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Université d’Artois
Lens, France

konieczny@cril.fr

Mattia Medina Grespan
Departamento de Matemáticas
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Abstract

Improvement operators is a class of belief change operators
that is a generalization of the usual class of iterated belief re-
vision operators. The idea is to relax the success property,so
the new information is not necessarily believed after the im-
provement, but to ensure that its plausibility has increased in
the epistemic state. In this paper we explore this large classby
defining several different subclasses. In particular, as mini-
mal change is a hallmark of belief change, we study what are
the operators that produce the minimal change among several
subclasses.

Introduction
Belief change is a key task for any any rational agent. Mod-
eling the evolution of the beliefs of an agent when he re-
ceives new pieces of information is the aim of belief revi-
sion. The predominant approach for modeling belief revi-
sion was proposed by Alchourrón, Gärdenfors and Makin-
son and is known as the AGM belief revision framework
(Alchourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988; Katsuno and Mendelzon 1991).

This approach has been extended in order to cope with
iterated belief revision. The main approach for iterated be-
lief revision was proposed by Darwiche and Pearl (Dar-
wiche and Pearl 1997) (see also (Booth and Meyer 2006;
Jin and Thielscher 2007) for more recent developments and
(Rott 2006) for an overview of the different operators). One
of the main steps for addressing the iteration of the revision
process was to abandon logical belief bases, because of their
lack of expressive power (see e.g. (Herzig, Konieczny, and
Perussel 2003)), for epistemic states.

In (Konieczny and Pino Pérez 2008) a generalization of
iterated belief revision operators, called improvement oper-
ators, has been proposed. The idea is to define operators on
epistemic states that have a less drastic behavior than iterated
belief revision operators. One of the major requirements of
belief revision operators is the so-called success postulate,
that imposes that the new pieces of information must be be-
lieved after the change. This is clearly required for a lot of
scenarios. But there are also some cases where we would
like to take the information into account in a more cautious
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way. So with improvement operators the plausibility of the
new piece of information is increased, but it is not neces-
sarily believed after the change. There areother works on
belief revision operators that do not satisfy the success pos-
tulate, that are called non-prioritized revisions (see forin-
stance (Hansson 1997) for an overview). But none of these
works define such increase of the plausibility of the new in-
formation as done by improvement operators.

One major hallmark of belief change is the principle of
minimal change. For belief revision this means that we do
not want to allowanychange in the beliefs of the agent in
order to allow the addition of the new piece of information,
we want to have aminimalchange where the only changes
are the ones really required to allow the addition. The aim
of this minimal change requirement is to keep as much as
possible of the old beliefs of the agent.

In this paper we explore the operators that perform a min-
imal change among several subclasses of improvement op-
erators.

The rest of the paper is organized as follows: we give the
preliminaries in the first section. The second section is de-
voted to the introduction of improvement operators. In the
third section we define some subclasses of improvement op-
erators. The fourth section introduce our criterion of mini-
mality. The three next sections study different classes of soft
improvement operators. The proofs are in the Appendix.

Preliminaries
We consider a propositional languageL defined from a fi-
nite set of propositional variablesP and the standard con-
nectives. LetL∗ denote the set of consistent formulae of
L.

An interpretationω is a total function fromP to {0, 1}.
The set of all interpretations is denotedW . An interpretation
ω is a model of a formulaφ ∈ L if and only if it makes it
true in the usual truth functional way.[[α]] denotes the set of
models of the formulaα, i.e., [[α]] = {ω ∈ W | ω |= α}.
When{w1, .., wn} is a set of models we denote byϕw1,..,wn

a formula such that[[ϕw1,..,wn
]] = {w1, .., wn}.

We will use epistemic to represent the beliefs of the agent,
as usual in iterated belief revision (Darwiche and Pearl
1997). An epistemic stateΨ represents the current beliefs of
the agent, but also additional conditional information guid-
ing the revision process (usually represented by a pre-order



on interpretations, a set of conditionals, a sequence of for-
mulae, etc). LetE denote the set of all epistemic states. A
projection functionB : E −→ L∗ associates to each epis-
temic stateΨ a consistent formulaB(Ψ), that represents the
current beliefs of the agent in the epistemic stateΨ1.

For simplicity purpose we will only consider in this paper
consistent epistemic states and consistent new information.
Thus, we consider change operators as functions◦ mapping
an epistemic state and a consistent formula into a new epis-
temic state,i.e. in symbols,◦ : E × L∗ −→ E . The image
of a pair(Ψ, α) under◦ will be denoted byΨ ◦ α.

We adopt the following notations:

• Ψ ◦n α defined as: Ψ ◦1 α = Ψ ◦ α
Ψ ◦n+1 α = (Ψ ◦n α) ◦ α

• Ψ ⋆ α = Ψ ◦n α, wheren is the first integer such that
B(Ψ ◦n α) ⊢ α.

Note that⋆ is undefined if there is non such thatB(Ψ ◦n

α) ⊢ α, but for all operators◦ considered in this work, the
associated operator⋆ will be total, that is for any pairΨ, α
there will existn such thatB(Ψ ◦n α) ⊢ α (see postulate
(I1) below).

Finally, let≤ be a a total pre-order, i.e a reflexive (x ≤ x),
transitive ((x ≤ y ∧ y ≤ z) → x ≤ z) and total (x ≤
y ∨ y ≤ x) relation overW . Then the corresponding strict
relation< is defined asx < y iff x ≤ y andy 6≤ x, and the
corresponding equivalence relation≃ is defined asx ≃ y iff
x ≤ y andy ≤ x. We denotew ≪ w′ whenw < w′ and
there is now′′ such thatw < w′′ < w′. We also use the
notationmin(A,≤) = {w ∈ A | ∄w′ ∈ A w′ < w}. The
set of total pre-orders will be denotedT P.

When a setW is equipped with a total pre-order≤, then
this set can be split in different levels, that gives the ordered
sequence of its equivalence classesW = 〈S0, . . . Sn〉. So
∀x, y ∈ Si x ≃ y. We say in that case thatx andy are
at the same level of the pre-order. And∀x ∈ Si ∀y ∈ Sj

i < j impliesx < y. We say in this case thatx is in a lower
level thany. We extend straightforwardly these definitions
to compare subsets of equivalence classes, i.e ifA ⊆ Si and
B ⊆ Sj then we say thatA is in a lower level thanB if
i < j.

Improvement operators
We recall in this section the definition of improvement oper-
ators

Definition 1 An operator◦ is said to be a weak improve-
ment operator if it satisfies (I1) to (I6):
(I1) There existsn such thatB(Ψ ◦n α) ⊢ α
(I2) If B(Ψ) ∧ α 6⊢ ⊥, thenB(Ψ ⋆ α) ≡ B(Ψ) ∧ α
(I3) If α 0 ⊥, thenB(Ψ ◦ α) 0 ⊥
(I4) For any positive integern if αi ≡ βi for all i ≤ n then
B(Ψ ◦ α1 ◦ · · · ◦ αn) ≡ B(Ψ ◦ β1 ◦ · · · ◦ βn)

1As in most works on iterated revision, we have chosen this
very general and abstract framework to define epistemic states (just
objectsΨ and their logical beliefB(Ψ)) because of its simplicity
and its flexibility to capture many concrete representations of epis-
temic states. For a formal definition of epistemic states see(Ben-
ferhat et al. 2000).

