On the Frontier between Arbitration and Majority

Sébastien Konieczny
IRIT
Université Paul Sabatier
31062 Toulouse Cedex - France
koniecznyQirit.fr

Abstract

We give in this paper new results on merging
operators. Those operators aim to define the
beliefs (or goals) of an agents’ group from the
individuals beliefs (goals). Using the logical
framework of [KP99] we study the relation-
ships between two important sub-families of
merging operators: majority operators and
arbitration operators. An open question was
to know if those two families are disjoint or
not. We show that there are operators that
belong simultaneously to the two families.
Furthermore the new family introduced al-
lows the user to choose the “consensual level”
he wants for his majority operator.

1 Introduction

When several agents interact in order to achieve a com-
mon task, they have to agree from time to time on
what are the beliefs (or the goals) of the group. When
some agents disagree on these common beliefs (goals),
then one has to enter in a negotiation process. The
problem is that sometimes the negotiation step do not
rule out all the conflicts. But, even in this case, the
group has to take a decision on what are its beliefs
(goals) to carry on. So, in such cases, an aggregation
step is needed between agents wishes.

So, formally, when a decision has to be taken about be-
liefs (goals) of the group, we can consider this as a two
step process. First, a negotiation step allows agents
to try to convince undecided or opponents. Then,
when all agents have fixed opinions, an aggregation
step states what are the common beliefs (goals) of the
group.

The first step of this process has been extensively stud-
ied in multi-agents works (see e.g. [APMO00] for an
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example of formalisation of negotiation by means of
argumentation). But the second one is usually only
quickly quoted. Indeed, in most of those works, when
some conflict is not solved after the negotiation step,
one uses expeditious means to solve the conflicts. For
example, by supposing the existence of some oracle
that decides what is the good solution, or by using a
preference relation between agents denoting the rela-
tive reliability of each source. But, even if those so-
lutions often allow to rule out the conflicts, the basic
problem is not solved and there still are problems in
some cases. For example, it is not realistic to sup-
pose that an oracle exists and always knows the good
answer. And in the case of using a reliability order-
ing, there are cases where some equally reliable agents
disagree and we are back with our basic problem.

The formal framework for solve this belief (goals) ag-
gregation step, is the use of knowledge merging oper-
ators [CH97, Cho98, BKMS92, LM99, Rev97, Kon00].

In some related works different sets of logical prop-
erties that knowledge merging operators have to sat-
isfy have been proposed [Rev97, LS98, LM99, KP98,
KP99]. Those logical characterisations are used to de-
fine a taxonomy of merging operators, that allows to
compare different merging methods and to choose the
method corresponding to the behaviour wanted in a
particular application.

We will focus on the merging with integrity constraints
characterisation given in [KP99, KP02]. This charac-
terisation allows to make a distinction between two
major sub-classes of merging operators: majority op-
erators and arbitration operators. Majority operators
solve conflicts using majority wishes, that is they try
to satisfy the group as a whole. Whereas arbitration
operators have a more consensual behaviour, trying to
satisfy each agent as far as possible.

Consider the following example to illustrate these two
behaviours (the following example is stated in terms of



goals, but one can find similar ones concerning beliefs):

Example 1 Ally, Brian and Charles have to decide
what they will do this night. Brian and Ally want to go
to the restaurant and to the cinema. Charles does not
want to go out this night and so he does not want to go
nor to the restaurant nor to the cinema. Toking some
magjority merging operator the result of the merging is
that the group will decide to go both to the restaurant
and to the cinema, whereas Charles would certainly
have a bad night. If one takes an arbitration operator
the result will be that the group has to decide to go
either to the cinema or to the cinema but not both. So
each member of the group will be satisfied as much as
possible.

So these two sub-classes have very different conflict
resolution policies. An open question was to know if
these two sub-classes are disjoint or not. And, though
it seems natural to bet on a strict partition, we show in
this paper that it is not the case. That is, there exists
operators that belong simultaneously to the two sub-
classes. We first give a trivial operator that straight-
forwardly satisfy this condition. But the real question
was to know if more complex operators can satisfy it
too. We show that, in the finite case, a whole fam-
ily of (non-trivial) operators are both arbitration and
majority operators. The new family of operators intro-
duced, generalisation of a well known majority merg-
ing method [Rev97, LM99, KP99)], allow to choose the
“consensual level” that best fit the application needs.

