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Abstract

Improvement operators is a class of belief change operators
that is a generalization of the usual class of iterated bedie
vision operators. The idea is to relax the success propsty,
the new information is not necessarily believed after the im
provement, but to ensure that its plausibility has incrdase

the epistemic state. In this paper we explore this largesblas
defining several different subclasses. In particular, as-mi
mal change is a hallmark of belief change, we study what are
the operators that produce the minimal change among several
subclasses.

Introduction

Belief change is a key task for any any rational agent. Mod-
eling the evolution of the beliefs of an agent when he re-
ceives new pieces of information is the aim of belief revi-

sion. The predominant approach for modeling belief revi-
sion was proposed by Alchourrén, Gardenfors and Makin-
son and is known as the AGM belief revision framework

(Alchourrén, Gardenfors, and Makinson 1985; Gardemfor

1988; Katsuno and Mendelzon 1991).
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way. So with improvement operators the plausibility of the
new piece of information is increased, but it is not neces-
sarily believed after the change. There areother works on
belief revision operators that do not satisfy the success po
tulate, that are called non-prioritized revisions (seeifier
stance (Hansson 1997) for an overview). But none of these
works define such increase of the plausibility of the new in-
formation as done by improvement operators.

One major hallmark of belief change is the principle of
minimal change. For belief revision this means that we do
not want to allowany change in the beliefs of the agent in
order to allow the addition of the new piece of information,
we want to have aninimal change where the only changes
are the ones really required to allow the addition. The aim
of this minimal change requirement is to keep as much as
possible of the old beliefs of the agent.

In this paper we explore the operators that perform a min-
imal change among several subclasses of improvement op-
erators.

The rest of the paper is organized as follows: we give the
preliminaries in the first section. The second section is de-
voted to the introduction of improvement operators. In the

This approach has been extended in order to cope with third section we define some subclasses of improvement op-
iterated belief revision. The main approach for iterated be erators. The fourth section introduce our criterion of mini
lief revision was proposed by Darwiche and Pearl (Dar- mality. The three next sections study different classesfif s
wiche and Pearl 1997) (see also (Booth and Meyer 2006; improvement operators. The proofs are in the Appendix.

Jin and Thielscher 2007) for more recent developments and

(Rott 2006) for an overview of the different operators). One
of the main steps for addressing the iteration of the rewisio

process was to abandon logical belief bases, because of thei
lack of expressive power (see e.g. (Herzig, Konieczny, and

Perussel 2003)), for epistemic states.
In (Konieczny and Pino Pérez 2008) a generalization of
iterated belief revision operators, called improvemergrep

ators, has been proposed. The idea is to define operators o

epistemic states that have a less drastic behavior thaeter

belief revision operators. One of the major requirements of

belief revision operators is the so-called success pdstula

that imposes that the new pieces of information must be be-

lieved after the change. This is clearly required for a lot of

scenarios. But there are also some cases where we would

like to take the information into account in a more cautious

Copyright(©) 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

n

Preliminaries

We consider a propositional languagedefined from a fi-
nite set of propositional variablé8 and the standard con-
nectives. LetC* denote the set of consistent formulae of

An interpretationw is a total function front? to {0, 1}.
The set of all interpretations is denotdd An interpretation
w is a model of a formula € L if and only if it makes it
true in the usual truth functional wafj]] denotes the set of
models of the formulay, i.e., o] = {w € W | w E a}.
When{ws, .., w, } is a set of models we denote by,, ..,
aformula such thdfo,, .. w,] = {w1, .., w, }.

We will use epistemic to represent the beliefs of the agent,
as usual in iterated belief revision (Darwiche and Pearl
1997). An epistemic stat& represents the current beliefs of
the agent, but also additional conditional informationdgui
ing the revision process (usually represented by a prerorde



on interpretations, a set of conditionals, a sequence ef for
mulae, etc). Lef denote the set of all epistemic states. A
projection functionB : £ — L* associates to each epis-
temic statel a consistent formul®(¥), that represents the
current beliefs of the agent in the epistemic state

For simplicity purpose we will only consider in this paper
consistent epistemic states and consistent new informatio
Thus, we consider change operators as functomapping
an epistemic state and a consistent formula into a new epis-
temic statej.e. in symbols,o : £ x L* — £. The image
of a pair(¥, «) undero will be denoted byl o .

We adopt the following notations:

o Uo” o definedas: ¥ol o Yoa
W ontl o (P o™a)oa

e U xqa = Vo™ a, wheren is the first integer such that
B(¥ o™ a) | a.

Note thatx is undefined if there is na such thatB (¥ o™
a) F «a, but for all operators considered in this work, the
associated operatarwill be total, that is for any pai#, «
there will existn such thatB(V¥ o” o) + « (see postulate
(12) below).

Finally, let< be a atotal pre-order, i.e areflexive € ),
transitive (z < y Ay < z) — = < z) and total & <
y Vy < z) relation ovenV. Then the corresponding strict
relation< is defined ag: < y iff x < y andy £ z, and the
corresponding equivalence relations defined ag: ~ y iff
z < yandy < z. We denotay <« v’ whenw < v’ and
there is now” such thatw < w” < w’. We also use the
notationmin(A, <) = {w € A | fu’ € Aw' < w}. The
set of total pre-orders will be denot&dpP.

