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Abstract. Belief revision has been studied for more than 30 years, and the theo-
retical properties of the belief revision operators are now well-known. Contrast-
ingly, there are almost no practical applications of these operators. One of the
reasons is the computational complexity of the corresponding inference problem,
which is typically NP-hard and coNP-hard. Especially, existing implementations
of belief revision operators are capable to solve toy instances, but are still unable
to cope with real-size problem instances. However, the improvements achieved
by SAT solvers for the past few years have been very impressive and they allow
to tackle the solving of instances of inference problems located beyond NP. In
this paper we describe and evaluate SAT encodings for a large family of distance-
based belief revision operators. The results obtained pave the way for the practical
use of belief revision operators in large-scale applications.

1 Introduction

Propositional belief revision has received much attention for the past thirty years [1, 9],
and the theoretical properties of belief revision operators are nowadays well-known.
Contrastingly, far less studies have focused so far on the computational aspects of
propositional belief revision. An explanation of this is that the inference problem for
belief revision operators (i.e., the problem of deciding whether ϕ ◦ µ |= α holds, given
three formulae ϕ, µ and α) is typically intractable. Indeed, the complexity of this prob-
lem has been identified for many operators, and it is typically both NP-hard and coNP-
hard [14] and lies at the first or even at the second level of the polynomial hierarchy [8,
14]. Existing implementations [18, 7] are able to handle very small instances, but are
far from being able to deal with real-size belief revision instances.

Interestingly, the improvements achieved by SAT solvers for the past few years
have been huge. A current research direction is to leverage them to address the solving
of instances of inference problems located beyond NP. Following this research line, we
describe and evaluate SAT encodings for a large family of distance-based belief revision
operators. For such operators, the models of the revised base are the models of the new
piece of information µ which are at a minimal distance of the belief base ϕ. Among
them, Dalal revision operator, based on the Hamming distance between propositional
worlds, is probably the best known [3].

In this paper, we define, give SAT encodings, and do experiments on the family of
topic-decomposable distance-based revision operators. Topic-decomposable distances
are complex distances, obtained by aggregating simpler distances defined on topics,
which are (possibly non-disjoint) subsets of variables. The family includes as specific
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cases standard distances considered in belief revision, especially the Hamming distance
and the drastic distance.

We present and evaluate SAT encoding schemes E◦d(ϕ, µ) for such operators ◦d.
The encodings are CNF formulae which are query-equivalent to the revised bases ϕ◦dµ
corresponding to the distance-based revision operator ◦d under consideration. Roughly,
the idea underlying the encoding schemes is to make independent the languages used
for the belief base ϕ and for the new piece of information µ, then to define defaults
aiming to reconcile these langages. These defaults are used to compute the minimal
distance min between the belief base and the new information (using a weighted partial
MAXSAT solver). A constraint ensuring that the distance between any model of µ
and ϕ is equal to min is finally added. The resulting encoding can thus be viewed as a
query-equivalent compilation of the revised base. Indeed, in order to determine whether
ϕ ◦d µ |= α holds, it is enough to check whether E◦d(ϕ, µ) |= α holds, which can be
solved by checking the (un)satisfiability ofE◦d(ϕ, µ)∧¬α. Empirically, our approach is
efficient enough to compute encodings for belief revision instances based on thousands
of variables.

The contributions of this work are:

– the definition of the family of topic-decomposable distance-based revision opera-
tors,

– the proposal of SAT encoding schemes for several topic-decomposable distance-
based revision operators,

– the description of a set of benchmarks for distance-based belief revision,
– and the experimental evaluation of our encodings on these benchmarks.

2 Some Background on Belief Revision

LetLP be a propositional language built up from a finite set of propositional variablesP
and the usual connectives. ⊥ (resp. >) is the Boolean constant always false (resp. true).
An interpretation (or world) is a mapping from P to {0, 1}, denoted by a bit vector
whenever a strict total order on P is specified. The set of all interpretations is denoted
W . An interpretation ω is a model of a propositional formula α ∈ LP if and only if it
makes it true in the usual truth functional way. Mod(α) denotes the set of models of
ϕ, i.e., Mod(α) = {ω ∈ W | ω |= α}. |= denotes logical entailment and ≡ logical
equivalence, i.e., α |= β iff Mod(α) ⊆ Mod(β) and α ≡ β iff Mod(α) = Mod(β).
Var(α) denotes the set of variables occurring in α.

LetX be any subset of P , theX-projection of an interpretation ω onX , noted ω↓X ,
is the restriction of ω on the variables in X . For instance, with P = {a, b, c, d, e, f}
(ordered in this way), if X = {a, b, c}, and ω = 101001, then ω↓X = 101.

A belief base is a propositional formulae (or equivalently a finite set of propositional
formulae interpreted conjunctively) ϕ, that represents the current beliefs of an agent.

A belief revision operator ◦ is a mapping from LP × LP to LP , associating with
a belief base ϕ and a foruma (a new piece of information) µ a belief base ϕ ◦ µ called
the revised base. Rational belief revision operators are characterized by the following
postulates:
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Definition 1 ([9]). A belief revision operator ◦ is a belief revision operator satisfying
the following postulates. For every formula µ, µ1, µ2, ϕ,ϕ1, ϕ2:

(R1) ϕ ◦ µ |= µ

(R2) If ϕ ∧ µ is consistent, then ϕ ◦ µ ≡ ϕ ∧ µ
(R3) If µ is consistent, then ϕ ◦ µ is consistent
(R4) If ϕ1 ≡ ϕ2 and µ1 ≡ µ2, then ϕ1 ◦ µ1 ≡ ϕ2 ◦ µ2

(R5) (ϕ ◦ µ1) ∧ µ2 |= ϕ ◦ (µ1 ∧ µ2)