The paper is organised as follow. In section 2, we give
the definition of merging with integrity constraints op-
erators, arbitration and majority operators are also de-
fined. Then, we give in section 3 some concrete opera-
tors in order to illustrate the differences of behaviour
between arbitration and majority operators. In sec-
tion 4, we show that it is possible for an operator to
be both a majority and an arbitration operator. We
discuss briefly in section 5 of alternative expressions of
arbitration behaviour. We conclude in section 6 with
some open questions.

2 Merging with Integrity Constraints

We consider a propositional language £ over a finite
alphabet P of propositional atoms. An interpretation
is a function from P to {0,1}. The set of all the in-
terpretations is denoted WW. An interpretation I is a
model of a formula if and only if it makes it true in
the usual classical truth functional way. Let ¢ be a
formula, mod(p) denotes the set of models of ¢, i.e.
mod(p) ={I eW I = p}.

A knowledge base ¢ is a finite set of propositional for-
mulae.

Let ¢,...,p, be n knowledge bases (not necessarily
different). We call knowledge set the multi-set ¥ con-
sisting of those n knowledge bases: ¥ = {¢;,...,¢,}.
We note A\ ¥ the conjunction of the knowledge bases
of ¥,ie. A¥ = A---Ay,. The union of multi-sets
will be noted LI

By abuse if ¢ is a knowledge base, ¢ will also denote
the knowledge set ¥ = {p}. For a positive integer
n we will denote U™ the multi-set when ¥ appears n
times.

Definition 1 Let ¥, ¥, be two knowledge sets. ¥,
and ¥y are equivalent, noted ¥, < U, iff there exists
a bijection f from ¥, = {pf,..., 05} to Uy = {4}, ...,
@2} such that - f(p) < .

A pre-order < is a reflexive and transitive relation. A
pre-order is total if VI,J I < Jor J <I. Let < be a
pre-order, we define < as follows: I < Jiff I < J and
JLI,and ~as I~ Jiff I <Jand J <I. We wrote
I € min(mod(p),<)iff I = pand VJ € mod(p) I < J.

Once these definitions are stated, we can define merg-
ing operators. A knowledge base ¢ will denote the
beliefs 1 of an agent. A knowledge set ¥ will denote
a group of agents. The aim of merging operators is
to define what are the beliefs of the group from the
individuals beliefs and the constraints imposed by the
system (physical constraints, laws, etc.). So, a merg-
ing operator A is a function that maps a knowledge set
¥ and a knowledge base p that denotes the integrity
constraints of the system, to a knowledge base A, (¥)
that contains the beliefs of the group. Recall that we
suppose that all the knowledge bases have the same
importance (i.e. reliability, hierarchical importance,
etc...) and that they denote the beliefs (goals) of inde-
pendent sources (agents). See e.g. [BDL198, Cho98§]
for examples on prioritised knowledge bases.

The logical properties that one could expect from a
belief merging operator are [KP99]:

Definition 2 A is a merging with integrity con-
straints operator (IC merging operator in short) if and
only if it satisfies the following properties:

(I1C0) A,(¥) F u
(IC1) If p is consistent, then A, (¥) is consistent

(IC2) If AT is consistent with u, then
Au(B) = AT Ap

'in the following, we will call “beliefs” the beliefs or the
goals of an agent



(IC3) If ¥, = T, and p1 = pa, then
AM (\Ill) = Altz (lIlQ)

(IC4) If oy | pand g, = p, then Aoy Upy) Ay is
consistent iff Ay, (p Uwy) Ay is consistent

(IC5) Au(¥1) AAL(Y,) | Au(T, UT,)

(IC6) If AL (T1) AAL(T,) is consistent , then
Ap(TUT) = AL(T) AAL(T,)

(ICT) Dp () Az E Dpyaps (T)