(I5) B(Ψ ⋆ α) ∧ β ⊢ B(Ψ ⋆ (α ∧ β))
(I6) If B(Ψ⋆α)∧β 6⊢ ⊥, thenB(Ψ⋆(α∧β)) ⊢ B(Ψ⋆α)∧β

Postulates (I2-I6) are very close to postulates (R*2-R*6)
of usual belief revision operators (Alchourrón, Gärdenfors,
and Makinson 1985; Katsuno and Mendelzon 1991; Dar-
wiche and Pearl 1997). The important difference lies in
postulate (I1) that is weaker that the usual success postu-
late (R*1). So postulates (I2-I6) hold for sequences of weak
improvements (whereas for revision they require only one
step).

Definition 2 A weak improvement operator is said to be an
improvement operator if it satisfies (I7) to (I9)2:
(I7) If α ⊢ µ thenB((Ψ ◦ µ) ⋆ α) ≡ B(Ψ ⋆ α)
(I8) If α ⊢ ¬µ thenB((Ψ ◦ µ) ⋆ α) ≡ B(Ψ ⋆ α)
(I9) If B(Ψ ⋆ α) 6⊢ ¬µ thenB((Ψ ◦ µ) ⋆ α) ⊢ µ

These postulates correspond to the postulates for iterated
revision (Darwiche and Pearl 1997; Jin and Thielscher 2007;
Booth and Meyer 2006). Postulates (I7) and (I8) correspond
to postulates (C1) and (C2) of (Darwiche and Pearl 1997),
and postulate (I9) correspond to postulate (P) of (Jin and
Thielscher 2007; Booth and Meyer 2006). As for the basic
postulates, the difference lies in the fact that they hold for
sequences of improvements.

Let us now recall the corresponding representation theo-
rems (Konieczny and Pino Pérez 2008). Let us first define
strong faithful assignements.

Definition 3 A functionΨ 7→≤Ψ that maps each epistemic
stateΨ to a total pre-order on interpretations≤Ψ is said to
be astrong faithful assignmentif and only if:

1. If w |= B(Ψ) andw′ |= B(Ψ), thenw ≃Ψ w′

2. If w |= B(Ψ) andw′ 6|= B(Ψ), thenw <Ψ w′

3. For any positive integern if αi ≡ βi for any i ≤ n then
≤Ψ◦α1◦···◦αn

= ≤Ψ◦β1◦···◦βn

So now we can state the representation theorem for weak
improvement operators:

Theorem 1 A change operator◦ is a weak improvement op-
erator if and only if there exists a strong faithful assignment
that maps each epistemic stateΨ to a total pre-order on in-
terpretations≤Ψ such that

[[B(Ψ ⋆ α)]] = min([[α]],≤Ψ) (1)

Let us now give the representation theorem for improve-
ment operators:

Definition 4 Let ◦ be a weak improvement operator and
Ψ 7→≤Ψ its corresponding strong faithful assignment. The
assignment will be called a gradual assignment if the prop-
erties S1, S2 and S3 are satisfied:

(S1) If w, w′ ∈ [[α]] thenw ≤Ψ w′ ⇔ w ≤Ψ◦α w′

(S2) If w, w′ ∈ [[¬α]] thenw ≤Ψ w′ ⇔ w ≤Ψ◦α w′

2For coherence reasons we change the names of the classes of
operators with respect to (Konieczny and Pino Pérez 2008),where
“Improvement operators” was the class of operators satisfying (I1-
I11).



(S3) If w ∈ [[α]], w′ ∈ [[¬α]] thenw ≤Ψ w′ ⇒ w <Ψ◦α w′

Theorem 2 A change operator◦ is an improvement opera-
tor if and only if there exists a gradual assignment such that

[[B(Ψ ⋆ α)]] = min([[α]],≤Ψ)

This theorem is a direct consequence of the theorem of
(Konieczny and Pino Pérez 2008) (see Theorem 4 below)
when removing (I10) and (I11) from the set of postulates
and the corresponding conditions (S4) and (S5) from the as-
signment.

Belief Revision
In order to show that improvement operators are a general-
ization of iterated belief revision operators consider thefol-
lowing usualsuccesspostulate:

(R*1) B(Ψ ◦ α) ⊢ α

Note that this postulate is the one that makes a distinction
between usual belief revision operators and non-prioritized
revision operators. Note also that (R*1) is a particular case
of (I1) wheren = 1.

Proposition 1 If ◦ is a weak improvement operator (i.e. it
satisfies (I1-I6)) that satisfies (R*1), then it is a AGM/DP
revision operator (i.e. it satisfies (R*1-R*6) of (Darwiche
and Pearl 1997)).

Proposition 2 If ◦ is an improvement operator (i.e. it sat-
isfies (I1-I9)) that satisfies (R*1), then it is an admissible
revision operator (i.e. it satisfies (R*1-R*6) and (C1-C4) of
(Darwiche and Pearl 1997) and property (P) of (Booth and
Meyer 2006; Jin and Thielscher 2007)).

Soft Improvement
As shown in the last section usual iterated belief revision
operators are a special case of weak improvement operators.
This is a well known subclass. But the family of weak im-
provement operators is much larger than that, and we want to
explore further some of its subclasses. Belief revision oper-
ators are the weak improvement operators that produce the
biggest change in the epistemic state. We investigate here
the opposite of the weak improvement operators spectrum,
i.e. operators of soft improvement, that produce the smallest
change. We propose some subclasses of soft improvement
operators by providing additional postulates and the corre-
sponding representation theorems.

So we are interested in soft improvement operators de-
fined below:

Definition 5 An improvement operator is said to be a soft
improvement operator if it satisfies the following postulate

(I10) If B(Ψ ⋆ α) ⊢ ¬µ thenB((Ψ ◦ µ) ⋆ α) 6⊢ µ

This postulate says literally that a formulaµ that is re-
jected by the agent after several (soft) improvements byα,
can not be accepted after a soft improvement byµ and sev-
eral improvements byα.

In fact, the only admissible change of status is that the
formulaµ that is rejected by the agent after several improve-
ments byα can become undetermined after a soft improve-
ment byµ and several improvements byα. At least another
step of soft improvement byµ will be required in order to
accept this formula by the agent after several improvements
by α. This motivates the name “soft” improvement.

We can give a representation theorem for soft improve-
ment operators:

Definition 6 Let ◦ be a weak improvement operator and
Ψ 7→≤Ψ its corresponding strong faithful assignment. The
assignment will be called a soft gradual assignment if it is a
gradual assignment and if the following property holds:

(S4) If w ∈ [[α]], w′∈ [[¬α]] thenw′ <Ψ w ⇒ w′ ≤Ψ◦α w

Theorem 3 A change operator◦ is a soft improvement op-
erator if and only if there exists a soft gradual assignment
such that

[[B(Ψ ⋆ α)]] = min([[α]],≤Ψ)

Again, this theorem is a direct consequence of the theo-
rem of (Konieczny and Pino Pérez 2008) (see Theorem 4
below) when removing (I11) from the set of postulates and
the corresponding condition (S5) from the conditions of the
assignment.