When a setV is equipped with a total pre-ordet, then
this set can be split in different levels, that gives the oede
sequence of its equivalence clas¥®s= (S, ...S,). So
Ve,y € S; x ~ y. We say in that case thatandy are
at the same level of the pre-order. Add € S; Vy € S;

1 < jimpliesz < y. We say in this case thatis in a lower
level thany. We extend straightforwardly these definitions
to compare subsets of equivalence classes, 4edf S; and

B C §; then we say thatl is in a lower level tharB if
1< 7.

Improvement operators

We recall in this section the definition of improvement oper-
ators

Definition 1 An operatoro is said to be a weak improve-
ment operator if it satisfies (1) to (16):

(11) There exists such thatB(¥ o" a) - «

(12) If B(?) Aat/ L,thenB(¥ x«a) = B(¥) A«

(I13) Ifa¥ L, thenB(T o)k L

(14) For any positive integen if o; = 3; for all i < n then
B(Woajo---oa,) =B(Wofio---00,)

1As in most works on iterated revision, we have chosen this
very general and abstract framework to define epistemiestaist
objects¥ and their logical beliefB(¥)) because of its simplicity
and its flexibility to capture many concrete representatioinepis-
temic states. For a formal definition of epistemic states(Bee-
ferhat et al. 2000).

(15) B(Txa)ABF BT x(aAp))
(16) If B(Ixa)AB / L, thenB(¥x(aAf)) F B(Txa)AS

Postulates (12-16) are very close to postulates (R*2-R*6)
of usual belief revision operators (Alchourron, Garaesf
and Makinson 1985; Katsuno and Mendelzon 1991; Dar-
wiche and Pearl 1997). The important difference lies in
postulate (I1) that is weaker that the usual success postu-
late (R*1). So postulates (12-16) hold for sequences of weak
improvements (whereas for revision they require only one
step).

Definition 2 A weak improvement operator is said to be an
improvement operator if it satisfies (17) to (f9)

(I7) fak pthenB((Vopu)*a)=B(¥xa)

(18) If o+ —puthenB((¥ o u) *a) = B(¥ x«)

(19) If B(¥ *a) tf =puthenB((Vo p) xa) -

These postulates correspond to the postulates for iterated
revision (Darwiche and Pearl 1997; Jin and Thielscher 2007;
Booth and Meyer 2006). Postulates (17) and (18) correspond
to postulates (C1) and (C2) of (Darwiche and Pearl 1997),
and postulate (19) correspond to postulate (P) of (Jin and
Thielscher 2007; Booth and Meyer 2006). As for the basic
postulates, the difference lies in the fact that they hold fo
sequences of improvements.

Let us now recall the corresponding representation theo-
rems (Konieczny and Pino Pérez 2008). Let us first define
strong faithful assignements.

Definition 3 A function? — <y that maps each epistemic
stateV to a total pre-order on interpretations y is said to
be astrong faithful assignmeiritand only if:

1. fw | B(¥) andw’ = B(¥), thenw ~g w’
2. Ifw = B(¥) andw’ (£ B(P), thenw <g w’
3. For any positive integen if o; = §; for any: < n then
S\I/oalo---oan: S\Poﬁlo---oﬁn
So now we can state the representation theorem for weak
improvement operators:

Theorem 1 A change operatos is a weak improvement op-
erator if and only if there exists a strong faithful assigmne
that maps each epistemic staketo a total pre-order on in-
terpretations<y such that

[B(Y x )] = min([af, <v) 1)

Let us now give the representation theorem for improve-
ment operators:

Definition 4 Let o be a weak improvement operator and

¥ —<y its corresponding strong faithful assignment. The
assignment will be called a gradual assignment if the prop-
erties S1, S2 and S3 are satisfied:

(S If w,w’ € [[a] thenw <y W' < w <yon W
(S2)If w,w’ € [-a] thenw <g W' & w <goq W

2For coherence reasons we change the names of the classes of
operators with respect to (Konieczny and Pino Pérez 20@&re
“Improvement operators” was the class of operators satigffl1-
111).



(S3)If w € [[o],w € [~a] thenw <g W' = W <goq W’

Theorem 2 A change operatos is an improvement opera-
tor if and only if there exists a gradual assignment such that

[B(¥ * )] = min([a], <w)

This theorem is a direct consequence of the theorem of
(Konieczny and Pino Pérez 2008) (see Theorem 4 below)
when removing (110) and (111) from the set of postulates
and the corresponding conditions (S4) and (S5) from the as-
signment.

Belief Revision

In order to show that improvement operators are a general-
ization of iterated belief revision operators considerftiie
lowing usualsuccesgsostulate:

(R*1) B(¥oa)t «

Note that this postulate is the one that makes a distinction
between usual belief revision operators and non-prietiz
revision operators. Note also that (R*1) is a particulaecas
of (11) wheren = 1.

Proposition 1 If o is a weak improvement operator (i.e. it

satisfies (11-16)) that satisfies (R*1), then it is a AGM/DP
revision operator (i.e. it satisfies (R*1-R*6) of (Darwiche

and Pearl 1997)).

Proposition 2 If o is an improvement operator (i.e. it sat-

isfies (11-19)) that satisfies (R*1), then it is an admissible
revision operator (i.e. it satisfies (R*1-R*6) and (C1-C4) o

(Darwiche and Pearl 1997) and property (P) of (Booth and
Meyer 2006; Jin and Thielscher 2007)).

Soft Improvement
As shown in the last section usual iterated belief revision

operators are a special case of weak improvement operators.

This is a well known subclass. But the family of weak im-

In fact, the only admissible change of status is that the
formulay that is rejected by the agent after several improve-
ments bya can become undetermined after a soft improve-
ment by and several improvements by At least another
step of soft improvement by will be required in order to
accept this formula by the agent after several improvements
by . This motivates the name “soft” improvement.