(IC8) If AL, (T) A po is consistent, then
Alh/\uz (\IJ) |= Alh (\IJ)

The intuitive meaning of the properties is the follow-
ing: (ICO) assures that the result of the merging sat-
isfies the integrity constraints. (IC1) states that if the
integrity constraints are consistent, then the result of
the merging will be consistent. (IC2) states that if
possible, the result of the merging is simply the con-
junction of the knowledge bases with the integrity con-
straints. (IC3) is the principle of irrelevance of syntax,
expressing the fact that the result of the merging has to
depend only of the expressed opinions and not of their
syntactical presentation. (IC4) is the fairness postu-
late, the point is that when we merge two knowledge
bases, merging operators must not give preference to
one of them. (IC5) expresses the following idea: if a
group ¥, compromises on a set of alternatives which
A belongs to, and another group ¥, compromises on
another set of alternatives which contains A too, so
A has to be in the chosen alternatives if we join the
two groups. (IC5) and (IC6) together state that if you
could find two subgroups which agree on at least one
alternative, then the result of the global merging will
be exactly those alternatives the two groups agree on.
(ICT7) and (IC8) state that the notion of closeness is
well-behaved, i.e. that an alternative that is preferred
among the possible alternatives (u1), will remain pre-
ferred if we restrict the possible choices (1 A p2).

One can notice that when the knowledge set is a sin-
gleton (i.e. ¥ = {¢}) doing the merging A,({K}) is
exactly the revision of ¢ by a new evidence u. That is
A,({K}) = pop, where o is an AGM belief revision
operator [Gar88, AGM85, KM91]. Thus IC merging
operators can be considered as a generalisation of be-
lief revision operators. See [KP02] for more results on
the relationship between merging and belief revision.

We will now define the two major sub-classes of merg-
ing operators: majority and arbitration operators: An
IC merging operator is a majority operator if it satis-
fies the following property:

(Maj) In A, (T, UTH)FA,L(T,)

This postulate expresses the fact that if an opinion has
a large audience, it will be the opinion of the group.
So, majority operators try to satisfy the group as a
whole?. On the other hand, arbitration operators try
to satisfy each agent as far as possible : An IC merging
operator is an arbitration operator if it satisfies the
following property:

A (p1) & Dy (p2)

D py s (01 U g) € (p1 <> —p2)
1 ¥ oo

po ¥

Apyvps (o1 Ups) < Ay, (1)

(Arb)

This postulate ensures that this is the median possible
choices that are preferred. It is much more intuitive
when it is expressed in terms of syncretic assignment
(cf condition 8 below). The point is that we can im-
prove the result for one of the member of the group
only if it does not make the result worth for an other
member. This kind of behaviour is very close to egal-
itarism in social choice theory (see e.g. [Mou88]).

We will illustrate the (Arb) requirements on the fol-
lowing scenario:

Example 2 Tom and David missed the soccer match
yesterday between reds and yellows. So they don’t know
the result of the match. Tom listened in the morning
that reds made a very good match. So he thinks that
a win of reds is more plausible than a drow and that
a draw is more reliable than o win of yellows. David
was told that after that match yellows have now a lot
of chances of winning the championship. From this
information he infers that yellows win the match, or
otherwise at least take a draw. Confronting their point
of view, Tom and David agree on the fact that the two
teams are of the same strength, and that they had the
same chances of winning the match. What arbitra-
tion demand is that, with those informations, Tom and
Dawid have to agree that o draw between the two teams
s the more plausible result.

Now we will give a representation theorem for those
operators in terms of pre-orders on interpretations. It
provides a more constructive definition of those oper-
ators. We need first some definitions:

Definition 3 A syncretic assignment is a function
mapping each knowledge set ¥ to a total pre-order <y

*Remark that, with the other postulates, (Maj) implies
some kind of monotony property when the number of pro-
ponents grows: Ing Vn > no A, (U1 LTS F AL(T,).
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Figure 1: Arbitration

over interpretations such that for any knowledge sets
U, Uy, Uy and for any knowledge bases oy, py:

