Sur la logique de la concertation entre agents

Sébastien Konieczny

Centre de Recherche en Informatique de Lens Université d'Artois SP 16 - Rue de l'Université 62300 Lens - FRANCE konieczny@cril.univ-artois.fr

Résumé Nous étudions dans ce papier les opérateurs de fusion de connaissances. Ces opérateurs permettent de déterminer les buts (ou les connaissances) d'un groupe d'agents à partir de leurs buts (connaissances) individuels. Nous montrons de nouveaux résultats sur les deux principales familles d'opérateurs de fusion : les opérateurs majoritaires et les opérateurs d'arbitrage. Nous montrons, en particulier, qu'il existe des opérateurs appartenant simultanément aux deux familles.

1 Introduction

Lorsque plusieurs agents interagissent pour mener à bien une tâche commune, il est nécessaire que ceux-ci s'entendent à certains moments sur ce qu'est le but (ou la connaissance) actuel du groupe. Lorsque des désaccords apparaissent entre les agents sur ces buts (connaissances) communs, il est généralement nécessaire de passer par une phase de négociation entre les agents. Le problème est qu'il est parfois (si on s'inspire d'agents humains on pourrait même dire "souvent") possible que la négociation ne permette pas de régler tous les problèmes. Mais, même dans ce cas, pour que le groupe continue à avancer il faut bien réaliser un "arbitrage" entre les agents en présence dans ce que l'on pourrait nommer une phase de concertation.

Selon ce modèle (pour expliquer la différence entre les termes négociation et concertation employés) lorsqu'une décision doit être prise au niveau du groupe, on peut considérer que celle-ci est prise en deux étapes. Une première étape de négociation permet aux différents agents d'avancer leurs arguments pour tenter de convaincre les indécis ou les opposants. Et une deuxième étape, de concertation qui, à partir des positions (qui sont alors fixes) de chacun, permet de définir ce qu'est la position du groupe. Cette deuxième étape peut être (abusivement) considérée comme une sorte de vote sur les buts/connaissances du groupe.

Or, bien que l'étape de négociation est abondamment traitée dans la communauté multi-agents, la seconde, concernant la concertation, n'a généralement droit qu'à un traitement rapide. En effet, dans la plupart des modèles proposés, lorsqu'un désaccord subsiste après la phase de négociation, on utilise des moyens expéditifs pour résoudre ce désaccord. On suppose, par exemple, qu'il existe une relation de préférence entre les agents, certains étant plus fiables que d'autres (cette fiabilité pouvant varier selon les thèmes), ou qu'il existe un oracle dans le système pouvant résoudre le conflit. Or, bien que cette relation de préférence

peut résoudre certains problèmes, il restera toujours des cas où deux agents de même fiabilité sont en désaccord, ou des cas où l'on ne connaît pas cette fiabilité relative des agents. De même, supposer l'existence d'un oracle, bien que ce soit une idée séduisante pour se débarrasser du problème, est simplement irréaliste s'il s'agit d'un agent infaillible, puisqu'alors il détiendrait la solution du problème à résoudre. Si cet agent n'est pas considéré infaillible, il ne s'agit alors que de la proposition précédente où un agent est considéré plus fiable que les autres.

Ce que nous proposons ici est d'utiliser les opérateurs de fusion de connaissances [4,3,2,13,15,9] pour réaliser cet "oracle". Nous ne prétendons pas montrer comment cela doit être implémenté dans un système multi-agents mais nous proposons d'utiliser ces opérateurs comme cadre formel pour la concertation entre agents.

Dans [10,8], nous avons proposé un ensemble de propriétés logiques souhaitables pour un opérateur de fusion (d'autres auteurs ont également proposé d'autres ensembles de propriétés [14,15,13,12,11]). Cet ensemble définit une famille d'opérateurs, que nous avons appelés opérateurs de fusion contrainte. Cela permet donc de comparer entre elles des méthodes de fusion existantes et de pouvoir de ce fait choisir la méthode la plus adaptée à une application particulière. Nous définissons également deux sous-classes d'opérateurs particulières : les opérateurs majoritaires et les opérateurs d'arbitrage. Les opérateurs majoritaires résolvent les conflits en tenant compte de la majorité, c'est-à-dire qu'ils tentent de contenter le groupe d'agents dans son ensemble. Alors que les opérateurs d'arbitrage ont un comportement plus consensuel, tentant de contenter au mieux chacun des individus du groupe, ne permettant donc pas d'utiliser de compensation entre des agents. Ces deux familles ont donc des politiques de gestion de conflits très différentes.

Une question ouverte jusqu'alors était de savoir si ces deux familles étaient des familles distinctes ou s'il existait des opérateurs qui étaient à la fois des opérateurs majoritaires et des opérateurs d'arbitrage. Bien que l'on soit tenté de croire à une partition stricte, nous montrons ici qu'il est bien possible d'être à la fois opérateur majoritaire et d'arbitrage. Nous donnons un exemple d'un opérateur trivial qui satisfait cette condition, mais nous montrons aussi que, dans le cas fini, toute une famille d'opérateurs non-triviaux répondent à cette contrainte. La suite du papier est organisée comme suit : dans la section 2 nous définissons les opérateurs de fusion contrainte et les opérateurs majoritaires et d'arbitrage. Dans la section 3 nous donnons quelques exemples d'opérateurs pour illustrer la différence de comportement entre opérateurs majoritaires et d'arbitrage. Section 4, nous montrons qu'il est possible d'être à la fois un opérateur majoritaire et un opérateur d'arbitrage. Et nous concluons, section 5, par quelques perspectives et questions ouvertes.