Another explanation of soft improvement can be given
thanks to this representation theorem. Thinking the infor-
mation in the epistemic states is ranked by degrees of belief
(in a discrete scale), the degree of belief ofµ after a soft
improvement byµ can be at most the degree immediately
inferior (more plausible) toµ in the original epistemic state.

There are several operators in the class of soft improve-
ment, that have quite different behaviors. So we will try to
identify some specific behaviors for soft improvement oper-
ators, and to study what are the minimal change operators in
each of these classes.

There is one important difference between soft improve-
ment operators: some of them can be defined locally, by
looking only at the information of similar plausibility, while
some of them are defined globally, i.e. they require to look
at the whole epistemic state. We call this locality property
modularity, and we express it in a general manner on strong
faithful assignments.

Let f be a boolean function, i.e.f : {0, 1}n −→ {0, 1},
then the expressions used as inputs ofn has to be understood
as boolean conditions (i.e.x ≤ y returns1 if the relation is
true and0 if it is false).

Definition 7 Let ◦ be a weak improvement operator. Let
Ψ 7→≤Ψ be the associated strong faithful assignment.

Let Nw = {w′ : w′ ≃Ψ w} andNw+1 = {w′ : w ≪Ψ

w′}. We say that the assignmentΨ 7→≤Ψ is modular iff
there exists a boolean functionf : {0, 1}6 −→ {0, 1} such
that :

• for anyw, if w′, w′′ ∈ Nw ∪ Nw+1 then
w′ ≤Ψ◦α w′′ = f(w′ ≤Ψ w′′, w′′ ≤Ψ w′, [[α]]∩Nw = ∅,

[[α]] ∩ Nw+1 = ∅, w′ ∈ [[α]], w′′ ∈ [[α]])

• ≤Ψ◦α is completely determined by the previous equality
and transitivity of the relation.



A weak improvement operator is modular iff its associated
strong faithful assignment is modular.

So this modularity property states that the plausibility re-
lation between two interpretations in two consecutive levels
of plausibility after the improvement is a function of (i.e.the
only pieces of information required are): the relation be-
tween the two interpretations before the improvement (the
two first inputs); the fact that there are (or not) models of the
new piece of information in the two levels considered (the
third and fourth inputs); and the fact that the models con-
sidered satisfy the new piece of information or not (the last
two inputs).

Intuitively this property expresses the fact that for know-
ing the change of plausibility of interpretations it is enough
to look at two consecutive levels.

Definition 8 A soft improvement operator ismodularif its
associated soft gradual assignment is modular.

Thus, the class of modular soft improvement operators is
formed by the weak improvement operators which are soft
and modular at the same time. We will see below that this
class of operators have an easy and compact description.

One can state another property that identify an important
difference on the behavior of soft improvement operators:

Definition 9 A soft gradual assignment is asystematic en-
hancementif:
(Sse)If w |= ¬α, w′ |= α andw ≪Ψ w′, thenw 6≪Ψ◦α w′

This property states that (the plausibility of) every model
of the new piece of informationα is systematically im-
proved. That means that if a model of the negation ofα
was just a little more plausible before the improvement than
a model ofα, then it is no longer the case after the im-
provement (the model ofα will be at least as plausible as
the model of the negation).

So we will identify three different classes of soft improve-
ment operators, from the most general one to the most spe-
cific one:

Soft Improvement (SI) operators that correspond to soft
gradual assignments.

Modular Soft Improvement (MSI) operators that corre-
spond to modular soft gradual assignments.

Systematic Soft Improvement (SSI)operators that corre-
spond to systematic enhancement assignments.

In the following sections we will study the minimality of
operators in these classes. But we have to define first what
is our minimality criterion.

Minimality
One major objective of belief change theories is to define
operators that produces minimal change in the beliefs of the
agent. This is a natural requirement because beliefs are valu-
able, so we want to keep as much as possible the old beliefs
of the agent (no unnecessary forgetting), and because we
want the agent to be rational by not adding exotic beliefs
(no unjustified addition).

For improvement operators, as the representation theorem
states that each operator corresponds to a gradual assign-
ment (and if we consider this representation as the canonical
one), we can consider these operators as transitions between
total pre-orders. In this case there is a natural measure of
change: the Kemeny distance (Kemeny 1959) between the
old pre-order (the pre-order associated to the old epistemic
state) and the new one.

Definition 10 The Kemeny Distance is the functiondK :
T P × T P −→ N defined as: given≤1, ≤2 two total pre-
orders,dK(≤1,≤2) is the cardinal of the symmetrical dif-
ference of the pre-orders,i.e. the number of elements in≤1

which are not in≤2 plus the number of elements in≤2 which
are not in≤1. In symbols we have

dK(≤1,≤2) = |(≤1 \ ≤2) ∪ (≤2 \ ≤1)|

Definition 11 Let◦1 and◦2 be two improvement operators.
We say that◦1 produces less change than◦2 if for any epis-
temic stateΨ and any formulaµ:

dK(≤Ψ,≤Ψ◦1µ) ≤ dK(≤Ψ,≤Ψ◦2µ)

So this definition means that an operator produces less
change than another one if on all possible improvements the
first one produces less change (with respect to Kemeny dis-
tance) than the second one.

Example 1 SupposeW = {ω1, ω2, ω3, ω4}. Consider two
improvement operators◦1 and ◦2. Let Ψ be an epistemic
state where≤Ψ is its respective pre-order given by the grad-
ual assignment (see the figure below). Letµ be a formula
such that[[µ]] = {ω3, ω4}. Suppose that the pre-orders
≤Ψ◦1µ and≤Ψ◦2µ are the results of the improvement ofΨ
by the new informationµ with respect the operators◦1 and
◦2 respectively.

ω3•

ω4•

ω1•

ω2•

ω3•

ω4•

ω1•

ω2•

≤Ψ◦1µ

ω3•

ω4•

ω1•

ω2•

≤Ψ
≤Ψ◦2µ

dK(≤Ψ,≤Ψ◦1µ) = 3 anddK(≤Ψ,≤Ψ◦2µ) = 2. So on this
example◦2 produces less change than◦1 (but to conclude
that◦2 produces less change than◦1 this has to be checked
for all cases).

Systematic Soft Improvement
Before giving the postulate which characterizes the behav-
ior of operators in this class, we need some notations.

Definition 12 Let ◦ be a change operator satisfying (I1).
Let α, β and Ψ be two formulae and an epistemic state
respectively. We say thatα is belowβ with respect toΨ,
given ◦, denotedα ≺◦

Ψ β (or simply α ≺Ψ β if there
is no ambiguity about◦) if and only if α 0 ⊥, β 0 ⊥,
B(Ψ⋆α) ⊢ B(Ψ⋆(α∨β)) andB(Ψ⋆β) 6⊢ B(Ψ⋆(α∨β)).