1.IfI =T and J =0, then [ ~g¢ J
2.IfIETV and J £ T, thenI <g J

3. If U1 = U, then <g,=<w,

4- VIl 3T =@ J <gup I

5 If I <g, J and I <w, J, then I <g,uw, J
6. If I <g, J and I <w, J, then I <g,uw, J

A majority syncretic assignment is a syncretic assign-
ment which satisfies the following:

7. If I <g, J, then In I <w, w,» J

A fair syncretic assignment is a syncretic assignment
which satisfies the following:

I<y J
I<, J
J =1Ly J'

8. => I <gug, J

The two first conditions ensure that the models of the
knowledge set (if any) are the more plausible inter-
pretations for the pre-order associated to the knowl-
edge set. The third condition states that two equiv-
alent knowledge sets have the same associated pre-
orders. Those three conditions are very closed to the
ones existing in belief revision for faithful assignments
[KM91]. The fourth condition states that, when merg-
ing two belief bases, for each model of the first one,
there is a model of the second one that is at least as
good than the first one. It ensures that the two knowl-
edge bases are given the same consideration. The fifth
condition says that if an interpretation I is at least as
plausible as an interpretation J for a knowledge set ¥y
and if I is at least as plausible as J for a knowledge
set ¥y, then if one joins the two knowledge sets, then
I will still be at least as plausible as J. The sixth

condition strengthen the previous condition by saying
that an interpretation I is at least as plausible as an
interpretation J for a knowledge set ¥y and if I is
strictly more plausible than J for a knowledge set ¥s,
then if one joins the two knowledge sets, then I will
be strictly more plausible than J. These two previous
conditions corresponds to Pareto conditions in Social
Choice Theory [Arr63, Kel78]. Condition 7 says that
if an interpretation [ is strictly more plausible than an
interpretation J for a knowledge set ¥s, then there is
a quorum 7 of repetitions of the knowledge set from
which I will be more plausible than J for the larger
knowledge set ¥ LI ¥5™. This condition seems to be
the weakest form of “majority” condition one could
state. Condition 8 states that if an interpretation I
is more plausible than an interpretation J for a belief
base ¢, if I is more plausible than J' for an other
base ¢,, and if J and J' are equally plausible for the
knowledge set ¢ Ll p,, then I has to be more plausible
than J and J' for ¢, U ¢,. This requirement is illus-
trated figure 1 (the lower appears an interpretation,
the more preferred it is). See also Example 2 for an
intuitive explanation.

And the representation theorem is:

Theorem 1 An operator is an IC merging operator
(respectively IC majority merging operator or IC ar-
bitration operator) if and only if there exists a syn-
cretic assignment (respectively majority syncretic as-
signment or fair syncretic assignment) that maps each
knowledge set ¥ to a total pre-order <y such that

mod(A,(¥)) = min(mod(u), <w)

This theorem shows that a merging operator corre-
sponds to a family of pre-orders. In fact, a lot of opera-
tors are defined directly from those pre-orders, using a
function that maps each knowledge set to a pre-order.
It is the case with all operators defined from a distance.
We give some of them in the following section.



3 Some IC merging operators

We give in this section the definition of three fami-
lies of operators. All those operators are based on a
distance between interpretations that induces the pre-
order associated to each knowledge set. We define also
a new family of operators, that generalises the A%>
family.

Let d be a distance between interpretations?, that is a
function d : W x W — IN such that :

— d(I,J) =d(J,I)
—d(I,J)=0iff [=J

For example, one can use the Dalal distance [Dal88],
noted, dg, that is the Hamming distance between two
interpretations (the number of propositional letters on
which the two interpretations differ). We will use this
distance in the examples because it is a well known,
easy to define, distance but one has to keep in mind
that it is not the sole possible choice and that the
logical properties do not depend of the chosen distance.

This distance between interpretations induces nat-
urally a distance between an interpretation and a
knowledge base as follows:

d(I,p) = miny_,d(I,J)

The difference between the four families of operators
we define next lie in the way this distance between an
interpretation and a knowledge base is used in order
to define the distance between an interpretation and
the knowledge set. So, it is this aggregation step of
the individual preferences (distances) in a global one
that makes behaviour differences between the families.