(R6) If (ϕ ◦ µ1) ∧ µ2 is consistent, then ϕ ◦ (µ1 ∧ µ2) |= (ϕ ◦ µ1) ∧ µ2

Belief revision operators can be characterized in terms of total preorders over in-
terpretations. Indeed, each belief revision operator corresponds to a faithful assignment
[9]:

Definition 2 (faithful assignment). A faithful assignment is a mapping which asso-
ciates with every base ϕ a preorder ≤ϕ over interpretations such that for every base ϕ,
ϕ1, ϕ2, it satisfies the following conditions:

(1) If ω |= ϕ and ω′ |= ϕ, then ω 'ϕ ω′
(2) If ω |= ϕ and ω′ 6|= ϕ, then ω <ϕ ω′

(3) If ϕ1 ≡ ϕ2, then ≤ϕ1
=≤ϕ2

where <ϕ is the strict part of ≤ϕ and 'ϕ is the indifference relation induced by ≤ϕ.

Theorem 1 ([9]). A belief revision operator ◦ is a belief revision operator if and only
if there exists a faithful assignment associating every base ϕ with a total preorder ≤ϕ
overW such that for every formula µ, Mod(ϕ ◦ µ) = min(Mod(µ),≤ϕ).

3 Topic-decomposable distance-based revision operators

Among revision operators are distance-based operators, which select as result the mod-
els of µ that are the closest ones to ϕ:

Definition 3 (pseudo-distance, distance). Let X be a subset of P . A pseudo-distance
d between X-interpretations is a mapping d : WX × WX → N such that for any
X-interpretations ω1 and ω2:

– d(ω1, ω2) = 0 if and only if ω1 = ω2

– d(ω1, ω2) = d(ω2, ω1)

d is a distance when it satisfies in addition the triangular inequality, i.e., for any inter-
pretations ω1, ω2, and ω3:

– d(ω1, ω3) ≤ d(ω1, ω2) + d(ω2, ω3)
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Usual distances are the drastic distance (dD(ω, ω′) = 0 if ω = ω′ and 1 otherwise),
which corresponds to the infinity-norm distance, also known as Chebyshev distance,
and the Hamming distance (dH(ω, ω′) = n if ω and ω′ differ on n variables), which
corresponds to the 1-norm distance, also referred to as the Manhattan distance. One can
also consider weighted versions of these distances, where each propositional variable x
is associated with a (non-null) weight ρ(x), and then the weighted Hamming distance
is given by dHρ(ω, ω′) =

∑
{x|ω(x)6=ω′(x)} ρ(x). Similarly, a weighted drastic distance

is defined as dDρ(ω, ω′) = max{x|ω(x)6=ω′(x)} ρ(x).
Sometimes one can identify different topics, on which formulae and interpretations

can be evaluated. Some of these topics can be more important than others, so having
conflicts on some topics can be more problematic than on some others. See [11] for
a criticism of (simple) Hamming distance, and a justification of the use of weights or
topics.

Let f be an aggregation function, i.e., a mapping associating an integer i = f(vn)
with any finite vector vn = (i1, . . . , in) of integers. Let us recall the definition of topic-
decomposable distance from [11]:

Definition 4 (topic-decomposable distance). Let T = {T1, . . . , Tm} be a collection
of non-empty subsets of P (topics) such that

⋃m
i=1 Ti = P . A pseudo-distance d be-

tween interpretations is T -decomposable if and only if there exist m pseudo-distances
d1, . . . , dm and an aggregation function f such that each di (i ∈ {1, . . . ,m}) is be-
tween Ti-interpretations, and for all ω, ω′ ∈ W:

d(ω, ω′) = f(d1(ω
↓T1 , ω′↓T1), . . . , dm(ω↓Tm , ω′↓Tm)).

Note that distinct topics from a topic decomposition T of X may share some vari-
ables of X .

In [11] Lafage and Lang do not specify the properties they expect for the aggregation
function. In this work we require the following:

Definition 5 (aggregation function). An aggregation function f is a mapping associ-
ating an integer i = f(vn) with any finite vector vn = (i1, . . . , in) of integers. It is
assumed that whatever the integer n, f(vn) = 0 if and only if vn = 0n where 0n is
the vector of size n containing only null coordinates. f should also be non-decreasing
in each argument. We finally assume that if vm (m ≥ n) is any vector containing the
same coordinates as vn but completed with m− n zeroes, then f(vm) = f(vn).

Note that standard aggregation functions, as Σ (sum), max , Leximax or Leximin
satisfy these requirements.

In order to define T -decomposable distances from their components, we will take
advantage of the following structure:

Definition 6 (decomposition distance). Let δ = {T ,D, f}, with T = {T1, . . . , Tm}
be a collection of non-empty subsets of P (topics) such that

⋃m
i=1 Ti = P , D =

{d1, . . . , dm} be a collection of pseudo-distances such that each di (i ∈ {1, . . . ,m})
is between Ti-interpretations, and f be an aggregation function. We call such a δ a
composition frame, and dδ the decomposition distance induced by δ (or simply the δ-
decomposable distance).
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Let us now introduce topic-decomposable distance-based revision operators:

Definition 7 (topic-decomposable distance-based revision operator). Let δ be a com-
position frame. A topic-decomposable distance-based revision operator ◦δd is defined as
Mod(ϕ ◦δd µ) = min(Mod(µ),≤δϕ), where

– ω ≤δϕ ω′ iff dδ(ω, ϕ) ≤ dδ(ω′, ϕ)
– dδ(ω, ϕ) = minω′|=ϕ d

δ(ω, ω′)

– dδ is the δ-decomposable distance

We can easily show that:

Proposition 1. Any topic-decomposable distance-based revision operator ◦δd is a belief
revision operator.

