > then NM contains the preference tables
{x1 � x1, x2 � x2, x3 � x3, x4 � x4}.

Given an interpretation M , it is not difficult to see that M |= C−x,y if and only if
(x,y) is not implied by NM or, equivalently, that M |= C+

x,y if and only if (x,y)
is implied by NM (This is a straightforward consequence of Lemma 21). So, a set of
examples E is implicatively consistent with NM for a given model M if and only if
M |= ΓE . Therefore, searching for a CP-net that is implicatively consistent with a
given set of examples amounts to searching for a model of the corresponding set of
clauses, the size of which growth polynomially with the size of the set of examples.

This technique easily extends to nonbinary variables: we can use one propositional
variable xkli for every pair of distinct values {xki , xli} for every variable Xi, where the
intended meaning of xkli is xki �N xli, and add clauses to represent the transitivity of
the relation �N ; there is a polynomial number of them (details can be found in [23]).

The one-to-one correspondence given above is a reduction from our learning prob-
lem to satisfiability. It is actually possible to find a reduction on the opposite direction
(see [23]), from which we get the following result:

Proposition 22 [23] Deciding whether there is a (binary or non-binary) complete sep-
arable CP-net which is implicatively consistent with a given set of arbitrary examples
is NP-complete. The result holds even if all examples are negative.

It follows directly that this class is not PAC-learnable with the very weak restriction
that the produced hypothesis classifies correctly the examples received.

However:

Proposition 23 [23] Deciding whether there is a binary-valued complete separable
CP-net which is implicatively consistent with a given set of positive examples can be
done in polynomial time.

Observe that this result can be extended to PAC-learnability of (possibly incom-
plete) separable CP-nets from positive examples, in the setting of one-sided errors [29].
This is because there is always a unique minimal (in terms of rules) incomplete sepa-
rable CP-net which implies a given set of positive examples.

Now, as soon as E becomes large with respect to the number of attributes n, the
chances that E is implicatively consistent with a separable CP-net become low. In this
case, we may want to determine a separable CP-net that is implicatively consistent with
as many examples of E as possible. This problem amounts to solving a MAXSAT prob-
lem, when each example is translated into exactly one clause of ΓE , that is when we

14

have no positive example: the separable CP-net that best fits a set of positive examples
corresponds to the interpretation maximizing the number of clauses from ΓE satisfied.
In this case, we can reuse algorithms for MAXSAT for computing a separable CP-net
that best fits a set of positive examples, as well as polynomial approximation schemes.
This extends to nonbinary variables, with the difference that the clauses representing
transitivity of the local preference tables are protected.

Lastly, again using the same kind of translation, we easily get the following results:

Proposition 24 If all variables are binary and all examples in E differ at most on two
variables, then deciding whether there exists a separable CP-net consistent with E can
be done in polynomial time; however, the corresponding optimization problem remains
NP-hard.

5.3 Learning a complete preference relation
We close this section by providing results about the learning context (B) specified in
section 3: the target concept is a linear order, not necessarily representable by a CP-net.
Our goal is to find a CP-net that would be a good representation for this relation. Recall
that since the target is a linear order, we only need to consider positive examples.

In the rest of this section, we investigate in turn the problems of finding a CP-net
that is weakly consistent with a given set of examples, then strongly consistent with it.
We focus on the problem of finding separable CP-nets. A set of examples is said to
be weakly separable (resp. strongly separable) if there exists a separable CP-net with
which it is weakly (resp. strongly) consistent.

We start by showing how the search for a separable CP-net that is weakly consistent
with a set of examples can be rewritten as an instance of propositional satisfiability
(SAT). Recall from Section 5.2 that an example (x,y) can be translated into a clause
C−x,y , the models of which correspond to separable CP-nets that are consistent with
(x,y). Given a set of examples E, let ΦE = {C−x,y | (x,y) ∈ E}. Then, given
an interpretation M , a set of examples E is weakly consistent with NM if and only if
M |= ΦE . As a consequence, E is weakly separable if and only if ΦE is satisfiable.

Example 25 Consider three binary attributes A,B,C, and the set of examples

E = {abc � abc, abc � abc, abc � abc, abc � abc}

ΦE has a unique model, corresponding to the separable CP-net N = {a � a, b �
b, c � c}. Therefore, N is the unique separable CP-net weakly consistent with N , and
E is weakly separable.

As in section 5.2, a similar translation can be used with non-binary variables. And
algorithms for solving MAXSAT can be used to search for a CP-net that is weakly
consistent with as many examples as possible.

Proposition 26 Deciding whether a set of examples over (binary or non-binary) at-
tributes is weakly separable is NP-complete.

Now, let us turn to the notion of strong compatibility. Characterizing such a prop-
erty is less easy. Indeed, the difference between weak and strong compatibility is that
while in weak compatibility we look for a separable CP-net which is consistent with
each individual example in E, in strong compatibility we look for a separable CP-net
which is consistent with the whole set of examples E.