The three families stated next are well known, the
A%Maz family has been used in [Rev93, Rev97], the
A%E family in [Rev97, LM99, KP99], and the A% ¢Mae
family in [KP98, KP99).

Definition 4 Let ¥ be a knowledge set, I be an inter-
pretation and d be a distance between interpretations.
The Maz, X, GMaz distances are defined respectively

by:
= dy Mz, ¥) = maxeew d(I,¢)
B dd,E (I7 \Il) = E<p€\ll d(I7 90)

— Suppose ¥ = {¢p, ..., }. For each interpretation
I we build the list (df ...dL) of distances between

3Remark that the triangular inequality d(I,J) <
d(I,J") +d(J',J) is not required.

this interpretation and the n knowledge bases in
U, ie dj =d(I,¢;). Let dg cual(l, ¥) be the list
obtained from (di ...d~%) by sorting it in descend-
ing order *.

So, let f € {Max,3, GMaz}, such o distance induces
a pre-order on interpretations:

1< J iff day(1,%) < dgs(J,0)

And the corresponding merging operator is defined by:

mod(A(9)) = min(mod(y), <47)

Those operators satisfy the following properties:

Theorem 2 A%Me  operators  satisfy (IC1-IC5),
(IC7), (IC8) and (Arb). AHCM= operators are
arbitration operators. A% operators are majority
operators.

It is possible to generalise the A%* family in the fol-
lowing A%>" operators:

Definition 5 dg s~ (I, %) = 3 g d(I,9)".

Then the corresponding pre-order is:
I <% Jiff dasn(I,®) < dgsn(J, )
And the A% operator is defined by:

mod(A%™" (%)) = min(mod(u), <&")

It is easy to show then that:
Theorem 3 A%>" operators are majority operators.

Now we illustrate the behaviour of these families on
an example:

Example 3 At a meeting of a block of flats co-owners,
the chairman proposes for the coming year the con-
struction of a swimming-pool, a tennis-court and a
private-car-park. But if two of these three items are
build, the rent will increase significantly. We will

“the dgumas distance do not strictly obey to the re-
quirements of a distance, since it does not give num-
bers. In fact there is a natural mapping: choose a suf-
ficiently big number N (where sufficiently means strictly
bigger than all possible distances d(I, ¢;), it is always pos-
sible since we work in the finite case), and then define
d4,GMaz = Ej=1...n(dfj % N"~9), where i; denotes the jth
element in the sorted list.



01 Pa 3 @y distps, disty distgys,, distse
(0,0,0,00 3 3 0 2 3 8 (3,3,2,0) 22
(0,0,0,1) 3 3 1 3 3 10 (3,3,3,1) 28
(0,0,1,00 2 2 1 1 2 6 (2,2,1,1) 10
(0,0,1,1) 2 2 2 2 2 8 (2,2,2,2) 16
(0,1,0,00 2 2 1 1 2 6 (2,2,1,1) 10
(0,1,0,1) 2 2 2 2 2 8 (2,2,2,2) 16
0,1,1,0) 1 1 2 0 2 4 (2,1,1,0) 6
(0,1,1,1) 1 1 3 1 3 6 (3,1,1,1) 12
(1,0,0,00 2 2 1 2 2 7 (2,2,2,1) 13
(1,0,0,1) 2 2 2 3 3 9 (3,2,2,2) 21
(1,0,1,00 1 1 2 1 2 5 (2,1,1,1) 7
(,0,1,1) 1 1 3 2 3 7 (3,2,1,1) 15
(1,1,0,00 1 1 2 1 2 5 (2,1,1,1) 7
(1,1,0,1) 1 1 3 2 3 7 (3,2,1,1) 15
(1,1,1,0)0 0 0 3 0 3 3 (3,0,0,0) 9
(1,1,1,1) o0 o0 4 1 4 5 (4,1,0,0) 17

Table 1: Distances

denote by S, T, P respectively the construction of the
swimming-pool, the tennis-court and the private-car-
park. We will denote I the rent increase. The chair-
man outlines that build two items or more will have an
important impact on the rent:
pu=((SAT)V(SAP)V(TAP))—>1I

There is four co-owners € = {¢y, ¢y, 05,04} Two of
the co-owners want to build the three items and don’t
care about the rent increase: ¢, = ¢, = SAT A P.
The third one thinks that build any item will cause at
some time an increase of the rent and want to pay
the lowest rent so he is opposed to any construction:
3 =S AT AP A-I. The last one thinks that the
flat really needs a temnis-court and a private-car-park
but don’t want a high rent increase: ¢, =T AP A 1.