It is easy to check that the drastic distance dD and the Hamming distance dH
(and, similarly, their weighted counterparts dDρ and dHρ ) are (somewhat trivial) topic-
decomposable pseudo-distances. Indeed, each of them is the decomposition distance
induced by the composition frame {T = {{P}},D, f} where D is the singleton con-
sisting of the distance itself, and f is the identity function.

Several new, yet interesting belief revision operators can be defined as members
of this family. For instance, a revision operator that first looks at Hamming distance
between interpretations (like Dalal revision ◦dH ), but in case of equality, focuses on
some specific variables. The corresponding topic-decomposable distance can be built
up using Σ as the aggregation function on a first topic equal to P , and then on other
topics containing the variables of interest. Formally:

Definition 8 (DVI revision operators). Let Y = 〈x1, . . . , xk〉 be a vector of proposi-
tional variables of P . The Dalal revision with Variables of Interests operator ◦δDV I(Y )

d

is the topic-decomposable distance-based revision operator defined by the decomposi-
tion frame δDV I(Y ) = {T ,D, ΣDV I(Y )} such that:

– T = {P, {x1}, . . . , {xk}}
– D = {dH , dD, . . . , dD}
– ΣDV I(Y )(i0, i1, . . . , ik) = 2k+1.i0 +Σk

j=12
j .ij

Here is an illustrative example.

Example 1. Suppose that P = {x1, x2, x3} and Y = 〈x1, x2, x3〉. Let ϕ ≡ (x1 ↔
x2) ∧ (x2 ↔ ¬x3) and let µ = (x1 ∧ x3) ∨ (x2 ∧ x3). Assuming x1 < x2 < x3, we
have Mod(ϕ) = {001, 110} and Mod(µ) = {011, 101, 111}. Every model of µ is at
Hamming distance 1 from ϕ. Accordingly, ϕ◦dH µ is equivalent to µ. Contrastingly, the
distance of 011 (resp. 101, 111) to ϕ for the Dalal revision with Variables of Interests
operator defined above is 20 (resp. 18, 24). Thus, we have that ϕ◦δDV I(Y )

d µ is equivalent
to x1 ∧ ¬x2 ∧ x3.

Proposition 2. For any set Y , for any ϕ, µ, ϕ ◦δDV I(Y )

d µ |= ϕ ◦dH µ.

Many other refinements of (and variations around) Dalal revision operator can be
figured out from topic-decomposable distances.
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4 SAT Encodings

We now describe SAT encodings for the topic-decomposable distance-based revision
operators based on the Hamming distance or the drastic distance on each topic, and on
the aggregation functions wΣ,wLeximax, wLeximin, which are weighted versions of
the standard aggregation function Σ, Leximax, Leximin, where w is a weight function
on topics (it associates an integerw(Ti) with each topic), and a topic Ti of weightw(Ti)
is duplicated w(Ti) times before the aggregation.

Our SAT encodings for topic-decomposable distance-based belief revision mainly
use the same techniques as those considered in our previous work [10] on belief merg-
ing.

Given a topic-decomposable pseudo-distance d, a belief base ϕ represented as a
CNF formula, a change formula µ represented as a CNF formula, we are going to show
that our encoding scheme E generates a CNF formula E◦d(ϕ, µ) of size polynomial in
|ϕ| + |µ| which is query-equivalent to ϕ ◦d µ. Let us first make precise what query-
equivalent means.

Definition 9 (query-equivalence).

– A propositional formula α is said to be query-equivalent to a propositional formula
β whenever α has the same logical consequences as β over Var(β), i.e., for ever
formula γ over Var(β), we have α |= γ if and only if β |= γ.

– A mapping τ associating a CNF formula α with a given propositional formula β is
query-equivalence preserving if and only if α is query-equivalent to β.

In our approach, both ϕ and µ are supposed to be CNF formulae. This is not a limita-
tion of the framework, since any formula can be transformed in linear time into a query-
equivalent CNF formula using Tseitin or Plaisted/Greenbaum translation functions [17,
15]. Indeed, Tseitin and Plaisted/Greenbaum translation functions τT and τPG (respec-
tively) [17, 15] are query-equivalence preserving mappings from propositional circuits
to CNF, and they can be computed in linear time in the size of the input β.

Example 2. As a matter of example, let us consider again ϕ represented by (x1 ↔
x2) ∧ (x2 ↔ ¬x3) and µ = (x1 ∧ x3) ∨ (x2 ∧ x3). Using Tseitin translation function,
we get τT (ϕ) = a0 ∧ (¬a0 ∨ a1) ∧ (¬a0 ∨ a2) ∧ (a0 ∨ ¬a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬x1 ∨
x2)∧ (¬a1 ∨ x1 ∨¬x2)∧ (a1 ∨ x1 ∨ x2)∧ (a1 ∨¬x1 ∨¬x2)∧ (¬a2 ∨¬x2 ∨¬x3)∧
(¬a2 ∨ x2 ∨ x3) ∧ (a2 ∨ x2 ∨ ¬x3) ∧ (a2 ∨ ¬x2 ∨ x3).

The auxiliary, fresh variables a0, a1, a2 correspond respectively to ϕ, and its two
main subformulae x1 ↔ x2 and x2 ↔ ¬x3. The unit clause x0 expresses that β holds,
the next three clauses that it is equivalent to a1 ∧ a2, the next three clauses that a1
is equivalent to x1 ↔ x2, and finally the last three clauses that a2 is equivalent to
x2 ↔ ¬x3.

Similarly, we get τT (µ) = b0 ∧ (¬b0 ∨ b1 ∨ b2)∧ (b0 ∨¬b1)∧ (b0 ∨¬b2)∧ (¬b1 ∨
x1) ∧ (¬b1 ∨ x3) ∧ (b1 ∨ ¬x1 ∨ ¬x3) ∧ (¬b2 ∨ x2) ∧ (¬b2 ∨ x3) ∧ (b2 ∨ ¬x2 ∨ ¬x3).
This time, the auxiliary variables which are introduced are b0, b1, b2.

