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Abstract

Constraint programming is a commonly used technology for
solving complex combinatorial problems. However, users of
this technology need significant expertise in order to model
their problems appropriately. We propose a basis for address-
ing this problem: a new SAT-based version space algorithm
for acquiring constraint networks from examples of solutions
and non-solutions of a target problem. An important advan-
tage of the algorithm is the ease with which domain-specific
knowledge can be exploited.

Introduction
Constraint programming provides a powerful paradigm for
solving combinatorial problems. However, modelling a
combinatorial problem in the constraints formalism requires
significant expertise in constraint programming. One of the
reasons for this is that, for any problem at hand, different
models of this problem are possible, and two distinct con-
straint networks for it can critically differ on performance.
An expert in constraint programming typically knows how
to decompose the problem into a set of constraints for which
very efficient propagation algorithms have been developed.
Such a level of background knowledge precludes novices
from being able to use constraint networks on complex prob-
lems without the help of an expert. Consequently, this has a
negative effect on the uptake of constraint technology in the
real world by non-experts.

To overcome this problem we envision the possibility of
acquiringa constraint network from a set of examples and a
library of constraints. The constraint acquisition process is
regarded as an interaction between a user and a learner. The
user has a combinatorial problem in mind, but does not know
how this problem can be modelled as an efficient constraint
network. Yet, the user has at her disposal a set of solutions
(positive examples) and non-solutions (negative examples)
for this problem. For its part, the learner has at its disposal
a library of constraints for which efficient propagation al-
gorithms are known. The goal for the learner is to induce
a constraint network that uses combinations of constraints
defined from the library and that is consistent with the solu-
tions and non-solutions provided by the user.
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In this paper we summarise our contributions in this area
(Bessiereet al. 2004; 2005). Our main contribution is
a SAT-based algorithm, named CONACQ (for CONstraint
ACQuisition), that is capable of learning a constraint net-
work from a set of examples and a library of constraints.
The algorithm is based on the paradigm of version space
learning (Mitchell 1982; Hirsh, Mishra, & Pitt 2004). In
the context of constraint acquisition, a version space can be
regarded as the set of all constraint networks defined from
a given library that are consistent with the received exam-
ples. The key idea underlying the CONACQ algorithm is to
consider version space learning as a satisfiability problem.
Namely, any example is encoded as a set of clauses using
as atoms the constraint vocabulary defined from the library,
and any model of the resulting satisfiability problem cap-
tures a constraint network consistent with the corresponding
acquisition problem.

This approach has a number of distinct advantages.
Firstly and most importantly, the formulation is generic, so
we can use any SAT solver as a basis for version space learn-
ing. Secondly, we can exploit powerful SAT concepts such
as unit propagation and backbone detection (Monassonet
al. 1999) to improve learning rate. Finally, we can easily in-
corporate domain-specific knowledge in constraint program-
ming to improve the quality of the acquired network. Specif-
ically, we describe two generic techniques for handling re-
dundant constraints in constraint acquisition. The first is
based on the notion ofredundancy rules, which can deal
with some, but not all, forms of redundancy. The second
technique, based onbackbone detection, is more powerful.

The Constraint Acquisition Problem
A constraint network consists of a set of variablesX, a set of
domain valuesD, and a set of constraints. We assume that
the set of variables and the set of domain values are finite,
pre-fixed and known to the learner. This vocabulary is, thus,
part of the common knowledge shared between the learner
and the user. We implicitly assume that every variable inX
uses the same setD of domain values, but this condition can
be relaxed in a straightforward way.

The learner has at its disposal a constraint library from
which it can build and compose constraints. The problem is
to find an appropriate combination of constraints that is con-
sistent with the examples provided by the user. For sake of



clarity, we shall assume that every constraint defined from
the library is binary. However, we claim that the results pre-
sented here can be easily extended to constraints of higher
arity. A binary constraintis a tuplec = (var(c), rel(c))
wherevar(c) is a pair of variables inX, known as thescope
of the constraint, andrel(c) is a binaryrelation defined on
D. With a slight abuse of notation, we shall often usecij

to refer to the constraint with relationrel(c) defined on the
scope(xi, xj). For example,≤12 denotes the constraint
specified on(x1, x2) with relation “less than or equal to”.