The propositional letters S, T, P, I will be considered in
that order for the valuations:

mod(u) =W\ { (0,1,1,0),(1,0,1,0),(1,1,0,0),

(1,1,1,0)}
mod(gol) = {(1, ]-; ]-; 1); (1a ]-7 110)}
mod(goz) = {(1, ]-; ]-; 1); (1a ]-7 110)}
mod(yp;) = {(0,0,0,0)}
mod(g04) = {(1, ]-; 170); (Oa ]-a 170)}

We sum up the calculations in table 1. The lines shad-
owed correspond to the interpretations rejected by the
integrity constraints. Thus the result has to be found
among the interpretations that are not shadowed.

With the AYMs=  opergtor, the minimum dis-
tance is 2 and the chosen interpretations are
mod(AﬂH’M”(\Il)) = {(0,0,1,0), (0,0,1,1), (0,1,0,0),

(0,1,0,1), (1,0,0,0)}. So the decision that best fit the
group wishes is then not to increase the rent and to
build one of the three items, or to increase the rent and
build either the tennis court or the private car-park.

We can see on that example why A%Y* operators are

not IC merging operators. For example, the two in-
terpretations (0,0,1,0) and (0,0,1,1) are chosen by
AdmMaz - qlthough (0,0,1,0) is better for o3 and o4
than (0,0,1,1), whereas these two interpretations are
equally preferred by p1 and @o. It seems then natural
to globally prefer (0,0,1,0) to (0,0,1,1). It is in fact
what demands (IC6).

The AHCMa= family has been build with that idea of
being more selective than the A®M family. With the
Adm Moz operator the result is mod(ALH M ()
{(0,0,1,0), (0,1,0,0)}, so the decision in this case will
be to build either the tennis court or the car-park but
without increasing the rent.

But if one chooses N> for solving the conflict
according to majority wishes, the result is then
mod(AZ#>(W)) = {(1,1,1,1)}, and the decision will
be to build the three items and to increase the rent.

Majority voting, a la A%*, often seems more demo-
cratic than the other methods but, for example in this
case, this only works if ¢, accept to obey to this de-
cision that is strictly opposed to its opinion. If ¢4
decides not to pay the rent increase, the works will
perhaps not carry on because of a lack of money. So if
a decision requires the approval of all the members a
more consensual, arbitration like, method seems more



adequate. These kind of issues are highly related with
social choice theory [Arr63, Kel78, Mou88].

On this example, one can illustrate the use of the
AGE" family, since with the operator A% we can
see that the result (on this example) is the same as
with the A?#:GMaz gperator. The reason is that the
power used in the definition of the operator allows
to be more consensual while keeping the majority be-
haviour.

4 Arbitration versus Majority

We show in this section that some operators are both
majority and arbitration operators. We first show that
with an (over)simple operator. Then, we show that a
whole family of full sense operators (the A%>" opera-
tors) satisfy also this condition.

4.1 Drastic Distance

The simplest distance between interpretations one can
define is the following one:

0 fr=1J
dpra(l,J) = { 1 otherwise
The induced distance between an interpretation and a
knowledge base is then also 0 or 1 if the interpretation
respectively satisfy or not the knowledge base.

It is then easy to show that the operators given with
this distance by the two families A% %M and A%* are
the same. And we have the following result:

Theorem 4 The operator A%Pra> = AdDra,GMaz gq4
isfies (1C0)-(IC8), (Maj) and (Arb).

This easy to state result (consequence of theorem 2) is
not very surprising. But the real question is to know if
more elaborate distances can lead to such “collision”
between majority and arbitration classes. We answer
this question in the next section.