Plaisted/Greenbaum translation function is a bit lighter (it leads to less clauses).
Here, τPG(ϕ) = a0 ∧ (¬a0 ∨ a1) ∧ (¬a0 ∨ a2) ∧ (¬a1 ∨ ¬x1 ∨ x2) ∧ (¬a1 ∨ x1 ∨
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¬x2)∧ (¬a2 ∨¬x2 ∨¬x3)∧ (¬a2 ∨x2 ∨x3). τPG(µ) = b0 ∧ (¬b0 ∨ b1 ∨ b2)∧ (¬b1 ∨
x1) ∧ (¬b1 ∨ x3) ∧ (¬b2 ∨ x2) ∧ (¬b2 ∨ x3).

We can observe that each of τT (ϕ) and τPG(ϕ) is query-equivalent to ϕ. And sim-
ilarly for τT (µ) and τPG(µ) w.r.t. µ Especially, the clause ¬x1 ∨ ¬x3 is a logical con-
sequence of ϕ, so it is also a logical consequence of τT (ϕ) and of τPG(ϕ).

Whatever the used translation function τ , let us denote by A(τ(β)) = Var(τ(β)) \
Var(β) the set of auxiliary variables introduced in τ(β). In the case when ϕ and/or
µ are not given as CNF formula(e), one can always take advantage of τ = τT and/or
τ = τPG to turn them into query-equivalent formulae. The point is that this translation
is safe as to the solving of the (inference problem associated to) revision. To be more
precise:

Proposition 3. Let X = Var(ϕ) ∪ Var(µ) and let dX be a topic-decomposable dis-
tance overWX induced by a topic decomposition TX = {T1, . . . , Tm} of X , an aggre-
gation function f , and m pseudo-distances d1, . . . , dm where each di (i ∈ {1, . . . ,m})
is between Ti-interpretations. Let Y = X ∪ A(τ(ϕ)) ∪ A(τ(µ)). Then, provided that
A(τ(ϕ)) ∩ A(τ(µ)) = ∅ (which is harmless, since the names given to the auxiliary
variables do not matter), one can associate with dX a topic-decomposable pseudo-
distance dY over WY induced by a topic decomposition TY = {T1, . . . , Tm, Tm+1}
of Y , the aggregation function f , and the m + 1 pseudo-distances d1, . . . , dm, dm+1,
with Tm+1 = A(τ(ϕ)) ∪ A(τ(µ)) and dm+1 any pseudo-distance between Tm+1-
interpretations. By construction, dY is such that τ(ϕ) ◦dY τ(µ) is query-equivalent to
ϕ ◦dX µ.

Let us now explain how SAT encoding schemes can be exploited to compute polyno-
mial-size encodings, given by CNF formulae which are query-equivalent to the revised
bases ϕ ◦d µ for the topic-decomposable distance-based revision operators.

Formally, the objective is to associate with each ϕ and µ a CNF propositional for-
mula noted E◦d(ϕ, µ) which is query-equivalent to ϕ ◦d µ; thus, E◦d(ϕ, µ) must have
the same logical consequences ϕ as those of ϕ ◦d µ, provided that the queries ϕ are
built up from the variables occurring in ϕ or µ. Furthermore, one expects the size of the
encoding E◦d(ϕ, µ) to be polynomial in the size of ϕ plus the size of µ.

Such encodings E◦d(ϕ, µ) are computed via a two-step compilation process:

(1) using a solver for weighted partial MAXSAT, one first computes the value min ,
which is the distance of µ to ϕ, i.e., the minimal value of {d(ω, ϕ) | ω |= µ},

(2) once min has been computed, one generates the encoding E◦d(ϕ, µ) which states
(among other things) that the distance of µ to ϕ must be equal to min .

The generated encoding E◦d(ϕ, µ) is a CNF formula, enabling to take advantage of
the power of SAT solvers for solving the inference problem when the queries ϕ are also
given as CNF formulae.

From now on, we suppose that Var(ϕ)∪Var(µ) = {x1, . . . , xn}. All the encodings
E◦d(ϕ, µ) described in the following share a common part C(ϕ, µ) given by

µ ∧ ϕ′ ∧
n∧
j=1

(dj ∨ ¬xj ∨ x′j) ∧ (dj ∨ xj ∨ ¬x′j).



8

ϕ′ is a clone of ϕ obtained by renaming in it every occurrence of a variable xj by an
occurrence of the fresh variable x′j . Such a renaming of the bases enables it to freeze
any conflict which would exist in the conjunction of µ and ϕ. This is reminiscent to
the consistency-based approach to belief merging reported in [6]. The last conjunct of
C(ϕ, µ) is a constraint based on discrepancy variables dj , such that dj must be set
to true whenever it is not possible to assume that xj ↔ x′j holds without violating
C(ϕ, µ).

Distances. Taking into account the distance d under consideration (dD or dH ) requires
to add a further constraint of the form

∧m
i=1D

i to C(ϕ, µ) where m is the number of
topics of T . For each topic Ti ∈ T , Di is a CNF formula over the variables d1, . . . , dn
plus a number of additional fresh variables. Some (actually ri) of them give the binary
representation biri , . . . , b

i
1 of maxxj∈Tidj (resp. Σxj∈Tidj) when the drastic distance

(resp. the Hamming distance) is considered (see [10] for more details). For each model
ω of C(ϕ, µ) ∧

∧m
i=1D

i, the bit vector obtained by projecting ω over those Σm
i=1ri

additional variables is the binary representation of the distance of the projection of ω
over the variables of µ with the projection of ω over the variables of ϕ′.