2 Opérateurs de fusion contrainte

On considère un langage propositionnel \mathcal{L} sur un alphabet fini \mathcal{P} de variables propositionnelles. Une interprétation est une fonction de \mathcal{P} vers $\{0,1\}$. L'en-

semble de toutes les interprétations est noté \mathcal{W} . Une interprétation I est un modèle d'une formule si et seulement si elle rend cette formule vraie. Soit φ une formule, $mod(\varphi)$ dénote l'ensemble des modèles de φ , c'est-à-dire $mod(\varphi) = \{I \in \mathcal{W} \mid I \models \varphi\}$.

Une base de connaissance φ est un ensemble fini de formules propositionnelles. Soient $\varphi_1,\ldots,\varphi_n,$ n bases de connaissance (non nécessairement différentes), on appelle ensemble de connaissance le multi-ensemble Ψ constitué de ces n bases de connaissance : $\Psi = \{\varphi_1,\ldots,\varphi_n\}$. On notera $\bigwedge \Psi$ la conjonction des bases de connaissance de Ψ , c'est-à-dire $\bigwedge \Psi = \varphi_1 \wedge \ldots \wedge \varphi_2$. On dira que l'ensemble de connaissance Ψ est consistant, si $\bigwedge \Psi$ est consistant. L'union sur les multi-ensembles sera notée \sqcup .

Par abus, si φ est une base de connaissance, φ dénotera aussi l'ensemble de connaissance singleton $\Psi = \{\varphi\}$.

Soit un entier strictement positif n, on notera Ψ^n le multi-ensemble composé de n fois le multi-ensemble $\Psi: \Psi^n = \{\underbrace{\Psi, \ldots, \Psi}\}$

Definition 1. Deux ensembles de connaissance Ψ_1 et Ψ_2 sont équivalents, noté $\Psi_1 \leftrightarrow \Psi_2$ si et seulement si il existe une bijection f de $\Psi_1 = \{\varphi_1^1, \dots, \varphi_n^1\}$ vers $\Psi_2 = \{\varphi_1^2, \dots, \varphi_n^2\}$, telle que $\vdash f(\varphi) \leftrightarrow \varphi$.

Un pré-ordre \leq est une relation reflexive et transitive. Un pré-ordre est total si $\forall I, J \in \mathcal{W} \ I \leq J$ ou $J \leq I$. Soit un pré-ordre \leq sur \mathcal{W} , on définit < comme I < J ssi $I \leq J$ et $J \not\leq I$. De la même manière la relation d'équivalence \simeq associée est définie par $I \simeq J$ ssi $I \leq J$ et $J \leq I$. On écrira $I \in min(mod(\varphi), \leq)$ ssi $I \models \varphi$ et $\forall J \in mod(\varphi) \ I \leq J$.

Après ces définitions, nous pouvons à présent définir les opérateurs de fusion de connaissances. Une base de connaissance φ représentera les connaissances ¹ d'un agent. Un ensemble de connaissance Ψ représentera un groupe d'agents. Le but des opérateurs de fusion est, à partir des connaissances des agents et des contraintes particulières du systèmes (contraintes physiques, réglementations, etc), de déterminer la connaissance du groupe. Un opérateur de fusion Δ est donc une fonction qui, à un ensemble de connaissance Ψ et à une base de connaissance μ représentant les contraintes d'intégrité du système, associe une base de connaissance, notée $\Delta_{\mu}(\Psi)$, contenant la connaissance du groupe d'agents.

Les propriétés souhaitables pour un opérateur de fusion sont les suivantes [10.8] :

Definition 2. \triangle est un opérateur de fusion contrainte si et seulement si il satisfait les propriétés suivantes :

- (IC0) $\triangle_{\mu}(\Psi) \vdash \mu$
- (IC1) Si μ est consistant, alors $\triangle_{\mu}(\Psi)$ est consistant
- (IC2) Si Ψ est consistant avec μ , alors $\Delta_{\mu}(\Psi) = \bigwedge \Psi \wedge \mu$

¹ dans la suite de ce papier nous nommerons connaissances de manière générique les connaissances (plus exactement les croyances) ou les buts d'un agent.

```
(IC3) Si \Psi_1 \leftrightarrow \Psi_2 \ et \ \mu_1 \leftrightarrow \mu_2, \ alors \ \triangle_{\mu_1}(\Psi_1) \leftrightarrow \triangle_{\mu_2}(\Psi_2)
```

(IC4)
$$Si \varphi \vdash \mu \ et \varphi' \vdash \mu, \ alors \triangle_{\mu}(\varphi \sqcup \varphi') \land \varphi \nvdash \bot \Rightarrow \triangle_{\mu}(\varphi \sqcup \varphi') \land \varphi' \nvdash \bot$$

(IC5)
$$\triangle_{\mu}(\Psi_1) \wedge \triangle_{\mu}(\Psi_2) \vdash \triangle_{\mu}(\Psi_1 \sqcup \Psi_2)$$

(IC6)
$$Si \triangle_{\mu}(\Psi_1) \wedge \triangle_{\mu}(\Psi_2)$$
 est consistant, alors $\triangle_{\mu}(\Psi_1 \sqcup \Psi_2) \vdash \triangle_{\mu}(\Psi_1) \wedge \triangle_{\mu}(\Psi_2)$

(IC7)
$$\triangle_{\mu_1}(\Psi) \wedge \mu_2 \vdash \triangle_{\mu_1 \wedge \mu_2}(\Psi)$$