The pair(α, β) is Ψ-consecutive, denotedα ≺≺◦
Ψ β (or

simplyα ≺≺Ψ β if there is no ambiguity about◦) if and only
if α ≺Ψ β and there is no formulaγ such thatα ≺Ψ γ ≺Ψ

β.



So now, let us introduce an additional postulate in order
to characterize operators of systematic soft improvement:

(I11) If B(Ψ ⋆ α) ⊢ ¬µ and α ≺≺Ψ α ∧ µ then
B((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ

And we can state a corresponding representation theorem:

Theorem 4 A change operator◦ is a systematic soft im-
provement operator if and only if there exists a systematic
enhancement such that

[[B(Ψ ⋆ α)]] = min([[α]],≤Ψ)

This is essentially the main Theorem in (Konieczny and
Pino Pérez 2008). The only difference is that condition
(Sse) is used in the assignement instead of condition (S5)
in (Konieczny and Pino Pérez 2008):

(S5) If w ∈ [[α]], w′ ∈ [[¬α]] thenw′ ≪Ψ w ⇒ w ≤Ψ◦α w′

Clearly (Sse) and (S5) are equivalent in the presence of
others (S1-S4) conditions.

As explained in (Konieczny and Pino Pérez 2008), there is
only one operator of systematic soft improvement (once the
pre-order associated to the initial epistemic state is fixed).
We will call this operator one-improvement, and denote it
⊙.

The fact that this is the only operator of this class implies
straightforwardly that it is the one that produces the minimal
change.

So condition (Sse) can be considered as very strong, since
it defines a class of soft improvement operators that contains
only one operator. But, first we consider that (Sse) is very
sensible, so it is interesting to study its consequences. And
secondly recall that the class of weak improvement operators
is wider than soft improvement operators, and (Sse) can also
prove valuable to discriminate operators in other classes.
For instance we can remark that it allows to discriminate
belief revision operators, since Boutilier’s natural revision
(Boutilier 1996) and Darwiche and Pearl• operator (Dar-
wiche and Pearl 1997) do not satisfy (Sse), while Nayak’s
lexicographic operator (Nayak 1994; Konieczny and Pino
Pérez 2000) does.

Modular Soft Improvement
Modular soft improvement are operators that can be defined
locally, by looking at beliefs of similar plausibility. Thefol-
lowing syntactical postulates try to capture this idea.

(H1) If B(Ψ ⋆ α) ⊢ ¬µ, α ≺≺Ψ α ∧ µ and¬∃β(β ⊢ ¬µ
andα ≺≺Ψ β), thenB((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ

This postulate means that when the revision (i.e. sequence
of improvements until success) byα implies the negation of
µ, if µ is just a little less plausible than its negation given
α, then an improvement byµ will be enough to remove its
negation from the beliefs of the agent. Note that this postu-
late is weaker than (I11).

(H2) If B(Ψ ⋆ α) ⊢ ¬µ, α ≺≺Ψ α ∧ µ and∃β(β ⊢ ¬µ and
α ≺≺Ψ β), thenB((Ψ ◦ µ) ⋆ α) ⊢ ¬µ

This postulate is very close from (H1), and deals with the
case where the revision (i.e. sequence of improvements until
success) byα implies the negation ofµ, but µ and¬µ are
both a little less plausible than¬µ, then an improvement by
µ will not be enough to remove its negation from the beliefs
of the agent.

Definition 13 A soft improvement operator which satisfies
(H1) and (H2) is called a half improvement operator.

We can also define these operators semantically:

Definition 14 Let ◦ be a soft improvement operator and
Ψ 7→≤Ψ its corresponding soft gradual assignment. The
assignment will be called a half gradual assignment if the
following properties (SH1) and (SH2) are satisfied:

(SH1) If ω ∈ [[µ]], ω′ ∈ [[¬µ]], ω′ ≪Ψ ω and∄ω′′ ∈ [[¬µ]]
such thatω′′ ≃Ψ ω, then,ω ≤Ψ◦µ ω′.

(SH2) If ω ∈ [[µ]], ω′ ∈ [[¬µ]], ω′ ≪Ψ ω and∃ω′′ ∈ [[¬µ]]
such thatω′′ ≃Ψ ω then,ω′ <Ψ◦µ ω.

Note that both (SH1) and (SH2) use only information on
the new formula, the old relation≤Ψ between the two in-
terpretations, and the interpretations that was at the same
level of ω. This means that the half-gradual assignement is
a modular assignement.

We can now state the representation theorem:

Theorem 5 A change operator◦ is a half improvement op-
erator if and only if there exists a half gradual assignment
such that

[[B(Ψ ⋆ α)]] = min([[α]],≤Ψ)

In fact, just as for one-improvement we can prove that:

Proposition 3 Once the pre-order associated to the first
epistemic state is fixed, there is a unique half-improvement
operator. Let us denote⊘ this operator.

Half-improvement is not the only operator in the class of
modular soft improvement. Actually, in the class of modular
soft improvement operators there are only two operators:
the half and the one operator:

Theorem 6 The class of modular soft improvement opera-
tors is exactly the set{⊘,⊙}.

The proof follows easily of the the observation that the
two columns in Table 1 are the only possibilities explaining
the behavior of a modular soft improvement operator and
they are exactly the⊙ and⊘ operators respectively.

We can show that half-improvement produces less
changes than one-improvement:

Proposition 4 Let Ψ be an epistemic state (a total pre-
order). Then for all formulaµ,

dK(≤Ψ,≤Ψ⊘µ) ≤ dK(≤Ψ,≤Ψ⊙µ)

That is, the operator⊘ produces less changes than the oper-
ator ⊙.

Actually, with Proposition 4 and Theorem 6 we have the
following result:

Corollary 1 Half-improvement operator is the minimal op-
erator in the class of modular soft improvement operators.



⊙ ⊘ ⊕

w ∈ [[α]]
w′ ∈ [[α]]

w ≤Ψ w′ ⇔ w ≤Ψ⊙α w′ w ≤Ψ w′ ⇔ w ≤Ψ⊘α w′ w ≤Ψ w′ ⇔ w ≤Ψ⊕α w′

w ∈ [[¬α]]
w′ ∈ [[¬α]]

w ≤Ψ w′ ⇔ w ≤Ψ⊙α w′ w ≤Ψ w′ ⇔ w ≤Ψ⊘α w′ w ≤Ψ w′ ⇔ w ≤Ψ⊕α w′

w ∈ [[α]]
w′ ∈ [[¬α]]

w <Ψ w′ ⇔ w <Ψ⊙α w′

w ≃Ψ w′ ⇒ w <Ψ⊙α w′

w′
∢Ψw ⇒ w′ <Ψ⊙α w

w′≪Ψ w ⇒ w′ ≃Ψ⊙α w

w <Ψ w′ ⇔ w <Ψ⊘α w′

w ≃Ψ w′ ⇒ w <Ψ⊘α w′

w′
∢Ψw ⇒ w′ <Ψ⊘α w

w′≪Ψ w ⇒

{

w′ ≃Ψ⊘α w if
...
w

w′≪Ψ⊘α w if ¬(
...
w)

w <Ψ w′ ⇔ w <Ψ⊕α w′

w ≃Ψ w′ ⇒ w <Ψ⊕α w′

w′
∢Ψw ⇒ w′ <Ψ⊕α w

w′≪Ψ w ⇒

{

w′ ≃Ψ⊕α w if
...
α

w′≪Ψ⊕α w if ¬(
...
α)

Table 1: From≤Ψ to ≤Ψ◦α. We notew∢w′ whenw < w′ andw 6≪ w′.
...
w is

true when∄w′′ ∈ [[¬α]] w′′ ≃Ψ w.
...
α means thatα is separated inΨ.