Aggregators. The objective is now to find min , the minimal distance of µ to ϕ. Let
us first focus on the easiest case f = Σ. In this case, the value we look for is the
minimal value min which can be taken by Σm

i=1wTi × (Σri
j=12

j−1 × bij). Since this
objective function is linear, in order to compute min , we take advantage of a weighted
partial MAXSAT solver. Once this is done, to get E◦d(ϕ, µ), it is enough to conjoin
with C(ϕ, µ) ∧

∧m
i=1D

i a CNF formula query-equivalent to the constraint Σm
i=1ki ×

(Σri
j=12

j−1 × bij) = min . A polynomial-size CNF formula query-equivalent to this last
constraint can be computed using a weighted parallel binary counter [16].

Let us now consider the harder cases f = Leximax and f = Leximin. Let r be
maxmi=1ri. First of all, for aligning the binary representations biri , . . . , b

i
1 over r bits

when i varies from 1 to m, we introduce some fresh variables assigned to false. Then
we generate an additional CNF constraint P (ϕ) which requires the introduction of m2

additional variables pi,j . This constraint is used to ”sort” the bit representations asso-
ciated with the topics (i.e., to associate with each j a position i) depending on the re-
spective values of their bit vectors bjr . . . b

j
1. As in [10], P (ϕ) requires (5× r+2)×m3

clauses: 2 × m3 clauses are used to express the fact that each j is associated with a
unique i (a pigeonhole instance) and 5 × r ×m3 clauses are used to ensure (thanks to
a standard comparator) that for every j, k ∈ {1, . . . ,m}, i ∈ {1, . . . ,m-1}, if pi,j and
pi+1,k are set to true, then bjr . . . b

j
1 is greater than or equal to (resp. lower than or equal

to) bkr . . . b
k
1 when f = Leximax (resp. f = Leximin). Thus, the only j such that p1,j is

true is such that the value of bjr . . . b
j
1 is maximal (resp. minimal) when f = Leximax

(resp. f = Leximin), and so on.
The following step aims at taking account for the weights wTi (i ∈ {1, . . . ,m}).

We determine the positions of the binary representations associated with the topics for
which the corresponding bit vectors take the same values (they are necessarily pairwise
adjacent because of the constraint P (ϕ)). To do so, we add a further CNF constraint
A(ϕ) requiring the introduction of m fresh variables ei, so that e1 is set to true and
for every i ∈ {1, . . . ,m-1}, ei is set to true precisely when the binary representations
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corresponding to the topics associated with positions i and i−1 correspond to different
bit vectors. A(ϕ) requires (r + 1)×m3 additional clauses.

The next step is to add a constraint K(ϕ) which is used to make the sums of the
weightswTi which are associated with equal bit vectors (indeed, unlike for the case f =
Σ, multiplying by wTi the value of the corresponding bit vector is not convenient when
a lexicographic comparison is to be achieved). Let s = dlog2(Σm

i=1wTi)e. Constraint
K(ϕ) requires the introduction of m × s fresh variables, i.e., m bit vectors tis . . . t

i
1,

and it ensures that for each i ∈ {1, . . . ,m}, tis . . . ti1 is the binary representation of
wTi when ei is true, and tis . . . t

i
1 is the binary representation of the sum of the value

of ti−1s . . . ti−11 with wTi when ei is false. K(ϕ) is based on a half-adder and requires
6 × m × s clauses. Then one needs to add a further constraint O(ϕ) which is used
to ”sort” the bit vectors bir, . . . , b

i
1 for i ∈ {1, . . . ,m}. This constraint requires the

introduction of m × r fresh variables, i.e., m bit vectors oir . . . o
i
1. It ensures that for

every i, j ∈ {1, . . . ,m}, if pi,j is set to true, then bjr . . . b
j
1 is equal to oir . . . o

i
1. This

constraint requires 2× r ×m2 additional clauses.
Now, in order to compute min (which can be viewed here as a sorted list of ordered

pairs of integers, where the second element of each pair is the number of repetitions of
the first element that must be considered), one needs first to compute a model which
minimizes the value v1o of o1r . . . o

1
1, and then minimizes (resp. maximizes) the value v1t

of t1s . . . t
1
1 when f = Leximax (resp. f = Leximin). We achieve the two optimization

processes in one step, using a weighted partial MAXSAT solver on the instance given
by the hard constraint E◦d(ϕ, µ) = C(ϕ, µ)∧

∧m
i=1D

i∧P (ϕ)∧A(ϕ)∧K(ϕ)∧O(ϕ)
and the objective function 2s×Σr

i=12
i−1×o1i +Σs

i=12
i−1× t1i (resp. 2s×Σr

i=12
i−1×

o1i +Σs
i=12

i−1 × ¬t1i ) when f = Leximax (resp. f = Leximin).
Once an optimal solution is found, we add to the hard constraint s + r × v1t unit

clauses in order to set the variables t1s, . . . , t
1
1, as well as the variables ojr, . . . , o

j
1 (j ∈

{1, . . . , v1t }) to the truth values they have in this solution. We iterate this process by con-

sidering then the second greatest (resp. least) value of the bit vectors ov
1
t+1
r , . . . , o

v1t+1
1

for i ∈ {1, . . . ,m}, and so on. The number of iterations is upper bounded by m. The
computation of min is achieved when all the iterations have been done. ThenE◦d(ϕ, µ)
is equal to C(ϕ, µ) ∧

∧m
i=1D

i ∧ P (ϕ) ∧ A(ϕ) ∧K(ϕ) ∧O(ϕ) conjoined with all the
unit clauses which have been generated during the optimization step.