We can give a representation theorem for soft improve-
ment operators:

Definition 6 Let o be a weak improvement operator and

¥ —<y its corresponding strong faithful assignment. The
assignment will be called a soft gradual assignment if it is a
gradual assignment and if the following property holds:

(S If w € [[of,w € [-a] thenw' <y w = W' <gouq w

Theorem 3 A change operatos is a soft improvement op-
erator if and only if there exists a soft gradual assignment
such that

[B(¥ x @] = min([a], <v)

Again, this theorem is a direct consequence of the theo-
rem of (Konieczny and Pino Pérez 2008) (see Theorem 4
below) when removing (I111) from the set of postulates and
the corresponding condition (S5) from the conditions of the
assignment.

Another explanation of soft improvement can be given
thanks to this representation theorem. Thinking the infor-
mation in the epistemic states is ranked by degrees of belief
(in a discrete scale), the degree of beliefioffter a soft
improvement by, can be at most the degree immediately
inferior (more plausible) ta in the original epistemic state.

There are several operators in the class of soft improve-
ment, that have quite different behaviors. So we will try to
identify some specific behaviors for soft improvement oper-
ators, and to study what are the minimal change operators in
each of these classes.

There is one important difference between soft improve-
ment operators: some of them can be defined locally, by

provementoperators is much larger than that, and we want to |looking only at the information of similar plausibility, vilk

explore further some of its subclasses. Belief revisiorr-ope

some of them are defined globally, i.e. they require to look

ators are the weak improvement operators that produce the at the whole epistemic state. We call this locality property
biggest change in the epistemic state. We investigate here modularity, and we express it in a general manner on strong

the opposite of the weak improvement operators spectrum,
i.e. operators of soft improvement, that produce the sistalle

faithful assignments.
Let f be a boolean function, i.ef : {0,1}" — {0,1},

change. We propose some subclasses of soft improvementthen the expressions used as inputs bés to be understood

operators by providing additional postulates and the eorre
sponding representation theorems.

So we are interested in soft improvement operators de-
fined below:

Definition 5 An improvement operator is said to be a soft
improvement operator if it satisfies the following postelat

(110) If B(¥ x ) F —puthenB((Vo pu) xa) t/ u

This postulate says literally that a formulathat is re-
jected by the agent after several (soft) improvements by
can not be accepted after a soft improvementtand sev-
eral improvements by.

as boolean conditions (i.e. < y returnsl if the relation is
true and if it is false).

Definition 7 Let o be a weak improvement operator. Let
¥ — <y be the associated strong faithful assignment.

LetN, = {w' : v ~¢g w}and N, = {v' 1w <y
w'}. We say that the assignmefit — <y is modulariff
there exists a boolean functigh: {0,1}° — {0,1} such
that :

for anyw, if w', w” € N, U Ny 41 then
W' <yoo " = f(w <y w”,w" <g W', [a] NNy, =0,

[al N Nyy1 = 0,w" € [of,w” € [o])
<wou IS completely determined by the previous equality
and transitivity of the relation.



A weak improvement operator is modular iff its associated
strong faithful assignment is modular.

So this modularity property states that the plausibility re
lation between two interpretations in two consecutiveleve
of plausibility after the improvementis a function of (ithe
only pieces of information required are): the relation be-
tween the two interpretations before the improvement (the
two first inputs); the fact that there are (or not) models ef th
new piece of information in the two levels considered (the
third and fourth inputs); and the fact that the models con-
sidered satisfy the new piece of information or not (the last
two inputs).

Intuitively this property expresses the fact that for know-
ing the change of plausibility of interpretations it is egbu
to look at two consecutive levels.

Definition 8 A soft improvement operator imodularif its
associated soft gradual assignment is modular.

Thus, the class of modular soft improvement operators is
formed by the weak improvement operators which are soft
and modular at the same time. We will see below that this
class of operators have an easy and compact description.

One can state another property that identify an important
difference on the behavior of soft improvement operators:

Definition 9 A soft gradual assignment issystematic en-
hancemenif:
(Sse)lf w = —a, w' E aandw <y w', thenw Lgon w’

This property states that (the plausibility of) every model
of the new piece of informatiom is systematically im-
proved. That means that if a model of the negatiorvof
was just a little more plausible before the improvement than
a model ofq, then it is no longer the case after the im-
provement (the model ok will be at least as plausible as
the model of the negation).

So we will identify three different classes of softimprove-

ment operators, from the most general one to the most spe-

cific one:

Soft Improvement (SI) operators that correspond to soft
gradual assignments.

Modular Soft Improvement (MSI) operators that corre-
spond to modular soft gradual assignments.

Systematic Soft Improvement (SSl)operators that corre-
spond to systematic enhancement assignments.

In the following sections we will study the minimality of

For improvement operators, as the representation theorem
states that each operator corresponds to a gradual assign-
ment (and if we consider this representation as the canlonica
one), we can consider these operators as transitions betwee
total pre-orders. In this case there is a natural measure of
change: the Kemeny distance (Kemeny 1959) between the
old pre-order (the pre-order associated to the old epistemi
state) and the new one.