4.2 Graphical study

We show in this section that some A%>" operators
are simultaneously majority and arbitration operators.
For an easy explanation, we will use a graphical con-
struction showing the behaviour of the operators “at
work”. In order to have a 2D representation we will
restrict ourselves to two knowledge bases.

The graphical construction is simple. We put the in-
terpretations in the plane with their distance to the

¢, base as abscissa and with their distance to ¢, as
ordinate. Then, the aim of the merging is to find the
set of interpretations that are the closest to the (0,0)
point. The differences between the operators lie in the
chosen distance and in this definition of “closeness”.

Ad,Maz

3
. ’
Ad,E
22
2 A% o
1
1 °

0 1 2 ‘5

P2
Figure 2: Merging of two knowledge bases

On figure 2, the curves represent the interpretations
that are at a distance 3 from the knowledge set {¢;, @5 }
according to the operators AdMa ALE and AGS?,
A%Mer g represented by a square of size a, A%> by
the line z = a — y, and A%*” by a circle arc of radius
v/a, where a denotes the distance from the knowledge
set. The A%GMe gperator is hardly representable in
this way, but one can figure out a curve that follows
the one of A%Ms* hut that prefers the interpretations
that are closest to the axes. We will see soon how to
approximate graphically the A% %" operator. Then
the result of the merging, using these three operators,
is the set of interpretations that the respective curves
meet first when a varies from 0 to oc.

In particular, on this example, the result for A%Ma=

and A%*? is the interpretation placed in (2,2). And
for A%¥ the result is the interpretations placed in (3,0)

and (0,3). In the same way, one can rebuild the pre-

d,M d,> d,x? .
orders <g"*, <y~ and <y~ when one consider the

order the interpretations are met by the curves (when
a varies from 0 to 00).

On the figure, we can see once again the problem of
A%Maz that do not make any distinction between the
(3,0) and (3,3) points for example. It is why A% az jg
not an IC merging operator.

On the other side, A%* do not make any distinction
on the sources of disagreements. It is absolutely not
consensual, since it allows to choose interpretations



that satisfy completely one of the two bases and that
dissatisfy completely the other one (the one placed in
(0,3) for example), even if there are more consensual
choices (an interpretation placed in (2,1) or in (2,2)
for example). This behaviour can seem normal for a
majority operator. But it is not systematic. Indeed,
the operators A%>" with n > 1 prefer more consensual
choices, that is the ones closest to the line z = y. So,
an interpretation placed in (2,2) would be prefer to
one placed in (3,0).

¥1

P2
Figure 3: The A%*" familly

Remark that the operator A®*? is a particular op-
erator of the A%>" class, since it uses the Euclidean
distance as distance between an interpretation and the
knowledge set. This give a spherical distance, that
is very natural and that obey to majority wishes but
without the excesses of A%>,

Furthermore, one can remark on figure 3 that, when
one increases the value of n, the curve of A%>" comes
near to the one of A%z And, with a sufficiently big
n one can take the curve of A%>" as an approximation
of the one of A% But, for all n, an interpretation
placed in (z,y) will always be preferred to an inter-
pretation placed in (z,y + 1) or in (z + 1,y). And in
fact, this way of following the A%"** curve but with a
preference for the interpretations closest to the axes,
is the one of the A% curve. So, from some given
n, we get A®*" = A%GMaz More formally, we have
the following result:

Theorem 5 let U be a knowledge set, Ing such that
Vn > ng
Ad,E" (‘Il) — Ad,GMam(‘Il)

This result is an other answer to the partition between
majority and arbitration operators. Since A%*" op-

erators, for all n greater than a given ng fixed by the
maximum distance between an interpretation and a
knowledge base, are both arbitration and majority op-
erators. So the intersection between these two classes
is not empty and it is possible, in a sense, to go con-
tinuously from one to the other.

5 Discussion

A possible conclusion that one can draw from the pre-
vious results is that maybe the (Arb) postulate do not
capture exactly what we intend by arbitration. We
hope we have sufficiently advocated in favour of (Arb),
but let’s see if we can find some alternatives.