By construction of the encodings, all the belief revision operators under considera-
tion are query-compactable [2]:

Proposition 4. For each topic-decomposable distance d induced by f ∈ {wΣ,
wLeximax, wLeximin} and local distances which are Hamming or drastic ones, the size
of E◦d(ϕ, µ) is polynomial in the size of ϕ plus the size of µ and E◦d(ϕ, µ) is query-
equivalent to ϕ ◦d µ.

A direct consequence of the previous proposition is that the inference problems for
the topic-decomposable distance-based belief revision operators under consideration
can be reduced to the classical entailment problem by taking advantage of our encoding
schemes. Since the size of E◦d(ϕ, µ) is in every case polynomial in the size of ϕ plus
the size of µ, we get that the corresponding inference problems (when queries ϕ are
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unrestricted propositional formulae) are compilable to coNP, and are among the hardest
ones (see [12] for more details on the compilability classes):

Corollary 1. For each topic-decomposable distance d induced by f ∈ {wΣ,
wLeximax, wLeximin} and local distances which are Hamming or drastic ones, the
inference problem for ◦d is compcoNP-complete.

Accordingly, our results extend some compilability results known for Dalal revi-
sion operator [12]. From the practical side, the computational effort required to gen-
erate E◦d(ϕ, µ) is spent only once (during the compilation phase), independently of
the number of queries. Since the complexity of the inference problem falls to coNP
once the preprocessing has been done, this effort can be easily balanced by considering
sufficiently many queries.

5 Empirical Evaluation

Benchmarks. The non-availability of belief revision benchmarks corresponding to an
actual application was a difficulty we had to face. To deal with it, we started with
295 unsatisfiable CNF instances used as benchmarks for the MUS competition in 2011
(http://www.cril.fr/SAT11/). We filtered from those benchmarks 220 CNF
instances, precisely the ones which can be solved in less than 300s by the weighted
partial MAXSAT solver MaxHS [4, 5] (the objective was to remove the most difficult
MAXSAT instances). The number of variables of the selected instances varies from 26
to 4426259, with an average of 83240 variables. The number of clauses varies from 70
to 15983633 with an average of 279887 clauses.

From each such CNF formulaΣ, we selected at random (following a uniform distri-
bution and using a generate-and-test approach) a satisfiable subset ϕΣ of clauses con-
taining 80% of the number of clauses of Σ. For generating µΣ we followed a similar
generation methodology, but limited the number of selected clauses to (approximately)
5%, 15%, 35%, or 50% of the number of clauses of Σ. Those 4 thresholds are intended
to capture different revision scenarios, from a ”light” revision where the revision for-
mula µΣ consists of only a few clauses to a more ”severe” revision situation, where µΣ
is quite huge. The generation process ensures that µΣ is a satisfiable CNF formula and
that ϕΣ ∧ µΣ is unsatisfiable. Indeed, one wants to avoid trivial cases of belief revi-
sion, i.e., the ones when ϕΣ ∧ µΣ is satisfiable (in this case, (R2) requires the revised
base to be equivalent to ϕΣ ∧ µΣ). This explains why the retained thresholds are only
approximate ones (sometimes additional clauses must be added to µΣ for guaranteeing
the unsatisfiability of ϕΣ ∧ µΣ). Following this approach, we derived 220 × 4 = 880
belief revision instances (ϕΣ , µΣ).

As to the topics, we considered sets T consisting of 1, 2, 5, 10, 15 and 20 ele-
ments. The case when only one topic is considered amounts to ”standard” distance-
based revision. Each topic Ti of T is obtained by selecting at random (following a
uniform distribution) 30% of the variables of Var(ϕΣ) ∪ Var(µΣ). When necessary,
an additional topic is added to T for ensuring that

⋃
Ti∈T Ti = Var(ϕΣ) ∪ Var(µΣ).

Each topic Ti is associated with a weight w(Ti) between 1 and 10 and chosen at ran-
dom. w(Ti) represents the significance of T . From the aggregation point of view, when
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Ti (i ∈ {1, . . . , n}) has a weight w(Ti), in the computation of the distance between
two worlds ω and ω′, the argument di(ω↓Ti , ω′↓Ti) is repeated w(Ti) times. Clearly
enough, this is the same as multiplying di(ω↓Ti , ω′↓Ti) by w(Ti) when the global ag-
gregation function f is wΣ, but it leads to distinct distances in general when f is
wLeximin orwLeximax. Considering 6 possible sizes for T led to 880× 6 = 5280 topic-
decomposable instances (T , ϕΣ , µΣ). The instances, their generator (and the whole set
of empirical results) are available at http://www.cril.fr/KC/br2cnf.html.

Setting. For each of the 5280 topic-decomposable belief revision instances, we have
considered 2 candidate distances for each local distance di: the Hamming distance and
the drastic distance. Finally, as to the global aggregation function f needed to define the
topic-decomposable distance d inducing the belief revision operator under considera-
tion, we have considered 3 functions: wΣ, wLeximin, and wLeximax. This finally led
to 5280 × 2 × 3 = 31680 topic-decomposable distance-based belief revision instances
(T , ϕΣ , µΣ , ◦d).

For each instance, we took advantage of the SAT encoding schemes E◦d(ϕΣ , µΣ)
as reported in Section 4 to generate a query-equivalent CNF formula. Our experiments
have been conducted on Intel Xeon E5-2643 (3.30GHz) processors with 32 GiB RAM
on Linux CentOS. We allocated 900s CPU time and 8 GiB of memory per instance.

100

130

160

190

220

wsum wleximin wleximax

5% 15% 35% 50%

1     2    5    10   15  20 1     2    5    10   15  20 1     2    5    10   15  20 1     2    5    10   15  20

Fig. 1. Number of solved instances for different sizes of µ and different numbers of topics. The
distance used is the Hamming one dH .