Definition 10 The Kemeny Distance is the functidg :
TP x TP — N defined as: giver, <s two total pre-
orders,dk (<1, <5) is the cardinal of the symmetrical dif-
ference of the pre-ordersg. the number of elements i,
which are notin<s plus the number of elementsdty which
are not in<;. In symbols we have

di (<1, <2) = [(£1\ <2) U (L2 )\ <)

Definition 11 Leto; andosy be two improvement operators.
We say that, produces less change thanif for any epis-
temic statel and any formulau:

dr (Sv, <worp) < dr(Sw, <wosp)

So this definition means that an operator produces less
change than another one if on all possible improvements the
first one produces less change (with respect to Kemeny dis-
tance) than the second one.

Example 1 SupposéV = {w1,ws,ws,ws}. Consider two
improvement operators; ando,. Let ¥ be an epistemic
state where<y is its respective pre-order given by the grad-
ual assignment (see the figure below). Lebe a formula
such that[[u] = {ws,ws}. Suppose that the pre-orders
<wo,p and <y.,, are the results of the improvementf
by the new informatiop with respect the operators, and

oo respectively.

Dy e——wze— ey e~ Wz
— T — O3 8 — O
<y <woyu Swoou

dK(S\II, S\POUL) =3 anddK(Sq;, S\IJOQH) = 2. So on this
exampleo, produces less change than (but to conclude
that o, produces less change than this has to be checked
for all cases).

Systematic Soft Improvement
Before giving the postulate which characterizes the behav-

operators in these classes. But we have to define first what ior of operators in this class, we need some notations.

is our minimality criterion.

Minimality

Definition 12 Let o be a change operator satisfying (11).
Let o, 8 and ¥ be two formulae and an epistemic state
respectively. We say that is below s with respect to?,

One major objective of belief change theories is to define giveno, denoteda <y S (or simply o <y § if there
operators that produces minimal change in the beliefs of the is no ambiguity about) if and only ifa ¥ 1, 8 ¥ 1,
agent. Thisis a natural requirementbecause beliefsare val B(¥xa) - B(¥x(aVF)) andB(¥x0) I/ B(¥*(aV 3)).
able, so we want to keep as much as possible the old beliefs  The pair (¢, 3) is ¥-consecutive, denotedl <3, 5 (or
of the agent (no unnecessary forgetting), and because wesimplya <y 3 if there is no ambiguity abouf) if and only
want the agent to be rational by not adding exotic beliefs if « <g 8 and there is no formulg such thate <y v <y
(no unjustified addition). s.



So now, let us introduce an additional postulate in order
to characterize operators of systematic soft improvement:
(111) If B(¥ % o) F
B(( o p)*a) b~

-n and a <<y o A p then

And we can state a corresponding representation theorem:

Theorem 4 A change operatop is a systematic soft im-
provement operator if and only if there exists a systematic
enhancement such that

[B(¥ x )] = min([af, <v)
This is essentially the main Theorem in (Konieczny and

This postulate is very close from (H1), and deals with the
case where the revision (i.e. sequence of improvements unti
success) byv implies the negation ofi, but 4 and—u are
both a little less plausible thanu, then an improvement by
1 will not be enough to remove its negation from the beliefs
of the agent.

Definition 13 A soft improvement operator which satisfies
(H1) and (H2) is called a half improvement operator.

We can also define these operators semantically:

Definition 14 Let o be a soft improvement operator and
¥ —<y its corresponding soft gradual assignment. The
assignment will be called a half gradual assignment if the

Pino Pérez 2008). The only difference is that condition following properties (SH1) and (SH2) are satisfied:

(Sse) is used in the assignement instead of condition (S5)

in (Konieczny and Pino Pérez 2008):
(SHIf w € o] ,w €[-af thenw <y w = w <goq W

(SH1) If w € [[u],w’ € [~u],w’ <v wandfw” € [-4]

such that” ~¢ w, thenw <go, w'.

(SH2) lfw e [u],w € [~u],v <y wand3w” € [—u]

Clearly (Sse) and (S5) are equivalent in the presence of gych that,” ~y w then,w’ <wop w.

others (S1-S4) conditions.

As explained in (Konieczny and Pino Pérez 2008), there is
only one operator of systematic soft improvement (once the
pre-order associated to the initial epistemic state is jixed
We will call this operator one-improvement, and denote it
0.
The fact that this is the only operator of this class implies
straightforwardly that it is the one that produces the madim
change.

Note that both (SH1) and (SH2) use only information on
the new formula, the old relation ¢ between the two in-
terpretations, and the interpretations that was at the same
level of w. This means that the half-gradual assignement is
a modular assignement.

We can now state the representation theorem:

Theorem 5 A change operatos is a half improvement op-

So condition (Sse) can be considered as very strong, since erator if and only if there exists a half gradual assignment

it defines a class of soft improvement operators that comtain
only one operator. But, first we consider that (Sse) is very
sensible, so it is interesting to study its consequences. An
secondly recall that the class of weak improvement opesator

is wider than soft improvement operators, and (Sse) can also

prove valuable to discriminate operators in other classes.
For instance we can remark that it allows to discriminate
belief revision operators, since Boutilier's natural ston
(Boutilier 1996) and Darwiche and Pearloperator (Dar-
wiche and Pearl 1997) do not satisfy (Sse), while Nayak’s
lexicographic operator (Nayak 1994; Konieczny and Pino
Pérez 2000) does.

Modular Soft Improvement

such that
[B(¥*a)]| = min([a], <w)
In fact, just as for one-improvement we can prove that:

Proposition 3 Once the pre-order associated to the first
epistemic state is fixed, there is a unique half-improvement
operator. Let us denote this operator.