15

Example 25, continued E is not strongly consistent with N , because E ∪ �N has
the following cycle:

abc �N abc �E abc �N abc �E abc
Since E is not strongly consistent with any other separable CP-net than N (because N
is the unique separable CP-net with which Eis weakly compatible), E is not strongly
separable2.

Note that all alternatives of the cycle on the example above appear in E. More
generally, if we denote by O(E) the set of outcomes that appear in E, it can be proved
that E is strongly consistent with N if and only if the restriction of�N ∪E toO(E) is
acyclic. Since this restriction has at most 2 |E| vertices, checking if it possesses a cycle
can be done in polynomial time. Thus, checking whether E is strongly consistent with
a given CP-net N is in P, and we have the following result:

Proposition 27 [24] Checking whether E is strongly separable is NP-complete.

Note that although weak and strong separability have the same complexity, weak
separability enjoys the nice property that there is a simple solution-preserving transla-
tion into SAT (the models of ΦE correspond bijectively to the CP-nets that are weakly
consistent with E), which allows weak separability to be computed in practice using
algorithms for SAT3. In order to compute a separable CP-net strongly consistent with
E, we can generate structures N weakly consistent with E, and test for acyclicity of
�N ∪ E using graph algorithms.

6 Active learning of CP-nets
In this section, we investigate the learnability issues of CP-nets in the paradigm of
active learning. Recall that in the standard PAC learning model, examples are drawn
at random according to an unknown but fixed distribution. This model of learning is
merely passive in the sense that the learner has no control over the selection of exam-
ples. One can increase the flexibility of this model by allowing the learner to ask about
particular examples, that is, the learner makes membership queries [1]. This capability
appears to increase the power of polynomial-time learning algorithms. For instance, it
is known that propositional Horn formulas are PAC-learnable with membership queries
[3], but the results of [20] show that without membership queries, Horn formulas are
no easier to learn than general CNF or DNF formulas.

In the setting of active preference learning, we assume that the user has in mind a
target preference structure �, but doesn’t know how to represent this structure into a
CP-net. However, the user is disposed to help the learner by answering membership
queries of the form “does x dominates y”, where x and y are outcomes chosen by the
learner. A membership query for a target concept � is a map MQ that takes as input a
pair of outcomes (x,y) and returns as output yes if x � y, and no if x � y.

From a practical perspective, one must take into account the fact that outcomes
are typically not comparable with an equivalent cost. As observed in [18], users can
meaningfully compare outcomes if they differ only on very few attributes. To this end,

2Note that E is both weakly separable and does not contain any cycles as it was the case for Example 8,
yet is not strongly separable.

3Such a translation exists for strong separability (which we do not give here), but unfortunately, the
set of clauses generated uses O(n2) variables (where n is the set of examples), which limits its practical
applicability.

16

we define the width of MQ(x,y) is defined to be the number of variables on which x
and y differ. A membership query of width 1 is called a swap membership query.

Based on these considerations, a minimal requirement behind active learning is to
ask as few membership queries as possible. An additional desiderata for minimizing
the cognitive effort spent by the user in answering preference queries is restrict on swap
membership queries.

Definition 28 (PAC learning with membership queries) A concept class CN is PAC
learnable with swap membership queries by an instance class E if there is a polynomial
time learning algorithm A and two polynomials p(·, ·, ·) and q(·) such that for any
target concept � in CN , any probability distribution D over I, and any parameters
δ, ε ∈ (0, 1), after receiving p(n, 1

ε ,
1
δ) random examples of � drawn independently

according to D, and asking q(n) swap membership queries, then with probability at
least 1 − δ, A returns a hypothesis N̂ ∈ N with error(N̂) ≤ ε. The smallest such
polynomial q is called the query complexity of the learning algorithm A.

6.1 Active Learning with swap examples
We now investigate the problem of active preference learning, where the target con-
cept can be represented by an acyclic CP-net, and the questions are restricted to swap
membership queries.

In this setting, we can build an online algorithm for learning actively acyclic CP-
nets. Recall that online learning proceeds into trials. Initially the learner chooses an
hypothesis N̂ . During each trial, the learner first receives an example (x,y), next
predicts the label “+” or “−” of this instance according to its current hypothesis, and
then receives the correct label from the user. If the prediction was incorrect then the
learner is charged one mistake.

The basic idea underlying our online learning algorithm is to start from the empty
CP-net N̂ = ∅ and, during each trial, iteratively revise N̂ by maintaining two invari-
ants. The first invariant is that each rule (or entry) in the learner’s hypothesis N̂ is
subsumed by a rule in the minimal representation of the target CP-net N . In other
words, for each rule û : x � x in N̂ , there is a rule u : x � x in the minimal represen-
tation of N , with û ⊆ u. The second invariant is that each such rule r = û : x � x in
N̂ is supported by an instance (xr,yr) of N , that is, xr �N yr, xr and yr satisfy û,
xr satisfies x, and yr satisfies x.