A constraint libraryis a collectionB of binary constraints.
From a constraint programming point of view, any library
B is a set of constraints for which (efficient) propagation
algorithms are known. A constraint network isadmissible
for some library if each constraint in the network is defined
as the intersection of a set of constraints from the library.

An exampleis a mape that assigns to each variablex
in X a domain valuee(x) in D. An examplee satisfiesa
binary constraintcij if the pair(e(xi), e(xj)) is an element
of cij . If e satisfies every constraint inC thene is called a
solutionof C; otherwise,e is called anon-solutionof C. In
the following,sol(C) denotes the set of solutions ofC.

Finally, atraining setconsists of a pair(E+, E−) of sets
of examples. Elements ofE+ are calledpositiveexamples
and elements ofE− are callednegativeexamples. A con-
straint networkC is said to beconsistentwith a training set
(E+, E−) if every example inE+ is a solution ofC and
every example inE− is a non-solution ofC.

Definition 1 (Constraint Acquisition Problem) Given a
constraint library B and a training set(E+, E−), the
Constraint Acquisition Problemis to find a constraint
networkC admissible for the libraryB and consistent with
the training set(E+, E−).

Example 1 (Fundamentals)Consider the vocabulary de-
fined by the setX = {x1, x2, x3} and the setD =
{1, 2, 3, 4, 5}. In the following, the symbols> and⊥ re-
fer to the total relation and the empty relation overD,
respectively. LetB be the constraint library defined as
follows: B = {>12,≤12, 6=12,≥12,>23,≤23, 6=23,≥23}.
Note that the constraints=12, <12, >12, ⊥12 and =23,
<23, >23, ⊥23 can be derived from the intersection clo-
sure of B. Consider the two following networksC1 =
{≤12 ∩ ≥12,≤23 ∩ 6=23} and C2 = {≤12 ∩ ≥12,≤23

∩ ≥23}. Each network is admissible forB. Finally, con-
sider the training setE = ({e+

1 }, {e
−
2 , e−3 }) with e+

1 =
((x1, 2), (x2, 2), (x3, 5)), e−2 = ((x1, 1), (x2, 3), (x3, 3)),
ande−3 ((x1, 1), (x2, 1), (x3, 1)). e+

1 is positive and the oth-
ers are negative. We can easily observe thatC1 is consistent
with E, whileC2 is inconsistent withE. N

The Core Result
The CONACQ Algorithm
We have proposed a SAT-based algorithm for acquiring con-
straint networks based on version spaces. Informally, the
version space of a constraint acquisition problem is the set
of all constraint networks that are admissible for the given
library and that are consistent with the given training set. In

the SAT-based framework this version space is encoded in
a clausal theoryK, and each model of the theory represents
a candidate constraint network. Given a constraintbij in B,
the literalbij in K stands for the presence of the constraint
in the acquired network. Notice that¬bij is nota constraint:
it merely captures the absence ofbij from the acquired net-
work. A clause is a disjunction of literals, and the clausal
theoryK is a conjunction of clauses.

The CONACQ algorithm provides the theoryK, which is
an implicit representation of the version spaceVB(E+, E−)
for the constraint acquisition problem on libraryB and train-
ing set(E+, E−). This representation allows the learner to
perform several useful operations in polynomial time.