Half-improvement is not the only operator in the class of
modular soft improvement. Actually, in the class of modular
soft improvement operators there are only two operators:
the half and the one operator:

Theorem 6 The class of modular soft improvement opera-
tors is exactly the seto, o}

The proof follows easily of the the observation that the

Modular soft improvement are operators that can be defined two columns in Table 1 are the only possibilities explaining

locally, by looking at beliefs of similar plausibility. THel-
lowing syntactical postulates try to capture this idea.

(H1) If B(T%xa) b —p,a Xy a A p and—-38(6 + —p
anda <y G), thenB((¥ o ) * ) b/ =

the behavior of a modular soft improvement operator and
they are exactly the ando operators respectively.

We can show that half-improvement produces less
changes than one-improvement:

Proposition 4 Let ¥ be an epistemic state (a total pre-

This postulate means that when the revision (i.e. sequence order). Then for all formula.,

of improvements until success) byimplies the negation of

u, if pis just a little less plausible than its negation given
«, then an improvement by will be enough to remove its
negation from the beliefs of the agent. Note that this postu-
late is weaker than (111).

(H2) f B(T xa) F —p, @« <y a A pand3p(s + —pand
a <y 0),thenB((¥ o p) xa) F —p

dr (Sv, <wou) < dx (S, <wou)

That is, the operatop produces less changes than the oper-
ator o.

Actually, with Proposition 4 and Theorem 6 we have the
following result:

Corollary 1 Half-improvement operator is the minimal op-
erator in the class of modular soft improvement operators.
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w € ||
o' 6[[[[0]}]] w<g w & w <go, W w<g w & w <gpa W w <y w & w <ggo W
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WLy W = W Ly w if (i) <w W Lyga w if (&)

Table 1: From<y to <goo. We notew<w’ whenw < w’ andw €« w'. W is
true wherflw” € [-a] w” ~¢ w. & means that is separated i,

Looking for the Best Soft Improvement

Now we move to the general class of softimprovement oper-
ators. The fact of not satisfying modularity allows to define
much more different operators. This allows also to define an
interesting soft improvement operator producing the small
est change under certain conditions.

In order to simplify the presentation of the postulates we
introduce the following definition:

Definition 15 p is separated inV iff VG(B(¥ x 8) F
wor B(UxfB) F —pu).

This definition of separation of a formula in an epistemic
state means that any revision (and improvement) of this epis
temic state will always give epistemic states that are in-
formed about this formula (i.e. the formula or its negation
can be inferred).

Definition 16 A soft improvement operator which satisfies
the following two postulates is called a best improvement
operator

(B1) If pu is separated in¥V, B(V x a) + —u and
a <<y aAp,thenB((Top)*xa)t/ —u

(B2) If pis notseparated i and B(¥ % «) - —pu, then
B((Top)xa)k —pu

Postulate (B1) is close to postulates (H1) and (111), but
it holds only when the formula is separated in the epistemic
state.

Postulate (B2) states that, when the formula is not sepa-

assignment will be called a best gradual assignment if the
following properties

(SB1) If u is s-separated iKy, w € [[u], w € [-x] and

W <y wthenw <go, w'.

(SB2) If u is not s-separated irCy, w € [u]],w’ € [-u]
andw’ <y wthenw’ <go, w.

The two notions of separation are clearly related:

Lemma 1 Leto be a weak improvement operator. Then,
is separated inV iff i is s-separated iy .

Let us give now the corresponding representation theo-
rem.

Theorem 7 A change operatos is a best improvement op-
erator if and only if there exists a best gradual assignment
such that

[B(¥ x @] = min([a], <v)

And, as for one-improvement and half-improvement, we
can show that there is only one best-improvement operator:

Proposition 5 Once the pre-order associated to the first
epistemic state is fixed, there is a unique best-improvement
operator. We denote this operator by

These unigueness results are important since few change
operators are axiomatically defined (usual charactedgzati
in belief revision define families of operators).

Let us now turn to the minimality issue.

Proposition 6 Let ¥ be an epistemic state (a total pre-

rated in the epistemic state (which is the general case), the order). Then for all formulaz,

change is the same one than with (H2).

We can give a semantical counterpart to these postulates.

Definition 17 . is s-separated i<y iff Jw; € [u],ws €
[—p] stwr ~g wo

Definition 18 Let o be a soft improvement operator and
¥ —<y its corresponding soft gradual assignment. The

dx (Sw, <weu) < dx (S, <wou)

That is, the operatos produces less changes than the oper-
ator o.

As a corollary from the previous propositions we have the
following result:



Proposition 7 Among the operators, » andg the opera-
tor & is the operator that produces minimal change. —

It is easy to figure out soft-improvement operators that
produces less change than best-improvement. In fact
the soft-improvement operator that produces the smallest v, <, Sy
change is the one that increases the plausibility of only one
level of models of the new formula (this level is not ran-
domly chosen, but is the one which produces the less change
for the Kemeny distance). It seems to us that defining this ___
minimal change operator is not of great interest, since this
operator will not have a clear meaning from a logical point <v0u i 2o Mo
of view. It is of no use to look at absolute minimization if it
costs too many logical properties (recall that Boutilier-
ural revision operator (Boutilier 1996), although achieyi
the minimal change for a belief revision operator, make itat —————— —
a price of bad logical properties (Darwiche and Pearl 1997)) p— JR—

So, amongst improvement operators that do not add ar-

< < <
bitrary choices in the choice of the models of the new in-  — '@¥ ="20p =Ysou
formation to be improved, best-improvement is the one that
produces the smallest change: -
Proposition 8 Best-improvement operator is the soft im- T
provement operator satisfying (B1) that produces the small o o
est change. <v,oun <wyau Swsepu
Example 1 shows that in some caseproduces strictly Figure 1: Examples of Soft Improvements

less changes than(o; wase ando;, wase). The following
example shows that in some casegproduces strictly less
changes than. Interpretations are not represented on the figures, we just
represent the “levels” where the interpretation are Iatate
Gray lines represent the new formuyla so models of this
formula are located on these gray levels. Black lines repre-
sent the levels with models of.