Technically, the algorithm proceeds as follows. On seeing an example (x,y), if
the learner predicts this instance as negative, while it is positive, then it expands its
CP-net with a new rule u : x � x, where the support (x,y) is stored. Here, x is the
literal in x whose value differs from y, and u is the projection of the outcome x onto
the current parent set of the variable X in N̂ . Dually, if the learner predicts (x,y) as
positive, while it is negative, then it expands the condition u of the misclassifying rule
u : x � x with a new parent. Using the support (xr,yr) of this rule, a new parent can
be found by asking at most n − 1 membership queries. To this end, we simply need
to incrementally transform x into xr by iteratively flipping those literals that differ
from x and xr, until we find the first literal xj for which the label of (xj [x],xj [x])
is positive; this literal is kept as a new parent of X . In fact, only log2 n membership
queries are needed to find this parent, by performing a binary search over this sequence
of transformations. A detailed implementation of this algorithm is given in [22].

By using a well-known conversion from online learning to PAC-learning [25], we
derive the following result.

17

Proposition 29 Binary-valued acyclic (and possibly incomplete) CP-nets are PAC-
learnable with swap membership queries, over the instance class of swaps. There
is an online learning algorithm A for this class, such that for any target concept � of
description size s, the algorithm makes at most s mistakes and uses at most s log2 n
membership queries.

6.2 Active Learning with Unrestricted Examples
When the instances supplied to the learner are unrestricted, even predicting their label is
a difficult task, because dominance testing is NP-hard for acyclic CP-nets. As observed
in the previous section, an important class of concepts for which dominance testing can
be accomplished in polynomial time is the class of tree CP-nets. In this section, we
briefly discuss an online algorithm for learning tree CP-nets.

The algorithm can be specified as follows. Initially, the learner starts from the
hypothesis N̂ = ∅ and iteratively expands N̂ until it finds the target representation N .
An invariant of the algorithm is that N̂ is always included in N so the learner can only
make mistakes on positive examples (x,y). In such cases, the algorithm considers in
turn each variable on which x and y differ, and builds its CP-table and that of all its
ascendants in the tree. It stops whenever such a variable already has a CP-table in its
current hypothesis. Again, to find a parent for each candidate variable, the algorithm
can use a binary search strategy.

Proposition 30 Binary-valued Tree (possibly incomplete) CP-nets are PAC-learnable
with swap membership queries, over arbitrary examples: there is an online learning al-
gorithmA for this class, such that for any target concept� with k nodes, the algorithm
makes at most k mistakes and uses O(k log2 n) membership queries.

We conclude this section by emphasizing that some classes of CP-nets are teach-
able, that is, learnable by asking a polynomial number of membership queries, without
the need of observing any sample. Thus after making those queries, the learner is
guaranteed to correctly predict any instance.

We focus on the class of acyclic CP-nets whose graph has indegree at most k. The
learner proceeds by using a levelwise generate-and-test procedure and membership
queries for uncovering the set of parents of each variable. Clearly, this approach is
acceptable only for small bounded degrees, such as tree CP-nets.

Proposition 31 The class of concepts representable by a binary-valued acyclic CP-net
whose graph has degree at most k is teachable: there is an algorithm which outputs
such a CP-net using O(knk+12k−1) membership queries and no other queries or ex-
amples, where n is the number of variables and k is the degree of the target concept.

7 Conclusion and open problems
In this paper we addressed many issues related to learning CP-nets. We argued that
a first important problem is whether the CP-net that we aim at learning is such that
the user’s preference relation coincides with its induced preference relation, or is an
approximation by below of the user’s complete preference relation. Then we gave
a few theoretical results on the learnability of CP-nets, and then we considered two
different learning frameworks: passive learning (from a set of examples), and active
learning (by queries).

18

We hope that our preliminary results in the learnability issue of CP-net open the
door to new theoretical results and practical learning algorithms. First of all, we do not
have a general method (other than brute-force search) for computing a CP-net which
is weakly or strongly consistent with a set of examples in the nonseparable case, nor
do we have algorithms for outputting a CP-net realizing an optimal trade-off between
simplicity and accuracy.

We already emphasized the lack of expressivity of CP-nets. Although CP-nets are
a representation language well-suited to expressing preferential (in)dependencies, they
do not allow, for instance, to express relative important statements between variables,
as lexicographic orders do. We may desire to learn preferences that combine both
aspects (preferential dependencies and relative importance); for this, it is attack pref-
erence learning with more expressive languages such as TCP-nets [7] or (even more
general) conditional preference theories [32].