Empirical results. Let us first focus on the drastic distance dD which turned out to be the
easiest case, computationally speaking. Given the computational resources allocated,
we have been able to generate the encodings for all the 31680 instances but 336 (288
of them coming from the same 6 CNF instances). This represents (approx.) 99% of
the topic-decomposable distance-based belief revision instances we have considered.
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For the instances for which the generation was feasible, the average generation time
was 22.43s, the worst case was 785s. As to the number of variables (resp. clauses), the
worst case was equal to (approx.) 3.6 million (resp. 14 million).

Let us then focus on the Hamming distance dH . In Figure 1 are indicated the num-
bers of solved instances (out of the 220) for different sizes of µ and numbers of topics
when dH is considered. One can easily see in this figure that both parameters have an
impact on the difficulty of generating the encoding.

We now give more detailed results for the case f = wLeximin and d = dH ,
which proved to be the most difficult scenario. In Table 1, for each size of µ (i.e.,
5%, 15%, 35%, 50%) and each number of topics (i.e., 1, 2, 5, 10, 15, 20), we report the
number of solved instances (out of 220) within the time and memory bounds, and the
average avg and the maximum and the minimum of the values of the following mea-
surements: the compilation time (in seconds) needed to compute the encoding (time),
the number #var of variables in the encoding, and the number #cl of clauses in it.

%mu #T #solved avg. time max. time min. time avg. #var max. #var min. #var avg. #cl max. #cl min. #cl
5 1 213 38.4808 899.46 0 386026 5907706 226 778634 11811657 437
5 2 205 45.7588 756.69 0 566257 5084802 391 1236960 11097772 984
5 5 199 82.2348 887.36 0 879919 8737708 628 2019340 19966128 2203
5 10 178 122.551 859.89 0 1024460 9783278 1349 2414570 22654048 7040
5 15 160 121.378 676.36 0.01 800255 8947349 2062 1911580 21226404 13322
5 20 148 172.762 892.44 0.14 726893 7835375 3047 1769200 18978889 25198
15 1 201 54.7176 876.86 0 289224 2743707 226 588028 5255155 438
15 2 196 76.058 875.09 0 444427 4947647 391 980266 10731927 985
15 5 181 86.3864 856.39 0 583383 8737708 628 1342630 20065116 2204
15 10 167 132.848 834.85 0 688920 8380732 1349 1632140 20248744 7041
15 15 149 129.767 893.95 0.01 534537 8947349 2062 1285300 21281274 13323
15 20 139 196.685 858.48 0.18 527622 9125590 3047 1292340 21866643 25199
35 1 175 61.0705 803.32 0 126799 1689229 226 267289 3449743 452
35 2 172 80.4879 829.02 0 245727 4947647 391 551284 10929903 999
35 5 160 90.1234 896.61 0 198657 3817739 628 465638 8860787 2218
35 10 147 111.083 872.56 0 280196 6865407 1349 671725 16267341 7055
35 15 139 124.084 605.08 0 284763 5856095 2062 697729 14120161 13337
35 20 133 189.07 883.93 0.18 329617 7316079 3047 820222 17616391 25213
50 1 165 57.246 837.68 0 70207.7 716066 226 156578 1465372 463
50 2 159 51.0458 628.34 0 94154.6 1101822 391 217551 2396056 1010
50 5 152 79.0841 872.84 0 132565 2000729 628 314010 4609591 2229
50 10 142 101.54 897.53 0 194128 6865407 1349 471072 16348489 7066
50 15 135 136.915 877.36 0.01 199578 783143 2062 495474 1909354 13348
50 20 130 191.321 825.83 0.18 302605 7316079 3047 757717 17655136 2522

Table 1. Results for f = wLeximin and d = dH .

From these experiments, one can make the following observations. First, one can
note that the size of the formula µ has an impact on the difficulty (for instance, for a
unique topic, 213 instances have been solved for a size of µ of 5%, and ”only” 165
instances for a size of µ of 50%). But the greatest source of difficulty seems to be the
number of topics (213 instances solved for one topic vs. 148 instances for 20 topics for
a size of µ of 5%, and from 165 to 130 instances solved for a size of µ of 50%).

Table 2 (resp. Table 3) reports the same kind of measurements for f = wLeximax
(resp. f = wΣ). Similar observations as the ones made for f = wLeximin about
the impact of the size of µ and the number of topics can also be done for those two
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aggregation functions. Unsurprisingly, looking at the number of instances ”solved”, the
”hardness” of the instances obtained for f = wLeximax appears as similar to the ones
of the corresponding instances for f = wLeximin. Furthermore, the instances obtained
for f = wΣ appears as slightly easier than the ones of the corresponding instances for
f = wLeximax (especially when the size of µ and the number of topics are high).