In the <y, case, the three operators lead to the same re-
sult. This is the case wheyeis separated i ;.

Example 2 SupposéV = {w1,ws,ws,ws}. Consider the
improvement operators ande. Let¥ be an epistemic state
where<y is his respective pre-order given by the gradual
assignment (see the figure below). Letba formula such
that [u]] = {ws,ws}. The pre-orders<ye, and<yy, are
the results of the improvement ¥fby the new information

1 with respect the operators and o respectively. The <y, case shows a situation where every model of
the new formulay is equivalent to a model of its nega-
W tion. In this case half-improvement and best-improvement
4o 98 08— sl give the same result, that produces less change than the

result obtained with one-improvement. So the change
is smaller. Remark that to obtain the same result as
e e i one-improvement it will just require another iteratiore.i.

SUop=SV0uon=SUsdudu-

S\I’ S\IJEDH S\I/®u . . . .
) The <y, case is the most interesting. It is a more usual
It is not hard to see thatlx (<w,<we,) = 1 and that case, and it shows the difference of behaviors of the three
dr (Zw, <wou) = 2. operators. It clearly shows that in the general case best-
Table 1 summarizes the behavior of operatars ande. improvement produces less change than half-improvement,
that produces less change than one-improvement. To ex-
Example plain intuitively the change obtained by the three opegator

one-improvement increase the plausibility of each model
We provide some examples of improvements in this sec- of the new formula by moving it to the first (w.r.t its cur-
tion, in order to illustrate the behavior (and the differ- rent position) lower level of models of its negation. Half-
ences) of one-improvement, half-improvement and best- improvement increase the plausibility of each model, but
improvement. only by a “half-level” (i.e. if the model of the new for-
Figure 1 shows how three epistemic states, whose asso-mula was equivalent to a model of its negation then now
ciated pre-orders ar€y, , <v,, <w,, are changed through it is strictly more plausible, but not as plausible as thedow
the three soft-improvement operators studied in the previ- models of the negation. And if the model of the new formula
ous sections (one-improvementhalf-improvement, and was not equivalent to a model of its negation, then now it is
best-improvemern). moved to the first lower level of models of the negation).
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For Best-improvement, as there are some models of the new With the help of the previous Proposition is easy to obtain
formula that was equivalent to model of its negation, then the following two Corollaries giving characterizationsref
only these models have their plausibility improved (from a lations<y and<y.

“half-level”). .
) Corollary 2 Leto be a weak improvement operator. Then

Conclusion and Related Work a <y f if and only if there existv, w’ such thatw €

/ /

In this paper we have started the investigation of soft im- [B(*a)], v’ € [BOY*B)], w <w w',
provement operators. Softimprovement operators are a sub-Corollary 3 Let o be a weak improvement operator. Then
class of weak improvement operators, just as belief ravisio « <y 3 if and only if there existv, w’ such thatw €
operators are. See Figure 2 for a map of weak improvement [B(U x «)]], w’ € [B(¥ x3)], w <y w’ and there is no
subclasses. We defined two subclasses of soft improvementyy” such thatw <¢ w” <¢ w'.
operators: modular soft improvement operators and system-
atic soft improvement operators. For each of this class we Letus now turn to the proof of the theorem.
provide a prototypal operator, that we characterize Idyica  (only if) Let o be an half-improvement operatég. a soft
and for which we provide a representation theorem. We also improvement operator that satisfies (H1) and (H2). We want
study these operators with respect to minimal change, when to prove thato and his respective soft gradual assignment
this minri]mality isdcompgte_d Uginhg the rlfﬁ;]meﬂy distance be- satisfy the semantic conditions (SH1) and (SH2).
tween the pre-orders obtained through the assignments. ) ' '

; N (SH1): Letw € [[u], v’ € [—p] such thaty’ <¢ w. And
~ ldeas close to the ones behind the definition of the one- suppose there i[g rﬂw” c [[EM]]]]such thats” ~g w. Con-
improvement operator alr_eady appeared in some works such sidera — ¢, . andu = .. Sincew’ <y w, min([a], <
as (Cantwell 1997; van Ditmarsch 2005; Laverny and Lang " _ (W', UiI"CFlus, by Theorem B(W *‘I’a)' F . éiﬁge

2005), but there was no logical characterization in all ¢hes o
works. As far as we know there is no work mentioning ideas aAplf L and{w} = min([aA p], <v) by Corollary 3,

~—

close to half-improvement or best-improvement. o <w ahp.
Towards a contradiction, suppose that there existich
Acknowledgements that 3 - —p anda =g (. By Corollary 3, 30" €
The third author was partially supported by the project [B(¥ x a)] and3w” € [B(¥ o 3)] such thatw” <y w"”.
CDCHT-ULA N° C-1451-07-05-A. As w" ~g ', necessarilyy’ <y w”. As, by hypothesis,
w' <y w, necessarily ~y w”, butw” = - a contra-
Appendix diction. Thus, there is no a formulasuch that - - and

a <y B. Then, by (H1),B((¥ o u) * ) t —u. Thus, by

We need to state some auxiliary results before the main ;geﬁﬁﬁm¢1$in'|('gae],]{’i\fﬁa%a%, gﬂ’)iﬁ‘[ﬁnﬁ[oﬁ}ggﬁa

proof. First of all, remark that the following Propositiana thereforew <o, w'.
consequence of Theorem 1 (The proof is in (Konieczny and -
(SH2): Letw € [u], " € [-u]. be such that' <¢ w