Looking for the Best Soft Improvement
Now we move to the general class of soft improvement oper-
ators. The fact of not satisfying modularity allows to define
much more different operators. This allows also to define an
interesting soft improvement operator producing the small-
est change under certain conditions.

In order to simplify the presentation of the postulates we
introduce the following definition:

Definition 15 µ is separated inΨ iff ∀β(B(Ψ ⋆ β) ⊢
µ or B(Ψ ⋆ β) ⊢ ¬µ).

This definition of separation of a formula in an epistemic
state means that any revision (and improvement) of this epis-
temic state will always give epistemic states that are in-
formed about this formula (i.e. the formula or its negation
can be inferred).

Definition 16 A soft improvement operator which satisfies
the following two postulates is called a best improvement
operator

(B1) If µ is separated inΨ, B(Ψ ⋆ α) ⊢ ¬µ and
α ≺≺Ψ α ∧ µ, thenB((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ

(B2) If µ is not separated inΨ andB(Ψ ⋆ α) ⊢ ¬µ, then
B((Ψ ◦ µ) ⋆ α) ⊢ ¬µ

Postulate (B1) is close to postulates (H1) and (I11), but
it holds only when the formula is separated in the epistemic
state.

Postulate (B2) states that, when the formula is not sepa-
rated in the epistemic state (which is the general case), the
change is the same one than with (H2).

We can give a semantical counterpart to these postulates.

Definition 17 µ is s-separated in≤Ψ iff ∄ω1 ∈ [[µ]], ω2 ∈
[[¬µ]] s.t.ω1 ≃Ψ ω2

Definition 18 Let ◦ be a soft improvement operator and
Ψ 7→≤Ψ its corresponding soft gradual assignment. The

assignment will be called a best gradual assignment if the
following properties
(SB1) If µ is s-separated in≤Ψ, ω ∈ [[µ]], ω′ ∈ [[¬µ]] and
ω′ ≪Ψ ω thenω ≤Ψ◦µ ω′.

(SB2) If µ is not s-separated in≤Ψ, ω ∈ [[µ]], ω′ ∈ [[¬µ]]
andω′ <Ψ ω thenω′ <Ψ◦µ ω.

The two notions of separation are clearly related:

Lemma 1 Let ◦ be a weak improvement operator. Then,µ
is separated inΨ iff µ is s-separated in≤Ψ.

Let us give now the corresponding representation theo-
rem.

Theorem 7 A change operator◦ is a best improvement op-
erator if and only if there exists a best gradual assignment
such that

[[B(Ψ ⋆ α)]] = min([[α]],≤Ψ)

And, as for one-improvement and half-improvement, we
can show that there is only one best-improvement operator:

Proposition 5 Once the pre-order associated to the first
epistemic state is fixed, there is a unique best-improvement
operator. We denote this operator by⊕.

These uniqueness results are important since few change
operators are axiomatically defined (usual characterizations
in belief revision define families of operators).

Let us now turn to the minimality issue.

Proposition 6 Let Ψ be an epistemic state (a total pre-
order). Then for all formulaµ,

dK(≤Ψ,≤Ψ⊕µ) ≤ dK(≤Ψ,≤Ψ⊘µ)

That is, the operator⊕ produces less changes than the oper-
ator ⊘.

As a corollary from the previous propositions we have the
following result:



Proposition 7 Among the operators⊙, ⊘ and⊕ the opera-
tor ⊕ is the operator that produces minimal change.

It is easy to figure out soft-improvement operators that
produces less change than best-improvement. In fact
the soft-improvement operator that produces the smallest
change is the one that increases the plausibility of only one
level of models of the new formula (this level is not ran-
domly chosen, but is the one which produces the less change
for the Kemeny distance). It seems to us that defining this
minimal change operator is not of great interest, since this
operator will not have a clear meaning from a logical point
of view. It is of no use to look at absolute minimization if it
costs too many logical properties (recall that Boutilier’snat-
ural revision operator (Boutilier 1996), although achieving
the minimal change for a belief revision operator, make it at
a price of bad logical properties (Darwiche and Pearl 1997)).

So, amongst improvement operators that do not add ar-
bitrary choices in the choice of the models of the new in-
formation to be improved, best-improvement is the one that
produces the smallest change:

Proposition 8 Best-improvement operator is the soft im-
provement operator satisfying (B1) that produces the small-
est change.

Example 1 shows that in some cases⊘ produces strictly
less changes than⊙ (◦2 was⊘ and◦1 was⊙). The following
example shows that in some cases⊕ produces strictly less
changes than⊘.

Example 2 SupposeW = {ω1, ω2, ω3, ω4}. Consider the
improvement operators⊕ and⊘. LetΨ be an epistemic state
where≤Ψ is his respective pre-order given by the gradual
assignment (see the figure below). Let beµ a formula such
that [[µ]] = {ω3, ω4}. The pre-orders≤Ψ⊙µ and≤Ψ⊘µ are
the results of the improvement ofΨ by the new information
µ with respect the operators⊕ and⊘ respectively.

ω3•

ω4•

ω1•

ω2• ω3•

ω4•

ω1•

ω2•

≤Ψ⊕µ

ω3•

ω4•

ω1•

ω2•

≤Ψ
≤Ψ⊘µ

It is not hard to see thatdK(≤Ψ,≤Ψ⊕µ) = 1 and that
dK(≤Ψ,≤Ψ⊘µ) = 2.

Table 1 summarizes the behavior of operators⊙, ⊘ and⊕.

Example
We provide some examples of improvements in this sec-
tion, in order to illustrate the behavior (and the differ-
ences) of one-improvement, half-improvement and best-
improvement.

Figure 1 shows how three epistemic states, whose asso-
ciated pre-orders are≤Ψ1

,≤Ψ2
,≤Ψ3

, are changed through
the three soft-improvement operators studied in the previ-
ous sections (one-improvement⊙, half-improvement⊘, and
best-improvement⊕).

≤Ψ1
≤Ψ2

≤Ψ3

≤Ψ1⊙µ ≤Ψ2⊙µ ≤Ψ3⊙µ

≤Ψ2⊘µ ≤Ψ3⊘µ≤Ψ1⊘µ

≤Ψ2⊕µ ≤Ψ3⊕µ≤Ψ1⊕µ

Figure 1: Examples of Soft Improvements

Interpretations are not represented on the figures, we just
represent the “levels” where the interpretation are located.
Gray lines represent the new formulaµ, so models of this
formula are located on these gray levels. Black lines repre-
sent the levels with models of¬µ.