VB(E+, E−) hascollapsedif it is empty: there is no con-
straint networkC admissible forB such thatC is consistent
with the training set(E+, E−). The membershiptest in-
volves checking whether or not a constraint network belongs
to VB(E+, E−). Theupdateoperation involves computing
a new version space once a new examplee has been added
to the training set. Consider a pair of training sets(E+

1 , E−
1 )

and(E+
2 , E−

2 ). Theintersectionoperation requires comput-
ing the version spaceVB(E+

1 , E−
1 ) ∩ VB(E+

2 , E−
2 ). In the

following, we assume that(E+
1 , E−

1 ) and (E+
2 , E−

2 ) con-
tainm1 andm2 examples, respectively. Finally, given a pair
of training sets(E+

1 , E−
1 ) and(E+

2 , E−
2 ), we may wish to

determine whetherVB(E+
1 , E−

1 ) is asubsetof (resp.equal
to) VB(E+

2 , E−
2 ).

Query/Operation Time Complexity
Collapse O(bm)
Membership O(bm)
Update O(b)
Intersection O(b(m1 + m2))
Subset O(b2m1m2)
Equality O(b2m1m2)

Table 1: Time complexities of standard version space operations
on the SAT representation used by CONACQ.

In Table 1 we present a summary of the complexities of
these operations (see (Bessiereet al. 2005) for details). In
each case we consider a libraryB containingb constraints
and a training set(E+, E−) containingm examples.

Exploiting Domain-specific Knowledge
In constraint programming, constraints can be interdepen-
dent. For example, two constraints such as≥12 and≥23

impose a restriction on the relation of any constraint de-
fined on the scope(x1, x3). This is a crucial difference
with propositional logic where atomic variables are pairwise
independent. As a consequence of such interdependency,
some constraints in a network can beredundant. For ex-
ample, the constraint≥13 is redundant given≥12 and≥23.
An important difficulty for the learner is its ability to “de-
tect” redundant constraints. The notion of redundancy is
formalised as follows. LetC be a constraint network and
cij a constraint inC. We say thatcij is redundantin C if
sol(C \ {cij}) = sol(C). In other words,cij is redundant



if the constraint network obtained by deletingcij from C is
equivalent toC.

Redundancy is a crucial notion that must be carefully han-
dled if we need to allow version space convergence, or at
least if we want to have a more accurate view of which parts
of the target network are not precisely learned. This problem
is detailed in the following example.

Example 2 (Redundancy)Consider a vocabulary formed
by a set of variables{x1, x2, x3} and a set of domain val-
uesD = {1, 2, 3, 4}. The learner has at its disposal the
constraint libraryB = {>12,≤12, 6=12,≥12,>23,≤23, 6=23

,≥23,>13,≤13, 6=13,≥13}. We suppose that the target net-
work is given by{≥12,≥13,≥23}. The training set is given
in Table 2. In the third column of the table, we present the
growing clausal theoryK, maintained byCONACQ, after
processing each example and performing unit propagation.

x1 x2 x3 K

e+
1 4 3 1 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23)

e−2 2 3 1 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23) ∧ (≥12)

e−3 3 1 2 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23) ∧ (≥12) ∧ (≥23)

Table 2: A set of examples and the corresponding set of clausesK
(unit propagated), showing the effect of redundancy.

After processing each example in the training set, the con-
straints≥12 and≥23 have been found. Yet, the redundant
constraint≥13 has not. For the scope(x1, x3) the version
space contains the four possible constraints>13,≥13, 6=13

or >13. In fact, in order to converge further we need a neg-
ative examplee wheree(x1) < e(x3), e(x1) ≥ e(x2) and
e(x2) ≥ e(x3). Due to the semantics of inequality con-
straints, no such example exists. Consequently, the inability
of the learner to detect redundancy can hinder the conver-
gence process and, hence, overestimate the number of net-
works in the version space. N

In (Bessiereet al. 2004) we proposed two approaches to
dealing with redundancy. These will be explained briefly
here. In the following section each approach will be demon-
strated on some simple problems.