Pino Pérez 2008)): ;
! z ) and suppose that theredg' € [[-u] such thatv ~y w".
Proposition 9 Leto be a weak improvement operator. Then  Considera = ¢, andpu = ¢,,. Then, by Corollary 3,

Proof of Theorem 5:

B(VU xa) or we havea <y a A p. Furthermore{w’} = [B(V % a)]
B(Ux(aV ) =< B(Yxpj)or anda A p t/ L. Consider the formulad = ¢, and note
B(VU %) V B(¥  3) thatg - —p andw’ g w”. Sincew” € [B(¥ x 3)], by



Corollary 3, <y (. Then, by postulate (H2)B((¥ o
) * o) F —p. Thus,min([ef, <w.n) € [-u]. Then,
min([af, <w.,) = {w’} and therefore,’ <y, w.

(if) We know, by Theorem 3, that is a soft improvement
operator. It remains to prove thasatisfies (H1) and (H2).

(H1): Suppose thaB(¥ x o) - -, @« K¢ a A pand there
is no 8 such that3 - -y anda ¢ 8. We want to show
that B((¥ o p) * ) I/ —pa.

Sincea <y «a A u, by Corollary 3, there arer andw’
such thatw € [B(¥ * (A p))], w € [B(¥*«)] and
w' <y w. This, together with the hypothesis, entails
w € [p]] andw’ € [-p]. Towards a contradiction, suppose
that there isv” € [[—u] such that” ~¢ w. Consider the
formulay,. Then ¢, = —p andw” € [B(Y * @ )]-
Sincew’ <y w andw’ <y w”, by Corollary 3, we obtain
a <y ., acontradiction. Thusfw” € [-u] such that
w” ~g w. Then, from (SH1) followsy <y, . Since

* satisfies the property (110), by Theoremx3lso satisfies
(S4). Thereforey’ <go, w. ThusSW' ~go, w.

In order to prove thatB((¥ o u) x a) B/ —pu, we will
prove that[B((V o u)) x )] N [u] # 0. We claim that
w € min([lof], <w.,) and sincev = u we get the previ-

ous inequality. Towards a contradiction, suppose the claim

false,i.e. there is a model; € min([[a], <w.,) such that
w1 <wou w. We have two casesy =y Orwy = .

Case 1l:w; | p. In this case we have, E a A p.
Sincew € [B(¥ * (a A u))], by Theorem 1, necessarily
w € min([Ja A pfl, <g). In particularw <y w;. Thus, by
(81),w <wou w1, a contradiction.

Case 2:w; = —u. In this case we have; E o A —pu.
Sincew’ € [[B(¥  «)], by Theorem 1, necessarily €
min([[a]], <g). In particularw’ <g w;. Butw’,w; = —p,
then (S2) givesy’ <go, wi. As we has seen before,
w ~yoyu w'. Thus, by transitivityw <go, wi, a contra-
diction.

(H2): Suppose thaB(¥ x o) F —u, @« K¢ a A pand
there exists3 such that - - o <y (. By Corollary 3,
there arev € [B(¥ % (o A p))]), w',w”" € [B(¥ * a)] and
w" e [B(¥ xB3)] such thaty’ <y w andw” <y w'.
Thus, by hypothesis, we havel= p andw’, w”, " | —p.
Sincew’ ~g ", that is the case that ~¢ w'”’. Thus, we
have a model of- that is in the same level than, then
by (SH2)w' <., w. Now, if we suppose that there is a
modelw, € [B((V o ) * )] N 1], thenwy <y, w. But

w <y wy Sincewy = a A p. Then, by (S2) and the fact that
w,wy =y w <gop wa. ThUSW g, wy BUtW <gop w,
thenw’ <go, wa, in contradiction with the minimality of
w4q. 1

Proof of Lemma 1:

Suppose that is s-separated foxy. Towards a contradic-
tion, suppose that is not separated foxy. Thus, we can
find a formulgs such thaB (¥ x3) t/ p and B(U*3) t/ —p,
that is, there are models,,w; € [B(¥  3)] such that
w1 € [uf] andws € [—p]. But the fact thatvy,ws €
[B(¥ * B8] entails, by Theorem Ly ~g¢ we, in contra-
diction with our hypothesis.

Conversely, suppose thatis separated foKy. Towards
a contradiction, suppose thatis not s-separated fofy.
Thus, we can find models;,w, such thatws = —u and
w1 | pandw; ~g we. PUtf = ¢, o,. By the hy-
pothesismin([3], <w) = {w1,w2}. Thus, by Theorem 1,
B(¥ x 8) t/ pandB(¥ % ) I/ —u in contradiction with the
separability ofu for <g.

Proof of Theorem 7:

(only if) Let o be an best improvement operatoe, a soft
improvement operator that satisfies (B1) and (B2). We want
to prove thato and his respective soft gradual assignment
satisfy the semantic conditions (SB1) and (SB2).