(IC8)
$$Si \triangle_{\mu_1}(\Psi) \wedge \mu_2 \ est \ consistant, \ alors \triangle_{\mu_1 \wedge \mu_2}(\Psi) \vdash \triangle_{\mu_1}(\Psi) \wedge \mu_2$$

La signification intuitive de ces propriétés est la suivante : (IC0) assure que le résultat de la fusion satisfait les contraintes d'intégrité. (IC1) dit que si les contraintes d'intégrité sont consistantes alors le résultat de la fusion sera consistant, c'est-à-dire que l'on peut toujours extraire une connaissance du groupe d'agents. (IC2) demande que, lorsque c'est possible, le résultat de la fusion soit simplement la conjonction des bases de connaissance et des contraintes d'intégrité. Donc, lorsqu'il n'y a pas de conflit entre les agents et les contraintes, la fusion est simplement l'union des différentes connaissances. (IC3) est le principe d'indépendance de syntaxe, c'est-à-dire que le résultat de la fusion ne dépend pas de la forme syntaxique des connaissances mais simplement des opinions exprimées. (IC4) est la propriété d'équité. Elle assure que lorsque l'on fusionne l'opinion de deux agents, l'opérateur ne peut pas donner de préférences à l'un d'eux. (IC5) exprime l'idée suivante : si un groupe Ψ_1 se met d'accord sur un ensemble d'alternatives qui contient A, et si un autre groupe Ψ_2 se met d'accord sur un autre ensemble d'alternatives qui contient également A, alors si l'on joint les deux groupes A fera encore partie des alternatives acceptables. Et (IC5) et (IC6) ensembles, expriment le fait que, dès que l'on peut trouver deux sous-groupes qui s'accordent sur au moins une alternative, alors le résultat de la fusion sera exactement l'ensemble des alternatives sur lesquelles ces deux groupes s'accordent. (IC7) et (IC8) sont une généralisation directe des postulats (R5) et (R6) de la révision de connaissances [1,6,7]. Ils expriment des conditions sur les conjonctions de contraintes d'intégrité et s'assurent de ce fait que la notion de proximité est bien fondée. C'est-à-dire, par exemple, que si une alternative A est préférée parmi un ensemble d'alternatives possibles et si on restreint le nombre d'alternatives tout en gardant l'alternative A, celle-ci sera toujours préférée parmi les alternatives restantes.

Nous allons à présent définir deux sous classes d'opérateurs de fusion, les opérateurs de fusion majoritaires et les opérateurs d'arbitrage.

Un opérateur de fusion majoritaire est un opérateur de fusion contrainte qui satisfait la propriété suivante :

(Maj)
$$\exists n \ \triangle_{\mu} (\Psi_1 \sqcup \Psi_2^n) \vdash \triangle_{\mu} (\Psi_2)$$

Ce postulat exprime le fait que si une opinion a une large audience, ce sera alors l'opinion du groupe. Les opérateurs de fusion majoritaire tentent donc de satisfaire au mieux le groupe dans son ensemble. D'un autre côté, les opérateurs d'arbitrage tentent de satisfaire chacun des éléments du groupe pris individuellement du mieux possible. Un opérateur d'arbitrage est un opérateur de fusion contrainte qui satisfait la propriété suivante :

$$\textbf{(Arb)} \left. \begin{array}{l} \bigtriangleup_{\mu_1}(\varphi_1) \leftrightarrow \bigtriangleup_{\mu_2}(\varphi_2) \\ \bigtriangleup_{\mu_1 \leftrightarrow \neg \mu_2}(\varphi_1 \sqcup \varphi_2) \leftrightarrow (\mu_1 \leftrightarrow \neg \mu_2) \\ \mu_1 \not \vdash \mu_2 \\ \mu_2 \not \vdash \mu_1 \end{array} \right\} \Rightarrow \bigtriangleup_{\mu_1 \vee \mu_2}(\varphi_1 \sqcup \varphi_2) \leftrightarrow \bigtriangleup_{\mu_1}(\varphi_1)$$

Ce postulat dit que si un ensemble d'alternatives préférées sous un ensemble de contraintes d'intégrité μ_1 pour une base de connaissance φ_1 correspond à l'ensemble des alternatives préférées par la base φ_2 sous les contraintes μ_2 , et si les alternatives qui n'appartiennent qu'à un des deux ensembles de contraintes d'intégrité sont toutes aussi crédibles pour le groupe $(\varphi_1 \sqcup \varphi_2)$, alors les alternatives préférées pour le groupe parmi la disjonction des deux ensembles de contraintes seront celles préférées par chacune des bases sous leur contraintes respectives. Ce postulat est bien plus intuitif lorsqu'il est exprimé sous la forme d'assignement syncrétique (voir condition 8). Il exprime le fait que ce sont les alternatives médianes qui sont favorisées.

A présent que nous disposons d'une définition logique des opérateurs de fusion contrainte, nous allons donner un théorème de représentation qui permet de définir ces opérateurs de manière bien plus intuitive. Ce théorème montre qu'un opérateur de fusion contrainte correspond à une famille de pré-ordres sur les interprétations.