In the≤Ψ3
case, the three operators lead to the same re-

sult. This is the case whereµ is separated inΨ3.
The ≤Ψ2

case shows a situation where every model of
the new formulaµ is equivalent to a model of its nega-
tion. In this case half-improvement and best-improvement
give the same result, that produces less change than the
result obtained with one-improvement. So the change
is smaller. Remark that to obtain the same result as
one-improvement it will just require another iteration, i.e.
≤Ψ2⊙µ=≤Ψ2⊘µ⊘µ=≤Ψ2⊕µ⊕µ.

The≤Ψ1
case is the most interesting. It is a more usual

case, and it shows the difference of behaviors of the three
operators. It clearly shows that in the general case best-
improvement produces less change than half-improvement,
that produces less change than one-improvement. To ex-
plain intuitively the change obtained by the three operators:
one-improvement increase the plausibility of each model
of the new formula by moving it to the first (w.r.t its cur-
rent position) lower level of models of its negation. Half-
improvement increase the plausibility of each model, but
only by a “half-level” (i.e. if the model of the new for-
mula was equivalent to a model of its negation then now
it is strictly more plausible, but not as plausible as the lower
models of the negation. And if the model of the new formula
was not equivalent to a model of its negation, then now it is
moved to the first lower level of models of the negation).



weak improvement

improvement

revision (R*1-R*6)

iterated revision
(R*1-R*6) (C1-C4) (P)

soft improvementmodular soft
improvement

systematic
soft
improvement

⊙ ⊘ ⊕

modular weak improvement

Figure 2: A map of weak improvement operators

For Best-improvement, as there are some models of the new
formula that was equivalent to model of its negation, then
only these models have their plausibility improved (from a
“half-level”).

Conclusion and Related Work
In this paper we have started the investigation of soft im-
provement operators. Soft improvement operators are a sub-
class of weak improvement operators, just as belief revision
operators are. See Figure 2 for a map of weak improvement
subclasses. We defined two subclasses of soft improvement
operators: modular soft improvement operators and system-
atic soft improvement operators. For each of this class we
provide a prototypal operator, that we characterize logically
and for which we provide a representation theorem. We also
study these operators with respect to minimal change, when
this minimality is computed using the Kemeny distance be-
tween the pre-orders obtained through the assignments.

Ideas close to the ones behind the definition of the one-
improvement operator already appeared in some works such
as (Cantwell 1997; van Ditmarsch 2005; Laverny and Lang
2005), but there was no logical characterization in all these
works. As far as we know there is no work mentioning ideas
close to half-improvement or best-improvement.
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Appendix
Proof of Theorem 5:

We need to state some auxiliary results before the main
proof. First of all, remark that the following Proposition is a
consequence of Theorem 1 (The proof is in (Konieczny and
Pino Pérez 2008)):

Proposition 9 Let◦ be a weak improvement operator. Then

B(Ψ ⋆ (α ∨ β)) =

{

B(Ψ ⋆ α) or
B(Ψ ⋆ β) or
B(Ψ ⋆ α) ∨ B(Ψ ⋆ β)

With the help of the previous Proposition is easy to obtain
the following two Corollaries giving characterizations ofre-
lations≺Ψ and≺≺Ψ.

Corollary 2 Let ◦ be a weak improvement operator. Then
α ≺Ψ β if and only if there existw, w′ such thatw ∈
[[B(Ψ ⋆ α)]], w′ ∈ [[B(Ψ ⋆ β)]], w <Ψ w′.

Corollary 3 Let ◦ be a weak improvement operator. Then
α ≺≺Ψ β if and only if there existw, w′ such thatw ∈
[[B(Ψ ⋆ α)]], w′ ∈ [[B(Ψ ⋆ β)]], w <Ψ w′ and there is no
w′′ such thatw <Ψ w′′ <Ψ w′.

Let us now turn to the proof of the theorem.

(only if ) Let ◦ be an half-improvement operator,i.e. a soft
improvement operator that satisfies (H1) and (H2). We want
to prove that◦ and his respective soft gradual assignment
satisfy the semantic conditions (SH1) and (SH2).

(SH1): Letω ∈ [[µ]], ω′ ∈ [[¬µ]] such thatω′ ≪Ψ ω. And
suppose there is noω′′ ∈ [[¬µ]] such thatω′′ ≃Ψ ω. Con-
siderα = ϕω,ω′ andµ = ϕω . Sinceω′ <Ψ ω, min([[α]],≤Ψ

) = {ω′}. Thus, by Theorem 1B(Ψ ⋆ α) ⊢ ¬µ. Since
α ∧ µ 6⊢ ⊥, and{ω} = min([[α ∧ µ]],≤Ψ) by Corollary 3,
α ≺≺Ψ α ∧ µ.

Towards a contradiction, suppose that there existsβ such
that β ⊢ ¬µ and α ≺≺Ψ β. By Corollary 3, ∃ω′′′ ∈
[[B(Ψ ⋆ α)]] and∃ω′′ ∈ [[B(Ψ ◦ β)]] such thatω′′′ ≪Ψ ω′′.
As ω′′′ ≃Ψ ω′, necessarilyω′ ≪Ψ ω′′. As, by hypothesis,
ω′ ≪Ψ ω, necessarilyω ≃Ψ ω′′, but ω′′ |= ¬µ a contra-
diction. Thus, there is no a formulaβ such thatβ ⊢ ¬µ and
α ≺≺Ψ β. Then, by (H1),B((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ. Thus, by
Theorem 1,min([[α]],≤Ψ◦µ) 6⊆ [[¬µ]], i.e. min([[α]],≤Ψ◦µ

) ∩ [[µ]] 6= ∅. Then,min([[α]],≤Ψ◦µ) ∩ [[µ]] = {ω} and
therefore,ω ≤Ψ◦µ ω′.

(SH2): Letω ∈ [[µ]], ω′ ∈ [[¬µ]], be such thatω′ ≪Ψ ω
and suppose that there isω′′ ∈ [[¬µ]] such thatω ≃Ψ ω′′.
Considerα = ϕω,ω′ andµ = ϕω. Then, by Corollary 3,
we haveα ≺≺Ψ α ∧ µ. Furthermore,{ω′} = [[B(Ψ ⋆ α)]]
andα ∧ µ 6⊢ ⊥. Consider the formulaβ = ϕω′′ , and note
thatβ ⊢ ¬µ andω′ ≪Ψ ω′′. Sinceω′′ ∈ [[B(Ψ ⋆ β)]], by



Corollary 3,α ≺≺Ψ β. Then, by postulate (H2),B((Ψ ◦
µ) ⋆ α) ⊢ ¬µ. Thus,min([[α]], <Ψ◦µ) ⊆ [[¬µ]]. Then,
min([[α]], <Ψ◦µ) = {ω′} and thereforeω′ <Ψ◦µ ω.