Redundancy Rules. A redundancy ruleis a Horn clause:

∀x1, x2, x3, b(x1, x2) ∧ b′(x2, x3) → b′′(x1, x3)

such that for any networkC for which a substitutionθ maps
b(x1, x2), b′(x2, x3) andb′′(x1, x3) into variables inC, the
constraintb′′θ(x1)θ(x3)

is redundant inC. As a form of back-
ground knowledge, the learner can use redundancy rules in
its acquisition process. Given a library of constraintsB and a
setR of redundancy rules, the learner can start building each
possible substitution onR. Namely, for each ruleb(x1, x2)∧
b′(x2, x3) → b′′(x1, x3) and each substitutionθ that maps
b(x1, x2), b′(x2, x3), andb′′(x1, x3) to constraintsbij , b′jk

andb′′ik in the library, a clause¬bij∨¬b′jk∨b′′ik can be added
to the clausal theoryK. As argued in (Bessiereet al. 2005),
even with redundancy rules, CONACQ remains polynomial.

Backbone Detection. While redundancy rules can handle
a particular type of redundancy, there are cases where they

are not sufficient to find all redundancies. The reason for
this behaviour is that the redundancy rules are in the form
of Horn clauses that are applied only whenall literals in the
left-hand side are true (i.e., unit propagation is performed
on these clauses). However, the powerful concept of the
backboneof a propositional formula can be used here. In-
formally, a literal belongs to the backbone of a formula if it
belongs to all models of the formula (Monassonet al. 1999).
Once the literals in the backbone are detected, we use them
to update the theory representing the version space.

If an atombij appears positively in all models ofK ∧ R,
then it belongs to its backbone and we can deduce thatcij ⊆
bij . By construction ofK∧R, the constraintcij cannot reject
all negative examples inE− and, at the same time, be more
general thanbij . Thus, given a new negative examplee in
E−, we simply need to build the corresponding clauseκe,
add it toK, and test if the addition ofκe causes some literal
to enter the backbone ofK ∧ R. This process can guarantee
that all the possible redundancies will be detected.

Examples
We consider the constraint library used in Example 1. This
constraint library can be used to represent networks of sim-
ple temporal constraints. The Horn clause∀x, y, z, (x ≥
y)∧ (y ≥ z) → (x ≥ z) is a redundancy rule since any con-
straint network in which we have two constraints ‘≥’ such
that the second argument of the first constraint is equal to
the first argument of the second constraint implies the ‘≥’
constraint between the first argument of the first constraint
and the second argument of the second constraint.

Example 3 (Redundancy Rules)We can apply the redun-
dancy rule technique to Example 2. After performing unit
propagation on the clausal theoryK obtained after process-
ing the examples{e+

1 , e−2 , e−3 }, we know that≥12 and≥23

have to be set to 1. When instantiated on this constraint net-
work, the redundancy rule above becomes≥12 ∧ ≥23→
≥13. Since all literals of the left part of the rule are forced
byK to be true, we can fix literal≥13 to 1. N

x1 x2 x3 K

e+
1 2 2 2 (¬ 6=12) ∧ (¬ 6=13) ∧ (¬ 6=23)

e−2 3 3 4 (¬ 6=12) ∧ (¬ 6=13) ∧ (¬ 6=23) ∧ (≥13 ∨ ≥23)

e−3 1 3 3 (¬ 6=12) ∧ (¬ 6=13) ∧ (¬ 6=23) ∧ (≥13 ∨ ≥23)

∧(≥12 ∨ ≥13)

Table 3: A set of examples and the corresponding set of clausesK
(unit propagated), showing the effect of higher-order redundancy.

Consider the example in Table 3 where the target net-
work comprises the set of constraints{=12,=13,=23} and
all negative examples differ from the single positive example
by at leasttwo constraints. The version space in this exam-
ple contains 4 possible constraints for each scope, due to the
disjunction of possible reasons that would classify the neg-
ative examples correctly. Without any further information,
particularly negative examples that differ from the positive
example by one constraint, redundancy rules cannot restrict
the version space any further. However, there is a constraint