Definition 3. Un assignement syncrétique est une fonction qui associe à chaque ensemble de connaissance Ψ un pré-ordre \leq_{Ψ} sur les interprétations telle que pour tous ensembles de connaissance Ψ, Ψ_1, Ψ_2 et pour toutes bases de connaissance φ, φ' les conditions suivantes sont satisfaites :

- 1. Si $I \models \Psi$ et $J \models \Psi$, alors $I \simeq_{\Psi} J$
- 2. Si $I \models \Psi$ et $J \not\models \Psi$, alors $I <_{\Psi} J$
- 3. $Si \Psi_1 \leftrightarrow \Psi_2$, $alors \leq_{\Psi_1} = \leq_{\Psi_2}$
- 4. $\forall I \models \varphi \; \exists J \models \varphi' \; J \leq_{\varphi \sqcup \varphi'} I$
- 5. Si $I \leq_{\Psi_1} J$ et $I \leq_{\Psi_2} J$, alors $I \leq_{\Psi_1 \sqcup \Psi_2} J$
- 6. Si $I <_{\Psi_1} J$ et $I \leq_{\Psi_2} J$, alors $I <_{\Psi_1 \sqcup \Psi_2} J$

Un assignement syncrétique majoritaire est un assignement syncrétique qui satisfait la condition suivante :

7. Si
$$I <_{\Psi_2} J$$
, alors $\exists n \ I <_{\Psi_1 \sqcup \Psi_2} J$

Un assignement syncrétique juste est un assignement syncrétique qui satisfait la condition suivante :

$$\left. \begin{array}{l} I <_{\varphi_1} J \\ 8. \quad I <_{\varphi_2} J' \\ J \simeq_{\varphi_1 \sqcup \varphi_2} J' \end{array} \right\} \Rightarrow I <_{\varphi_1 \sqcup \varphi_2} J$$

Nous pouvons à présent énoncer le théorème de représentation pour les opérateurs de fusion contrainte [10,8] :

Théorème 1 Un opérateur \triangle est un opérateur de fusion contrainte (respectivement un opérateur majoritaire ou un opérateur d'arbitrage) si et seulement si

il existe un assignement syncrétique (respectivement un assignement syncrétique majoritaire ou un assignement syncrétique juste) qui associe à chaque ensemble de connaissance Ψ un pré-ordre total \leq_{Ψ} tel que

$$mod(\Delta_{\mu}(\Psi)) = \min(mod(\mu), \leq_{\Psi})$$

Ce théorème présente plusieurs avantages. Tout d'abord il est beaucoup plus simple de vérifier qu'un opérateur de fusion vérifie les conditions des assignements syncrétiques plutôt que de vérifier directement les propriétés logiques. Ensuite, le fait qu'un opérateur corresponde à une famille de pré-ordres (un pré-ordre par ensemble de connaissance), peut donner des idées pour concevoir de nouveaux opérateurs. En particulier, beaucoup d'opérateurs sont définis de la sorte, en utilisant une fonction qui associe un pré-ordre à l'ensemble de connaissance passé en paramètre, c'est le cas de tous les opérateurs basés sur des calculs de distances. Nous en décrivons quelques uns dans la section suivante.

3 Quelques opérateurs de fusion contrainte

Nous donnons dans cette partie la définition de trois familles d'opérateurs. Tous ces opérateurs sont basés sur une notion de distance entre interprétations à partir de laquelle on définit le pré-ordre associé à chaque ensemble de connaissance. Nous définissons également une nouvelle famille d'opérateurs, généralisation de la famille Δ^{Σ} .

On suppose que l'on dispose d'une distance entre interprétations, c'est-à-dire une fonction $d: \mathcal{W} \times \mathcal{W} \mapsto \mathbb{R}^+$ telle que d(I, J) = d(J, I) et d(I, J) = 0 ssi $I = J^2$.

Un exemple d'une telle distance généralement utilisée est la distance de Dalal [5], qui est la distance de Hamming entre les interprétations, c'est-à-dire que la distance de Dalal entre deux interprétations est le nombre de variables propositionnelles sur lesquelles les deux interprétations différent.

Cette distance entre interprétations induit de manière naturelle une distance entre une interprétation et une base de connaissance $\varphi: d(I, \varphi) = \min_{I \models \varphi} d(I, J)$.

Les quatre familles que nous allons définir divergent par la façon dont elles calculent la distance d'une interprétation à l'ensemble de connaissance à partir de cette distance entre une interprétation et les bases de connaissance. C'est donc dans cette étape d'agrégation des préférences individuelles en une préférence collective que vont se forger les différences de comportement.

La première famille d'opérateurs est la famille \triangle^{Max} [14,15,8]. Ces opérateurs ne sont pas des opérateurs de fusion contrainte mais ils ont un comportement proche de celui que l'on attend d'un opérateur d'arbitrage.

Definition 4. Soit un ensemble de connaissance Ψ et une interprétation I, la distance entre l'interprétation et l'ensemble de connaissance est : $d_{Max}(I, \Psi) = \max_{\varphi \in \Psi} d(I, \varphi)$. On obtient alors le pré-ordre suivant :

² On peut noter que l'identité triangulaire n'est pas requise, on a donc, à strictement parler, des pseudo-distances.

 $I \leq_{\varPsi}^{Max} J$ ssi $d_{Max}(I,\varPsi) \leq d_{Max}(J,\varPsi)$. Et l'opérateur \triangle^{Max} est défini par : $mod(\triangle_{\mu}^{Max}(\varPsi)) = \min(mod(\mu), \leq_{\varPsi}^{Max})$

La famille Δ^{GMax} [10,8] est composée d'opérateurs d'arbitrage. Cette famille est un raffinement de la famille \triangle^{Max} .