(if ) We know, by Theorem 3, that◦ is a soft improvement
operator. It remains to prove that◦ satisfies (H1) and (H2).

(H1): Suppose thatB(Ψ ⋆ α) ⊢ ¬µ, α ≺≺Ψ α ∧ µ and there
is no β such thatβ ⊢ ¬µ andα ≺≺Ψ β. We want to show
thatB((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ.

Sinceα ≺≺Ψ α ∧ µ, by Corollary 3, there areω and ω′

such thatω ∈ [[B(Ψ ⋆ (α ∧ µ))]], ω′ ∈ [[B(Ψ ⋆ α)]] and
ω′ ≪Ψ ω. This, together with the hypothesis, entails
ω ∈ [[µ]] andω′ ∈ [[¬µ]]. Towards a contradiction, suppose
that there isω′′ ∈ [[¬µ]] such thatω′′ ≃Ψ ω. Consider the
formulaϕω′′ . Then ϕω′′ ⊢ ¬µ andω′′ ∈ [[B(Ψ ⋆ ϕω′′)]].
Sinceω′ ≪Ψ ω andω′ ≪Ψ ω′′, by Corollary 3, we obtain
α ≺≺Ψ ϕω′′ , a contradiction. Thus,∄ω′′ ∈ [¬µ] such that
ω′′ ≃Ψ ω. Then, from (SH1) followsω ≤Ψ◦µ ω′. Since
⋆ satisfies the property (I10), by Theorem 3,⋆ also satisfies
(S4). Therefore,ω′ ≤Ψ◦µ ω. Thus,ω′ ≃Ψ◦µ ω.

In order to prove thatB((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ, we will
prove that[[B((Ψ ◦ µ)) ⋆ α)]] ∩ [[µ]] 6= ∅. We claim that
ω ∈ min([[α]],≤Ψ◦µ) and sinceω |= µ we get the previ-
ous inequality. Towards a contradiction, suppose the claim
false,i.e. there is a modelω1 ∈ min([[α]],≤Ψ◦µ) such that
ω1 <Ψ◦µ ω. We have two cases:ω1 |= µ or ω1 |= ¬µ.
Case 1: ω1 |= µ. In this case we haveω1 |= α ∧ µ.
Sinceω ∈ [[B(Ψ ⋆ (α ∧ µ))]], by Theorem 1, necessarily
ω ∈ min([[α ∧ µ]],≤Ψ). In particular,ω ≤Ψ ω1. Thus, by
(S1),ω ≤Ψ◦µ ω1, a contradiction.
Case 2:ω1 |= ¬µ. In this case we haveω1 |= α ∧ ¬µ.
Sinceω′ ∈ [[B(Ψ ⋆ α)]], by Theorem 1, necessarilyω′ ∈
min([[α]],≤Ψ). In particular,ω′ ≤Ψ ω1. But ω′, ω1 |= ¬µ,
then (S2) givesω′ ≤Ψ◦µ ω1. As we has seen before,
ω ≃Ψ◦µ ω′. Thus, by transitivity,ω ≤Ψ◦µ ω1, a contra-
diction.

(H2): Suppose thatB(Ψ ⋆ α) ⊢ ¬µ, α ≺≺Ψ α ∧ µ and
there existsβ such thatβ ⊢ ¬µ α ≺≺Ψ β. By Corollary 3,
there areω ∈ [[B(Ψ ⋆ (α ∧ µ))]], ω′, ω′′ ∈ [[B(Ψ ⋆ α)]] and
ω′′′ ∈ [[B(Ψ ⋆ β)]] such thatω′ ≪Ψ ω andω′′ ≪Ψ ω′′′.
Thus, by hypothesis, we haveω |= µ andω′, ω′′, ω′′′ |= ¬µ.
Sinceω′ ≃Ψ ω′′, that is the case thatω ≃Ψ ω′′′. Thus, we
have a model of¬µ that is in the same level thanω, then
by (SH2)ω′ <Ψ◦µ ω. Now, if we suppose that there is a
modelω4 ∈ [[B((Ψ ◦ µ) ⋆ α)]] ∩ [[µ]], thenω4 ≤Ψ◦µ ω. But
ω ≤Ψ ω4 sinceω4 |= α ∧ µ. Then, by (S2) and the fact that
ω, ω4 |= µ, ω ≤Ψ◦µ ω4. Thusω ≃Ψ◦µ ω4 but ω′ <Ψ◦µ ω,
thenω′ <Ψ◦µ ω4, in contradiction with the minimality of
ω4.

Proof of Lemma 1:

Suppose thatµ is s-separated for≤Ψ. Towards a contradic-
tion, suppose thatµ is not separated for≤Ψ. Thus, we can
find a formulaβ such thatB(Ψ⋆β) 6⊢ µ andB(Ψ⋆β) 6⊢ ¬µ,
that is, there are modelsω1, ω2 ∈ [[B(Ψ ⋆ β)]] such that
ω1 ∈ [[µ]] and ω2 ∈ [[¬µ]]. But the fact thatω1, ω2 ∈
[[B(Ψ ⋆ β)]] entails, by Theorem 1,ω1 ≃Ψ ω2, in contra-
diction with our hypothesis.

Conversely, suppose thatµ is separated for≤Ψ. Towards
a contradiction, suppose thatµ is not s-separated for≤Ψ.
Thus, we can find modelsω1, ω2 such thatω2 |= ¬µ and
ω1 |= µ and ω1 ≃Ψ ω2. Put β = ϕω1,ω2

. By the hy-
pothesis,min([[β]],≤Ψ) = {ω1, ω2}. Thus, by Theorem 1,
B(Ψ ⋆ β) 6⊢ µ andB(Ψ ⋆ β) 6⊢ ¬µ in contradiction with the
separability ofµ for ≤Ψ.

Proof of Theorem 7:

(only if ) Let ◦ be an best improvement operator,i.e. a soft
improvement operator that satisfies (B1) and (B2). We want
to prove that◦ and his respective soft gradual assignment
satisfy the semantic conditions (SB1) and (SB2).

(SB1): Letω ∈ [[µ]], ω′ ∈ [[¬µ]] such thatω′ ≪Ψ ω. Fur-
thermore, suppose thatµ is s-separated inΨ. We want to
show thatω ≤Ψ ω′. Considerα = ϕω,ω′ . Sinceω′ <Ψ ω,
min([[α]],≤Ψ) = {ω′}. Thus, by Theorem 1,B(Ψ ⋆ α) ⊢
¬µ. Sinceα ∧ µ 6⊢ ⊥, and{ω} = min([[α ∧ µ]],≤Ψ), by
Corollary 3,α ≺≺Ψ α ∧ µ. Moreover, by Lemma 1,µ is
separated inΨ. Thus the hypotheses of (B1) hold and we
can concludeB((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ. So, by Theorem 1,
min([[α]],≤Ψ◦µ) 6⊆ ¬µ, i.e. ω ≤Ψ◦µ ω′.