CONACQ CONACQ CONACQ

+rules +rules

Redundant Pattern +backbone

Length {constraints} U(VB) time (s) U(VB) time (s) U(VB) time (s) #Exs

none 32 0.11 26 0.32 24 2.67 1000

n/3 {≤,≥} 12 0.11 6 0.31 0 2.61 360

n/2 {≤,≥} 34 0.11 12 0.32 0 2.57 190

n {≤,≥} 57 0.11 18 0.32 0 2.54 90

n/3 {<, =, >} 28 0.11 10 0.32 0 2.60 280

n/2 {<, =, >} 66 0.11 25 0.32 0 2.58 170

n {<, =, >} 113 0.11 36 0.32 0 2.54 70

n {<, =, >} 53 0.11 11 0.32 0 0.24 1000

Table 4: Comparison of the CONACQ variants (problems have 12 variables, 12 values, 18 constraints).U(VB) is the average (over 100
experiments) of the number of constraints not yet decided inVB (i.e., the associated literal is not fixed in our version space representationK).
2U(VB) is an upper bound to the size ofVB. We also report the average time to process an example on a Pentium IV 1.8 GHz running Linux.
#Exs is the number of examples used in each experiment. In all but the first and last lines,#Exs is the number of examples needed to
obtain convergence of at least one of the algorithms. The training set contains10% of positive examples and90% of negative examples.

that is implied by the set of negative examples but redun-
dancy rules are not able to detect it.
Example 4 (Backbone Detection)We now apply this
method to the example in Table 3. To test if the literal≥13

belongs to the backbone, we solveR ∪ K ∪ {¬ ≥13}. If the
redundancy rule≥12 ∧ ≥23→≥13 belongs toR, we detect
inconsistency. Therefore,≥13 belongs to the backbone. Our
representation of the version space can now be refined, by
setting the literal≥13 to 1, removing from the version space
the constraint networks containing≤13 or >13. N

Experiments
We summarise, in Table 4, an empirical evaluation reported
in (Bessiereet al. 2005). We implemented CONACQ us-
ing SAT4J.1 The target constraint networks were sets of bi-
nary constraints defined from the set of relations{≤, 6=,≥}.
We did not assume to know the scopes of the constraints in
the target problem, so the available library involved all 66
possibilities (12 variables). The level of redundancy was
controlled by introducing constraint “patterns” of various
lengths and type. Patterns were paths of the same constraint
selected either from the set{≤,≥} (looser constraints) or
{<,=, >} (tighter constraints). For example, a pattern of
lengthk based on{<,=, >} could bex1 > x2 > . . . > xk.
The remaining constraints in the problem were selected ran-
domly. Negative examples werepartial non-solutions to the
problem involving a subset (2-5 in size) of variables.

We report the number of non-fixed literals inK, that is the
number of constraints not yet decided in the version space.
We note that the rate of convergence improves if we ex-
ploit domain-specific knowledge. In particular, CONACQ
using redundancy rules and backbone detection can elim-
inate all redundant networks in all experiments with re-
dundant patterns. In contrast, the performance of the first
two algorithms degrades as the length of the redundant pat-
terns increases. Secondly, we observe that for patterns in-
volving tighter constraints (<, =, or >), better improve-
ments are obtained as we employ increasingly powerful

1Available fromhttp://www.sat4j.org .

techniques for exploiting redundancy. Thirdly, the learn-
ing time progressively increases with the sophistication of
the method used. The basic CONACQ algorithm is about3
times faster than CONACQ+ rules and25 times faster than
CONACQ+rules + backbone. However, the running times
are still satisfactory for an interactive application.

Conclusions
Users of constraint programming technology need signifi-
cant expertise in order to model their problems appropri-
ately. We have proposed a SAT-based version space algo-
rithm that learns constraint networks. This approach has a
number of distinct advantages. Firstly, the formulation is
generic, so we can use any SAT solver as a basis for ver-
sion space learning. Secondly, we can exploit powerful SAT
techniques such as unit propagation and backbone detection
to improve learning rate. Finally, we can easily incorpo-
rate domain-specific knowledge into constraint acquisition
to improve the quality of the acquired network.
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