Definition 5. Soit un ensemble de connaissance $\Psi = \{\varphi_1 \dots \varphi_n\}$. Pour chaque interprétation I on construit la liste $(d_1^I \dots d_n^I)$ des distances entre cette interpr'etation et les n bases de l'ensemble de connaissance, c'est-à-dire que $d_j^I=$ $d(I, \varphi_j)$. Soit L_I^{Ψ} la liste obtenue en triant $(d_1^I \dots d_n^I)$ dans l'ordre décroissant. Soit \leq_{lex} l'ordre lexicographique sur des listes d'entiers. On obtient alors le préordre suivant : $I \leq_{\Psi}^{GMax} J$ ssi $L_I^{\Psi} \leq_{lex} L_J^{\Psi}$. Et l'opérateur \triangle^{GMax} est défini par:

$$mod(\Delta_{\mu}^{GMax}(\Psi)) = \min(mod(\mu), \leq_{\Psi}^{GMax})$$

Comme nous le verrons dans le prochain théorème les opérateurs Δ^{GMax} sont des opérateurs d'arbitrage. La famille Δ^{Σ} [10,15,12,13] donne des opérateurs majoritaires:

Definition 6. Soit un ensemble de connaissance Ψ et une interprétation I, la distance entre l'interprétation et l'ensemble de connaissance est : $d_{\Sigma}(I, \Psi) =$ $\sum_{\varphi \in \Psi} d(I, \varphi)$. On obtient alors le pré-ordre suivant : $I \leq_{\Psi}^{\Sigma} J$ ssi $d_{\Sigma}(I, \Psi) \leq$ $d_{\Sigma}(J,\Psi)$. Et l'opérateur \triangle^{Σ} est défini par :

$$mod(\Delta^{\Sigma}_{\mu}(\Psi)) = \min(mod(\mu), \leq^{\Sigma}_{\Psi})$$

Ces familles d'opérateurs vérifient les propriétés suivantes [10,8] :

Théorème 2 Les opérateurs \triangle^{Max} vérifient les propriétés (IC1-IC5), (IC7), (IC8) et (Arb). Les opérateurs \triangle^{GMax} sont des opérateurs d'arbitrage. Les opérateurs \triangle^{Σ} sont des opérateurs majoritaires.

On peut généraliser la famille Δ^{Σ} précédente en la famille Δ^{Σ^n} :

Definition 7. Soit un ensemble de connaissance Ψ et une interprétation I. la distance entre l'interprétation et l'ensemble de connaissance est : $d_{\Sigma^n}(I, \Psi) =$ $\sqrt[n]{\sum_{\varphi\in\Psi}d(I,\varphi)^n}$. On obtient alors le pré-ordre suivant : $I\leq^{\Sigma^n}_{\Psi}J$ ssi $d_{\Sigma^n}(I,\Psi)\leq$ $\begin{array}{c} \mathbf{v} \\ d_{\varSigma^n}(J,\Psi). \ Et \ l'op\'erateur \ \Delta^{\varSigma^n} \ est \ d\acute{e}fini \ par : \\ mod(\Delta^{\varSigma^n}_{\mu}(\Psi)) = \min(mod(\mu), \leq^{\varSigma^n}_{\Psi}) \end{array}$

$$mod(\triangle_{\mu}^{\Sigma^{n}}(\Psi)) = \min(mod(\mu), \leq_{\Psi}^{\Sigma^{n}})$$

On prouve facilement alors que:

Théorème 3 Les opérateurs \triangle^{Σ^n} sont des opérateurs majoritaires.

Voyons à présent sur un exemple le comportement de ces différents opérateurs (on utilise la distance de Dalal comme distance entre interprétations):

A une réunion de copropriétaires d'une résidence, le président propose pour l'année à venir la construction d'une piscine, d'un court de tennis et d'un parking privé. On notera respectivement S, T, P la construction de la piscine, du court de tennis et du parking. I dénotera l'augmentation du loyer. Le président souligne le fait que si deux des trois items sont construits le loyer augmentera significativement : $\mu = ((S \land T) \lor (S \land P) \lor (T \land P)) \rightarrow I$.

Il y a quatre copropriétaires $\Psi = \varphi_1 \sqcup \varphi_2 \sqcup \varphi_3 \sqcup \varphi_4$. Deux d'entre eux veulent construire les trois items et ne se soucient pas de l'augmentation de loyer : $\varphi_1 = \varphi_2 = S \wedge T \wedge P$. Le troisième pense que construire la moindre chose se répercutera inexorablement un jour sur les loyers et ne tient absolument pas à voir son loyer augmenter, il est donc opposé à toute construction : $\varphi_3 = \neg S \wedge \neg T \wedge \neg P \wedge \neg I$. Le dernier trouve que la résidence à réellement besoin d'un court de tennis et d'un parking privé mais ne voudrait pas subir une forte augmentation de loyer : $\varphi_4 = T \wedge P \wedge \neg I$.

On considérera les quatre variables propositionnelles S,T,P,I dans cet ordre pour les interprétations :

```
\begin{array}{ll} mod(\mu) = \mathcal{W} \setminus \{(0,1,1,0), (1,0,1,0), (1,1,0,0), (1,1,1,0)\} \\ mod(\varphi_1) = \{(1,1,1,1), (1,1,1,0)\} \\ mod(\varphi_3) = \{(0,0,0,0)\} \\ mod(\varphi_4) = \{(1,1,1,0), (0,1,1,0)\} \end{array}
```

Les calculs sont résumés dans le tableau 1, pour chaque interprétation on donne la distance entre celle-ci et les quatre bases de connaissance et la distance entre cette interprétation et l'ensemble de connaissance selon les 3 opérateurs que l'on a défini Δ^{Max} , Δ^{\varSigma} et Δ^{GMax} . Les lignes grisées correspondent aux interprétations rejetées par les contraintes d'intégrité. Le résultat de la fusion doit donc être cherché parmi les interprétations non grisées.