Sometimes people take the following postulate as
an expression of the arbitration behaviour (see e.g.
[Mey01]):

(MI) Vn Ap (‘I’l [N lIlzn) <~ A“(\I’l (] \1’2)

First we have to say that this postulate is not consis-
tent with those of IC merging operators (see [KP02]).
And, independently, we do not think that this postu-
late expresses the idea of being as close as possible to
the wishes of each member of the group. It simply
says that repetitions do not matter for the result of
the merging (that is knowledge sets are no longer con-
sidered as multi-sets, but as simple sets). For example
if the agents disagree only on the value of one proposi-
tional variable (for example consider Example 1, where
the choice is simply to go to the cinema or not), then
it is not possible to find compensations when building
the result. So it seems sensible to take into account
repetitions (that is different from being a majority op-
erator).

An other way of thinking about arbitration operator
is to allow the members to put a right of veto on some
choices. The idea is to express the fact that the worst
possible choices of each member of the group will not
be chosen in the result (if possible). This can be ex-
press in this way :

(ArbV) If Vi s Vi Dppv () e
and  Vip' Ap; b L,
then A,y (Ug) F !

Fach p; corresponds to the worst possible choices of
the agent ;. So what says this property is that if one
can find an interpretation that does not belong to any
Wi, then no model from an yu; will be in the result of
the merging.



Even if this idea seems to be interesting, the property
(ArbV) is really too complex. So it can not be checked
directly, and it seems to be a very difficult task to find
the corresponding condition on the syncretic assign-
ment.

6 Conclusion

We have explored in this paper the frontier between
two important subclasses of merging operators: arbi-
tration and majority operators. The formers aiming to
prefer consensual choices, whereas the latter referring
to majority wishes.

An open question until now was to now if there is an
intersection between these two classes or not. We have
shown that it is the case, and that it is possible for an
operator to be both an arbitration and a majority op-
erator. Those operators seem to be a good compromise
between democratic ideas lying in majority operators
and consensual behaviour of arbitration operators.

We have introduced, in particular, a new family of
operators (the A%>" family), that allows to choose the
“consensual level” of the majority operator according
to the particular application needs.

An open question is to know if it is possible to char-
acterised exactly what are the operators that belong
simultaneously to the two classes.
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Appendix : Proof of Theorem 5

Proof : We will show that, given a knowledge set
¥ compound of m knowledge bases, and a distance d
there exists ng such that Vn > ng the two pre-orders
<& and <&M are the same. And we conclude by
theorem 1.

We want to show that I gﬁ;GM” Jiff I Sé,’zn J.
(only if part) Consider two cases :

I ~%°"* J then the two sorted lists iy dl )
and (di(l)... And, for all n,
the two distances dgsn»(I,¥) = Eizlmmdi(i)n and
dgx~(J, ¥) are the same. So if T :ﬁ;GM” J, then for
alln I~ J.

dJ(,,y) are the same.

I <d GMaz 7 This mean that for the two sorted

lists (d},y-..d} ) and (d7,y...d] ) there exists

o(m)

k < msuchthatVi <kd], =dj, and d(ik) <d] -
Consider the worst case, where k =1 and such that
(da'(l) ...d{‘;(m)) = (mw) and (d (1) - di(m)) =
(y 0...0) with z < y. The other cases w111 be directly
retrieved by sum properties. Then the question is to
find ng such that Zimi.mdl )" < Sici..mdl ;"
that is m.z™ < y™. Once agaln consider the worst
case : y = = + 1, that gives m.z™ < (z + 1)". It is
enough to find ng such that m.z™ < z™ + n.x"0—1,
That gives ng > (m — 1).z. So let’s note N the max-
imum value given by the distance d (so z < N). We
can take ng = m.N, where m is the cardlnahty of .
So Vn > ng = m.N, if I <594 ] then I <%*" J.

(if part) We want to show that, Vn > nyg, if I 5\1; ",
then I <$“** J. Simply remark that the contra-
position is : if T <d GMez 7 then I <flI,’E" J, that is
what we prove in the only if part (we show this with
n = ng = m.N, and then derive the result for all
n > mng).
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