(SB1): Letw € [[u]l, «" € [~4] such thaty’ <y w. Fur-
thermore, suppose thatis s-separated i. We want to
show thatv <y w’. Considerx = ¢, . Sincew’ <y w,
min([[a],<g¢) = {«’}. Thus, by Theorem 1B(¥ x o)
. Sincea A p b/ L, and{w} = min(Ja A u], <), by
Corollary 3, <y «a A u. Moreover, by Lemma 1y is
separated in?. Thus the hypotheses of (B1) hold and we
can concludeB((¥ o u) x ) I —pu. So, by Theorem 1,

min(([a]], <woy) € i, 18w Syoy .

(SB2): Assume that is not s-separated ir. In addition,
suppose that E u,w’ E —p andw’ <g w. We want to
show thatw’ <., w. Consider = ¢, .. Sincew’ <y
w, min([[of, <y) = {w’'}. Thus, by Theorem 1B(¥
«) b —p. By Lemma 1, is not separated iv. Then, by
(B2), B((¥ o ) * &) = —p. Then, by Theorem 1y ¢
min([[a]], <yo,), and as by(3)nin([a], <we,) # 0, we
concludew’ <y, w.

(if) We know, by Theorem 3, thatis a soft improvement
operator. It remains to prove thasatisfies (B1) and (B2).

(B1): Suppose that is separated i/, B(¥ * «) - —p and
a Ky a A p. We want to show thaB(( o p) * a) tf —p.
Letw € min([a], <w¢). By Theorem 1w = —u. By the
hypothesis and Corollary 3, there existse [« A u] such
thatw <g w’.Then, by (SB1)w' <., w. In fact, we
havew’ ~g,, w. Note that after soft improvement y
the minimal elements ofa] with respect to<g,, are at
the level ofw. Thereforew’ € min([[a]], <wo,). Then, by
Theorem 1LB((V o p) * &) I —ps.

(B2): Suppose thatp is not separated inV
and B(V x @) F -pu.  We want to show that
B((¥ o u) *x @) F —u. Towards a contradiction sup-
pose there exists’ € [B((¥opu)*a)] N [x]. By the
hypothesis and Theorem thin([[a]], <g) C [-x]]. Thus
W' ¢ min([o],<y). Letw be a model inmin([[«], <y).
Then,w <y w’. Since, by Lemma 1 is not separated in
<w, by (SB2) we havev <g., w'm in contradiction with
the minimality ofw’ € [a] with respect to<y.,,. i

Proof of Proposition 4:

The idea for proving Propositions 4 and 6, comes from the
analysis of the number of elements in the symmetrical differ
ence between the old epistemic state and the new epistemic



state: each unitidx (<v, <w.,) has its origin in two oper-
ations: creationanddestruction The creationcorresponds
to the fact that there exists a new coupledin,, which is
not in <y; thedestructioncorresponds to the fact that there
was a couple irky which is not in<y,,. More precisely,
we will say that the coupléw, w’) is created by un opera-
tor o (in the context<y, p) if w <go, W andw Ly W'
We will say that the couplév,w’) is destroyed by un oper-
atoro (in the context<y, ) if w Lo, W andw <y w'.
The following result, the proof of which is straightforward
summarizes this discussion:

Lemma 2 dx (<w, <wo,) is the number of couples created
plus the number of couples destroyed.

Now we have the tools for establishing the key results which
allow us to prove the Propositions 4 and 6.

Lemma 3 Consider the context ¢ andu. Then,
(i) Every couple created by is also created by.
(ii) Every couple destroyed hyis also destroyed by.

Proof of Lemma 3:

First we prove part (i). Suppose that the coufplew’) has
been created by, that isw <gg, v’ andw Zg w’. Then,
by the totality of <y, w’ <¢ w. Necessarilyw € [u],

W ¢ [p] andw’ <g w. Thereforew <y, o', i.e. the

couple(w,w’) has also been created by

Now we prove part (ii). Suppose that the coufilew’) has
been destroyed by, that isw Lyp, v’ andw <g¢ w’. By

the totality of <g,,, we havew’ <gg, w. Necessarily,
W € [pf, w ¢ 1] andw’ ~¢ w. Thus, by S3w’ <we, w.

By the totality of <y, w Lo, W', i.€. the couplgw, w’)

has also been destroyed by i

Lemma 4 Consider the contexty andu. Then,
(i) Every couple created hy is also created by.
(ii) Every couple destroyed hyis also destroyed by.

Proof of Lemma 4:

First we prove part (i). Suppose that the coufplew’) has
been created by, that is,w <yg, v’ andw £y . Then,
by the totality of<y, w’ <y w. Thus, the only possibility of
creation arrives whet' <g w, w € [uf], w’ ¢ [u] and for
any modelsv; andws, such thatv; € [u]] andws & [-4]),
we havew; %y wo (application of SB1). In this case, it is
clear that we can apply SH1 and get<g,, «’, i.e. the
couple(w,w’) has also been created by

Now we prove part (ii). Suppose that the coufilew’) has
been destroyed by, that isw Lyg, v’ andw <g¢ w’. By
the totality of <gq,, we havew’ <gye, w. Necessarily,
W' € [pf, w ¢ [u] andw’ ~g w. Thus, by S3w’ <wg, w.
By the totality of <y, w Lwo, ', i.€. the couplgw, w’)
has also been destroyed by i

Proposition 4 follows straightforwardly from Lemmas 2 and
3. i

Proof of Proposition 6:
Proposition 6 follows straightforwardly from Lemmas 2 and

Proof of Proposition 8:

The idea is to consider two cases: separated and non sep-
arated. In the first case all the soft improvement operators
have the same behavior because of (B1).

In the case non separated, the proof proceeds by cases in the
same style as Lemmas 3 and 4. The two columns of Figure
2, explain at a glance, the reasons of this minimality.
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