Tab. 1 - Distances

	φ_{1}	φ_{2}	φ_{3}	φ_{4}	$\mathbf{dist_{Max}}$	\mathbf{dist}_{Σ}	$\mathbf{dist}_{\mathbf{GMax}}$
(0, 0, 0, 0)	3	3	0	2	3	8	(3,3,2,0)
(0, 0, 0, 1)	3	3	1	3	3	10	(3,3,3,1)
(0, 0, 1, 0)	2	2	1	1	2	6	(2,2,1,1)
(0, 0, 1, 1)	2	2	2	2	2	8	(2,2,2,2)
(0, 1, 0, 0)	2	2	1	1	2	6	(2,2,1,1)
(0, 1, 0, 1)	2	2	2	2	2	8	(2,2,2,2)
(0, 1, 1, 0)	1	1	2	0	2	4	(2,1,1,0)
(0, 1, 1, 1)	1	1	3	1	3	6	(3,1,1,1)
(1, 0, 0, 0)	2	2	1	2	2	7	(2,2,2,1)
(1, 0, 0, 1)	2	2	2	3	3	9	(3,2,2,2)
(1, 0, 1, 0)	1	1	2	1	2	5	(2,1,1,1)
(1, 0, 1, 1)	1	1	3	2	3	7	(3,2,1,1)
(1, 1, 0, 0)	1	1	2	1	2	5	(2,1,1,1)
(1, 1, 0, 1)	1	1	3	2	3	7	(3,2,1,1)
(1, 1, 1, 0)	0	0	3	0	3	3	(3,0,0,0)
(1, 1, 1, 1)	0	0	4	1	4	5	(4,1,0,0)

Avec \triangle^{Max} comme opérateur de fusion, la distance minimum entre une interprétation et l'ensemble de connaissance est 2, et les interprétations sui-

vantes sont donc retenues : $mod(\triangle_{\mu}^{Max}(\Psi)) = \{(0,0,1,0), (0,0,1,1), (0,1,0,0), (0,1,0,1), (1,0,0,0)\}$. La décision qui est conforme aux vœux du groupe est alors de ne pas augmenter le loyer et de construire l'un des trois items, ou d'augmenter le loyer et de construire soit le court de tennis, soit le parking privé.

On peut voir sur cet exemple pourquoi les opérateur Δ^{Max} ne sont pas des opérateurs de fusion contrainte. On voit par exemple que les 2 interprétations (0,0,1,0) et (0,0,1,1) font parties des interprétations sélectionnées par Δ^{Max} , bien que l'interprétation (0,0,1,0) contente φ_3 et φ_4 plus que l'interprétation (0,0,1,1), alors que ces deux interprétations sont aussi satisfaisantes pour φ_1 et φ_2 . Il semble alors naturel de préférer (0,0,1,0) à (0,0,1,1). L'opérateur Δ^{GMax} précise justement les choix de Δ^{Max} . Avec Δ^{GMax} comme opérateur de fusion, on a comme résultat $mod(\Delta^{GMax}_{\mu}(\Psi)) = \{(0,0,1,0),(0,1,0,0)\}$, la décision prise dans ce cas sera donc de construire soit le court de tennis, soit le parking et de ne pas augmenter le loyer.

Par contre, si on choisit Δ^{Σ} pour résoudre le conflit en se rangeant au vœux de la majorité, le résultat est alors $mod(\Delta^{\Sigma}{}_{\mu}(\Psi)) = \{(1,1,1,1)\}$, et la solution adoptée est de construire les trois items et d'augmenter le loyer.

Le "vote" majoritaire, à la Δ^{Σ} , semble plus démocratique que les autres méthodes mais par exemple, dans ce cas, cela ne marche que si φ_3 accepte de se conformer à cette décision qui va complètement à l'encontre de ses vœux. Il se pourrait très bien que, fâché de cette décision, il décide de ne pas payer son augmentation de loyer et aucun des trois items ne pourrait être construit.

Donc si une décision nécessite l'adhésion de tous les participants, un opérateur d'arbitrage semble plus adéquat qu'un opérateur majoritaire.

4 Opérateurs d'arbitrage et opérateurs majoritaires

Nous montrons dans cette section qu'il est possible d'être à la fois un opérateur d'arbitrage et un opérateur majoritaire. Nous définissons tout d'abord une distance drastique entre interprétations. Les opérateurs Δ^{GMax} et Δ^{Σ} définis à partir de cette distance coïncident. Ensuite, nous montrons que, quelle que soit la distance choisie, certains opérateurs Δ^{Σ^n} sont à la fois des opérateurs d'arbitrage et des opérateurs majoritaires.

4.1 Distance drastique

La distance la plus simple que l'on peut définir entre deux interprétations est celle donnant 0 si les deux interprétations sont égales et 1 sinon.

$$d_{Dra}(I,J) = \begin{cases} 0 \text{ si } I = J\\ 1 \text{ sinon} \end{cases}$$

La distance entre une interprétation et une base de connaissance est alors également 0 ou 1 suivant que l'interprétation satisfait ou non la base de connaissance.