%mu #T #solved avg. time max. time min. time avg. #var max. #var min. #var avg. #cl max. #cl min. #cl
5 1 213 39.931 868.64 0 386026 5907706 226 778634 11811657 437
5 2 207 39.5016 691.14 0 569724 5084802 391 1245750 11097772 984
5 5 201 74.6523 760.76 0 885310 8737708 628 2031650 19966128 2203
5 10 182 111.554 804.17 0 1026790 9783278 1349 2419830 22654050 7042
5 15 163 123.695 824.42 0.01 827095 8947349 2062 1976280 21226417 13322
5 20 147 177.478 876.36 0.08 708300 9125590 3047 1722970 21833514 25209
15 1 201 53.4791 762.6 0 289224 2743707 226 588028 5255155 438
15 2 197 54.9609 796.77 0 452246 4947647 391 995154 10731927 985
15 5 185 80.3196 839.36 0 658773 8737708 628 1517230 20065116 2204
15 10 170 126.352 845.67 0 784672 8751179 1349 1854490 20848972 7043
15 15 155 142.257 816.41 0.01 762194 8947349 2062 1825040 21281287 13323
15 20 143 193.719 893.73 0.08 555254 7373477 3047 1358460 17699333 25210
35 1 176 65.2532 899.82 0 137931 2086001 226 290681 4384428 452
35 2 174 79.3148 870.4 0 249685 4947647 391 560567 10929903 999
35 5 163 86.8453 858.17 0 279900 6083327 628 653163 14037642 2218
35 10 148 106.351 867.95 0 328283 6865407 1349 786258 16267343 7057
35 15 142 133.89 890.64 0 375744 8221280 2062 913011 19275067 13337
35 20 135 230.019 894.36 0.1 373476 7373477 3047 926447 17781160 25224
50 1 165 57.7481 848.88 0 70207.7 716066 226 156578 1465372 463
50 2 162 61.9183 859.48 0 103994 1101822 391 240676 2396056 1010
50 5 153 74.1976 891.83 0 151718 2745305 628 359986 6433006 2229
50 10 142 92.8003 892.33 0 171436 3639701 1349 416643 8615495 7068
50 15 139 146.263 770.45 0 343132 8380242 2062 837112 19729492 13348
50 20 129 221.471 703.56 0.11 324223 7316079 3047 809519 17655148 25235

Table 2. Results for f = wLeximax and d = dH .

In Tables 1, 2, and 3, the case when #T = 1 corresponds precisely to Dalal revision.
We can observe on Table 3 that for a small size of µ (5%) most instances have been
solved (214 out of 220), with a reasonable average time of 43s. The average number
of variables in the instances is 83240, and the average number of clauses is 279887.
This shows that undoubtedly Dalal revision can be computed efficiently for large-size
instances thanks to the encoding we point out.

These results should be contrasted with previous implementations of belief revision
operators, for which instances of such a size was clearly out of reach. Note that those
implementations do not correspond to distance-based operators: [18] encodes revision
operators based on transmutation, [7] encodes revision operators based on language
reconciliation, and [13] encodes partial-meet and kernel contraction. But noticeably in
each of these three cases, no empirical evaluation was reported, or the instances under
consideration were limited to be built up from a few dozens of variables.

6 Conclusion

We have introduced a general family of revision operators, based on topic-decomposable
distances. This family captures well-known distance-based operators, but contains as
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%mu #T #solved avg. time max. time min. time avg. #var max. #var min. #var avg. #cl max. #cl min. #cl
5 1 214 43.5343 866.03 0 388336 5907706 226 784187 11811657 437
5 2 204 48.5623 514.68 0 555211 5086581 487 1213040 11101977 1052
5 5 199 94.8606 892.67 0 883152 8741391 713 2026030 19973570 1576
5 10 181 99.4129 760.91 0 1029270 9789091 1422 2420080 22660787 3268
5 15 164 97.8304 729.02 0 824714 8955449 2223 1955560 21228391 5176
5 20 156 117.773 825.72 0 748603 9135718 3118 1791345 21824355 7289
15 1 202 57.6379 870.47 0 293132 2743707 226 596101 5255155 438
15 2 194 70.8754 897.13 0 438054 4949485 487 967042 10736273 1053
15 5 185 91.2105 747.01 0 682350 8741391 713 1572110 20072558 1577
15 10 174 111.604 791.15 0 877804 9377697 1422 2069170 22358992 3269
15 15 159 113.972 864.67 0 793179 8955449 2223 1884540 21283261 5177
15 20 150 128.309 882.78 0 580689 7845670 3118 1392370 18998942 7290
35 1 175 60.3497 790.45 0 126799 1689229 226 267289 3449743 452
35 2 170 73.1915 813.47 0 238452 4949485 487 535214 10934249 1067
35 5 163 98.3538 834.7 0 326413 6086818 713 759278 14044635 1591
35 10 160 120.138 896.45 0 589290 7158010 1422 1396320 16958646 3283
35 15 146 108.166 844.91 0 393917 8387940 2223 940866 19662489 5191
35 20 139 133.365 886.58 0 348501 7049833 3118 838498 17026971 7304
50 1 165 59.0681 886.05 0 70207.7 716066 226 156578 1465372 463
50 2 159 63.7416 681.17 0 94895.7 1103118 487 219139 2399027 1078
50 5 153 84.6987 854.33 0 198170 3888204 713 466058 9157465 1602
50 10 149 94.5133 848.7 0 348109 6871077 1422 831604 16355040 3294
50 15 143 121.752 859.69 0 346522 8387940 2223 830872 19730597 5202
50 20 134 145.103 838.1 0 318841 7049833 3118 769852 17067544 731

Table 3. Results for f = wΣ and d = dH .

well new interesting variations of previous operators. We have presented SAT encoding
schemes for operators of this family. Based on them, one can compute polynomial-size
encodings which are query-equivalent to the corresponding revised bases. This shows
that the inference problem for belief merging for those operators is compilable to coNP.

We have evaluated our encoding schemes on non-trivial instances; leveraging the
power of SAT solvers, we have shown that the resulting encodings can be computed
within reasonable time and space limits, for instances based on thousands of variables
which are out of reach of previous implementations.

We would like to insist on the fact that these instances have been defined from
benchmarks from the 2011 MUS competition, which are non-trivial formulae. Being
able to compute the result of the revision process for most of them shows that our
approach can be used for real, large-scale applications where belief revision is required.
Dalal revision being a specific operator of our family (among the easiest ones), this
paper is the first one (as far as we know) presenting a convincing implementation of
Dalal revision for practical applications.

By showing how SAT solvers can be exploited for solving revision problems lo-
cated higher than coNP, this work also contributes to the recent Beyond NP initiative
(beyondnp.org). As a perspective for further research, other distances and other
aggregation functions will be targeted.
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