References
[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

[2] D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121–150, 1990.

[3] D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine
Learning, 9:147–164, 1992.

[4] M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Univ. Press, 1992.

[5] F. Athienitou and Y. Dimopoulos. Learning CP-networks: a preliminary investigation. In
3rd Multidisciplinary Workshop on Advances in Preference Handling (PREF), 2007.

[6] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: a tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135–191, 2004.

[7] R. Brafman, C. Domshlak, and S. Shimony. On graphical modeling of preference and
importance. Journal of Artificial Intelligence Research, 25:389–424, 2006.

[8] D. Braziunas and C. Boutilier. Local utility elicitation in GAI models. In Proceedings of
the 21st Conference on Uncertainty in Artificial Intelligence (UAI), pages 42–49, 2005.

[9] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. Learning to rank using gradient descent. In Proceedings of the 22nd International
Conference on Machine Learning (ICML), 2005.

[10] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Utility elicitation as a classification
problem. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 79–88, 1998.

[11] U. Chajewska, D. Koller, and R. Parr. Making rational decisions using adaptive utility elic-
itation. In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI),
pages 363–369, 2000.

[12] L. Chen and P. Pu. Survey of preference elicitation methods. Technical Report 200467,
EPFL, 2004.

[13] Y. Chevaleyre. A short note on passive learning of cp-nets. Rapport de recherche, Lamsade,
mars 2009.

[14] J. Dombi, C. Imreh, and N. Vincze. Learning lexicographic orders. European Journal of
Operational Research, 183:748–756, 2007.

[15] C. Domshlak and T. Joachims. Efficient and non-parametric reasoning over user prefer-
ences. User Modeling and User-Adapted Interaction (UMUAI), 17(1-2):41–69, 2007.

19

[16] J. Doyle, Y. Shoham, and M. Wellman. A logic of relative desire (preliminary report). In
Proceedings of the 6th International Symposium on Methodologies for Intelligent Systems
(ISMIS), pages 16–31. Springer, 1991.

[17] C. Gonzales and P. Perny. GAI networks for utility elicitation. In Principles of Knowledge
Representation and Reasoning: Proceedings of the 9th International Conference (KR),
pages 224–234, 2004.

[18] P. Green and V. Srinivasan. Conjoint analysis in consumer research: Issues and outlook.
Journal of Consumer Research, 5(2):103–123, 1978.

[19] V. Ha and P. Haddawy. Problem-focused incremental elicitation of multi-attribute utility
models. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 215–222, 1997.

[20] M. J. Kearns, M. Li, L. Pitt, and L. G. Valiant. On the learnability of boolean formulae.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages
285–295, 1987.

[21] R. Keeney and H. Raiffa. Decision with Multiple Objectives: Preferences and Value Trade-
offs. Wiley, 1976.

[22] F. Koriche and B. Zanuttini. Learning conditional preference networks with queries, 2009.
Submitted for publication.

[23] J. Lang and J. Mengin. Learning preference relations over combinatorial domains. In
Workshop on Preference Learning at ECML’08, 2008.

[24] J. Lang and J. Mengin. The complexity of learning separable ceteris paribus preferences.
Rapport de recherche RR-2009-3-FR, IRIT, Université Paul Sabatier, Toulouse, mars 2009.

[25] N. Littlestone. From on-line to batch learning. In Proceedings of the Second Annual
Workshop on Computational Learning Theory, pages 269–284. Morgan Kaufmann, 1989.

[26] M. Sachdev. On learning of ceteris paribus preference theories. Master’s thesis, Graduate
Faculty of North Carolina State University, 2007.

[27] T. Sandholm and C. Boutilier. Preference Elicitation in Combinatorial Auctions, chap-
ter 10. In Combinatorial Auctions, Cramton, Shoham, and Steinberg Ed., MIT Press, 2006.

[28] M. Schmitt and L. Martignon. On the complexity of learning lexicographic strategies.
Journal of Machine Learning Research, 7:55–83, 2006.

[29] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[30] P. Viappiani, B. Faltings, and P. Pu. Evaluating preference-based search tools: a tale fo
two approaches. In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), pages 205–210, 2006.

[31] P. Viappiani, B. Faltings, and P. Pu. Preference-based search using example-critiquing with
suggestions. Journal of Artificial Intelligence Research, 27:465–503, 2006.

[32] N. Wilson. Extending CP-nets with stronger conditional preference statements. In Pro-
ceedings of the 19th National Conference on Artificial Intelligence (AAAI), pages 735–741,
2004.

[33] F. Yaman, Th. Walsh, M. Littman, and M. desJardins. Democratic approximation of lex-
icographic preference models. In Proceedings of the 35th International Conference in
Machine Learning (ICML),, pages 1200–1207, 2008.

20