Il est facile de voir alors que les opérateurs obtenus à partir des familles Δ^{GMax} et Δ^{Σ} et de cette distance coïncident. On donnera la définition de cet opérateur en le formulant à la Δ^{Σ} .

Definition 8. Soit un ensemble de connaissance Ψ et une interprétation I. On définit la distance drastique entre une interprétation et un ensemble de connaissance comme :

$$d_{Dra}(I, \Psi) = \sum_{\varphi \in \Psi} d_{Dra}(I, \varphi)$$

Cela induit le pré-ordre suivant :

$$I \leq_{\Psi}^{Dra} J \ ssi \ d_{Dra}(I, \Psi) \leq d_{Dra}(J, \Psi)$$

Et l'opérateur \triangle^D est défini par :

$$\operatorname{mod}(\Delta^D_{\boldsymbol{\mu}}(\boldsymbol{\varPsi})) = \min(\operatorname{mod}(\boldsymbol{\mu}), \leq^{Dra}_{\boldsymbol{\varPsi}})$$

On a donc le résultat suivant :

Théorème 4 L'opérateur \triangle^D satisfait les postulats (IC0)-(IC8), (Maj) et (Arb).

Un aspect intéressant de cet opérateur est qu'il est quasiment syntaxique, puisque l'on calcule la distance d'une interprétation à une base de connaissance par un test de satisfiabilité. La distance obtenue étant la plus simple possible, il n'a qu'un comportement très simple mais cette définition peut sembler moins arbitraire que celles qui utilisent une distance plus évoluée comme la distance de Dalal par exemple.

4.2 Etude graphique

Nous allons dans cette section montrer que certains opérateurs Δ^{Σ^n} peuvent être à la fois des opérateurs majoritaires et d'arbitrage. Pour montrer cela facilement nous allons examiner graphiquement le comportement de ces opérateurs explorant l'espace des solutions. Pour que la représentation soit simple, on se limitera dans cette section à la fusion de deux bases de connaissance.

On place les interprétations dans le plan avec comme abscisse leur distance à la base φ_2 et comme ordonnée leur distance à la base φ_1 . Ainsi, le but de la fusion est de déterminer l'ensemble des interprétations les plus proches du point (0,0). La différence entre les différents opérateurs de fusion réside dans la définition de la "distance" utilisée et dans la définition de cette notion de "proximité".

Sur le graphique 1 on a représenté les courbes qui dénotent les interprétations à une distance 3 de l'ensemble de connaissance selon les opérateurs $\Delta^{Max}, \Delta^{\varSigma}$ et Δ^{\varSigma^2} . Δ^{Max} est représenté par un carré de coté $a, \, \Delta^{\varSigma}$ par une droite d'équation x=a-y et Δ^{\varSigma^2} par un arc de cercle de rayon $a,\,a$ étant la distance par rapport à l'ensemble de connaissance. L'opérateur Δ^{GMax} est difficilement représentable graphiquement mais il faut imaginer une courbe qui suit celle de Δ^{Max} mais préférant les interprétations proches des axes. Nous verrons ensuite comment approximer graphiquement l'opérateur Δ^{GMax} .

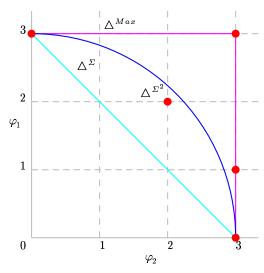


Fig. 1 – Fusion de deux bases de connaissance

Ainsi, le résultat de la fusion pour ces trois opérateurs est l'ensemble des interprétations rencontrées en premier par ces courbes lorsque l'on fait varier a de 0 à l'infini.

Sur cet exemple, le résultat pour Δ^{Max} et Δ^{Σ^2} sera l'interprétation placée en (2,2) et pour Δ^{Σ} le résultat sera les interprétations placées en (3,0) et (0,3).

De la même manière on peut reconstruire les pré-ordres $\leq_{\Psi}^{Max}, \leq_{\Psi}^{\Sigma}$ et $\leq_{\Psi}^{\Sigma^2}$ en considérant l'ordre dans lequel sont rencontrées les interprétations (lorsque a varie de 0 à l'infini).

Sur le graphique, on peut se rendre compte de l'insuffisance de \triangle^{Max} qui ne permet pas de faire la distinction entre les points (3,0) et (3,3). C'est pour cette raison que \triangle^{Max} n'est pas un opérateur de fusion contrainte.

D'un autre côté, Δ^{Σ} ne fait aucune distinction sur l'origine du mécontentement. En effet, la distance de l'interprétation à l'ensemble de connaissance est une mesure du mécontentement qu'engendre cette interprétation sur l'ensemble de connaissance. Et l'opérateur Δ^{Σ} n'est absolument pas consensuel car il permet de choisir des interprétations satisfaisant totalement l'une des deux bases (par exemple celle située en (3,0)), alors que d'autres interprétations seraient plus "égalitaires" (comme par exemple celle située en (2,2)).

Cela peut sembler normal pour un opérateur majoritaire mais, contrairement à ce que l'on pourrait penser, ce n'est pas systématique. En effet, les opérateurs Δ^{Σ^n} avec n>1 préféreront les choix consensuels, c'est-à-dire ceux situés à proximité de la droite x=y. Et donc, sur la figure 1 l'interprétation située en (2,2) sera préférée à celle située en (3,0).