(SB2): Assume thatµ is not s-separated inΨ. In addition,
suppose thatω |= µ, ω′ |= ¬µ andω′ <Ψ ω. We want to
show thatω′ <Ψ◦µ ω. Considerα = ϕω,ω′ . Sinceω′ <Ψ

ω, min([[α]],≤Ψ) = {ω′}. Thus, by Theorem 1,B(Ψ ⋆
α) ⊢ ¬µ. By Lemma 1,µ is not separated inΨ. Then, by
(B2), B((Ψ ◦ µ) ⋆ α) ⊢ ¬µ. Then, by Theorem 1,ω 6∈
min([[α]],≤Ψ◦µ), and as by(I3)min([[α]],≤Ψ◦µ) 6= ∅, we
concludeω′ <Ψ◦µ ω.

(if ) We know, by Theorem 3, that◦ is a soft improvement
operator. It remains to prove that◦ satisfies (B1) and (B2).

(B1): Suppose thatµ is separated inΨ, B(Ψ ⋆ α) ⊢ ¬µ and
α ≺≺Ψ α ∧ µ. We want to show thatB((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ.
Let ω ∈ min([[α]],≤Ψ). By Theorem 1,ω |= ¬µ. By the
hypothesis and Corollary 3, there existsω′ ∈ [[α ∧ µ]] such
that ω ≪Ψ ω′.Then, by (SB1),ω′ ≤Ψ◦µ ω. In fact, we
haveω′ ≃Ψ◦µ ω. Note that after soft improvement byµ
the minimal elements of[[α]] with respect to≤Ψ◦µ are at
the level ofω. Therefore,ω′ ∈ min([[α]],≤Ψ◦µ). Then, by
Theorem 1,B((Ψ ◦ µ) ⋆ α) 6⊢ ¬µ.

(B2): Suppose that µ is not separated in Ψ
and B(Ψ ⋆ α) ⊢ ¬µ. We want to show that
B((Ψ ◦ µ) ⋆ α) ⊢ ¬µ. Towards a contradiction sup-
pose there existsω′ ∈ [[B((Ψ ◦ µ) ⋆ α)]] ∩ [[µ]]. By the
hypothesis and Theorem 1,min([[α]],≤Ψ) ⊆ [[¬µ]]. Thus
ω′ 6∈ min([[α]],≤Ψ). Let ω be a model inmin([[α]],≤Ψ).
Then,ω <Ψ ω′. Since, by Lemma 1,µ is not separated in
≤Ψ, by (SB2) we haveω <Ψ◦µ ω′m in contradiction with
the minimality ofω′ ∈ [[α]] with respect to≤Ψ◦µ.

Proof of Proposition 4:

The idea for proving Propositions 4 and 6, comes from the
analysis of the number of elements in the symmetrical differ-
ence between the old epistemic state and the new epistemic



state: each unit indK(≤Ψ,≤Ψ◦µ) has its origin in two oper-
ations:creationanddestruction. Thecreationcorresponds
to the fact that there exists a new couple in≤Ψ◦µ which is
not in≤Ψ; thedestructioncorresponds to the fact that there
was a couple in≤Ψ which is not in≤Ψ◦µ. More precisely,
we will say that the couple(ω, ω′) is created by un opera-
tor ◦ (in the context≤Ψ, µ) if ω ≤Ψ◦µ ω′ andω 6≤Ψ ω′.
We will say that the couple(ω, ω′) is destroyed by un oper-
ator◦ (in the context≤Ψ, µ) if ω 6≤Ψ◦µ ω′ andω ≤Ψ ω′.
The following result, the proof of which is straightforward,
summarizes this discussion:

Lemma 2 dK(≤Ψ,≤Ψ◦µ) is the number of couples created
plus the number of couples destroyed.

Now we have the tools for establishing the key results which
allow us to prove the Propositions 4 and 6.

Lemma 3 Consider the context≤Ψ andµ. Then,
(i) Every couple created by⊘ is also created by⊙.
(ii) Every couple destroyed by⊘ is also destroyed by⊙.

Proof of Lemma 3:

First we prove part (i). Suppose that the couple(ω, ω′) has
been created by⊘, that isω ≤Ψ⊘µ ω′ andω 6≤Ψ ω′. Then,
by the totality of≤Ψ, ω′ <Ψ ω. Necessarily,ω ∈ [[µ]],
ω′ 6∈ [[µ]] andω′ ≪Ψ ω. Therefore,ω ≤Ψ⊙µ ω′, i.e. the
couple(ω, ω′) has also been created by⊙.
Now we prove part (ii). Suppose that the couple(ω, ω′) has
been destroyed by⊘, that isω 6≤Ψ⊘µ ω′ andω ≤Ψ ω′. By
the totality of≤Ψ⊘µ, we haveω′ <Ψ⊘µ ω. Necessarily,
ω′ ∈ [[µ]], ω 6∈ [[µ]] andω′ ≃Ψ ω. Thus, by S3,ω′ <Ψ⊙µ ω.
By the totality of≤Ψ⊙µ, ω 6≤Ψ⊙µ ω′, i.e. the couple(ω, ω′)
has also been destroyed by⊙.

Lemma 4 Consider the context≤Ψ andµ. Then,
(i) Every couple created by⊕ is also created by⊘.
(ii) Every couple destroyed by⊕ is also destroyed by⊘.

Proof of Lemma 4:

First we prove part (i). Suppose that the couple(ω, ω′) has
been created by⊕, that is,ω ≤Ψ⊕µ ω′ andω 6≤Ψ ω′. Then,
by the totality of≤Ψ, ω′ <Ψ ω. Thus, the only possibility of
creation arrives whenω′ ≪Ψ ω, ω ∈ [[µ]], ω′ 6∈ [[µ]] and for
any modelsω1 andω2 such thatω1 ∈ [[µ]] andω2 6∈ [[¬µ]],
we haveω1 6≃Ψ ω2 (application of SB1). In this case, it is
clear that we can apply SH1 and getω ≤Ψ⊘µ ω′, i.e. the
couple(ω, ω′) has also been created by⊘.
Now we prove part (ii). Suppose that the couple(ω, ω′) has
been destroyed by⊕, that isω 6≤Ψ⊕µ ω′ andω ≤Ψ ω′. By
the totality of≤Ψ⊕µ, we haveω′ <Ψ⊘µ ω. Necessarily,
ω′ ∈ [[µ]], ω 6∈ [[µ]] andω′ ≃Ψ ω. Thus, by S3,ω′ <Ψ⊘µ ω.
By the totality of≤Ψ⊘µ, ω 6≤Ψ⊘µ ω′, i.e. the couple(ω, ω′)
has also been destroyed by⊘.

Proposition 4 follows straightforwardly from Lemmas 2 and
3.

Proof of Proposition 6:

Proposition 6 follows straightforwardly from Lemmas 2 and
4.

Proof of Proposition 8:

The idea is to consider two cases: separated and non sep-
arated. In the first case all the soft improvement operators
have the same behavior because of (B1).

In the case non separated, the proof proceeds by cases in the
same style as Lemmas 3 and 4. The two columns of Figure
2, explain at a glance, the reasons of this minimality.
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