L'opérateur Δ^{Σ^2} est un représentant particulier de la classe des opérateurs Δ^{Σ^n} puisqu'il utilise la distance euclidienne pour calculer les distances entre les interprétations et l'ensemble de connaissance. Cette volonté d'être proche de

l'ensemble de connaissance peut justifier l'utilisation de l'opérateur Δ^{Σ^2} puisqu'il donne une distance sphérique assez naturelle, qui est majoritaire sans avoir les excès de Δ^{Σ} .

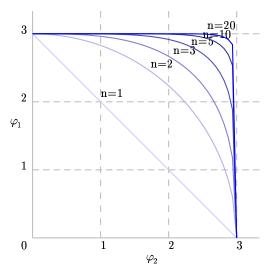


Fig. 2 – La famille Δ^{Σ^n}

De plus, on peut remarquer sur le graphique 2 que, lorsque l'on augmente la valeur de n, la courbe de Δ^{Σ} s'approche de celle de Δ^{Max} . Donc, à partir d'un n suffisamment grand, on peut prendre Δ^{Max} comme approximation de la courbe de Δ^{Σ^n} . Mais, quelle que soit la valeur de n, une interprétation placée en (x,y) sera toujours préférée à une interprétation placée en (x,y+1) ou en (x+1,y). Mais ce parcours de la courbe Δ^{Max} , en préférant les interprétations les plus proches des axes, est exactement celui de la courbe de Δ^{GMax} . Donc, à partir d'un certain n, $\Delta^{\Sigma^n} = \Delta^{GMax}$. Plus formellement, on a le résultat suivant :

Théorème 5 Soient deux bases de connaissance
$$\varphi$$
 et φ' , $\exists n_0$ tel que $\forall n > n_0 \ \Delta^{\Sigma^n} \ (\varphi, \varphi') = \Delta^{GMax}(\varphi, \varphi')$

Ce résultat est une autre solution au problème de la partition opérateurs d'arbitrage - opérateurs majoritaires. Puisque les opérateurs Δ^{Σ^n} , pour tout n supérieur à un certain n_0 fixé par la distance maximale entre une interprétation et une base de connaissance, sont à la fois des opérateurs d'arbitrage et des opérateurs majoritaires. Ces deux ensembles ne sont donc pas disjoints. La frontière entre majorité et arbitrage est assez floue et il est possible, dans un sens, de passer continûment de l'un à l'autre.

5 Conclusion

Nous avons proposé dans ce papier l'utilisation des opérateurs de fusion de connaissances comme cadre formel pour la concertation entre agents. Nous avons défini logiquement ces opérateurs et nous avons donné deux sous-classes d'opérateurs, les opérateurs majoritaires et les opérateurs d'arbitrage, permettant d'accorder la concertation au type de comportement voulu pour tel ou tel système particulier.

Une question ouverte jusqu'alors était de savoir si ces deux sous-classes étaient disjointes ou pas. Nous avons montré que ce n'était pas le cas et qu'il était donc possible d'être à la fois majoritaire et d'arbitrage. Ces opérateurs semblent former un bon compromis entre la volonté démocratique véhiculée par les opérateurs majoritaires et le comportement consensuel des opérateurs d'arbitrage.

Nous avons, en particulier, introduit une nouvelle famille d'opérateurs de fusion, la famille Δ^{Σ^n} , qui permet de choisir le niveau de "consensus" de l'opérateur majoritaire en fonction de l'application.

Une question ouverte est alors de savoir si on peut caractériser exactement quels sont les opérateurs qui appartiennent simultanément aux deux classes.

Références

- C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial meet contraction and revision functions. *Journal of Symbolic Logic*, 50:510–530, 1985.
- C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowledge bases consisting of first-order theories. *Computational Intelligence*, 8(1):45-71, 1992.
- 3. L. Cholvy. Reasoning about merged information. In D. M. Gabbay and Ph. Smets, editors, *Handbook of Defeasible Reasoning and Uncertainty Management Systems*, volume 3, pages 233–263. Kluwer, 1998.
- 4. L. Cholvy and T. Hunter. Fusion in logic: a brief overview. In *Proceedings* of the Fourth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'97), Lecture Notes in Computer Science 1244, pages 86-95, 1997.
- M. Dalal. Investigations into a theory of knowledge base revision: preliminary report. In Proceedings of the National Conference on Artificial Intelligence (AAAI'88), pages 475-479, 1988.
- 6. P. Gärdenfors. Knowledge in flux. MIT Press, 1988.
- 7. H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and minimal change. *Artificial Intelligence*, 52:263–294, 1991.
- 8. S. Konieczny. Sur la logique du changement : révision et fusion de bases de connaissance. PhD thesis, LIFL Université de Lille 1, 1999.
- 9. S. Konieczny. On the difference between merging knowledge bases and combining them. In *Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR'00)*, pages 135–144, 2000.

- S. Konieczny and R. Pino Pérez. Merging with integrity constraints. In Proceedings of the Fifth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'99), Lecture Notes in Artificial Intelligence 1638, pages 233-244, 1999.
- 11. P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases). *IEEE Transactions on Knowledge and Data Engineering*, 10(1):76–90, 1998.
- 12. J. Lin. Frameworks for dealing with conflicting information and applications. PhD thesis, University of Toronto, 1995.
- 13. J. Lin and A. O. Mendelzon. Knowledge base merging by majority. In *Dynamic Worlds: From the Frame Problem to Knowledge Management*. Kluwer, 1999.
- P. Z. Revesz. On the semantics of theory change: arbitration between old and new information. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Databases, pages 71-92, 1993.
- 15. P. Z. Revesz. On the semantics of arbitration. *International Journal of Algebra and Computation*, 7(2):133–160, 1997.