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Abstract. In the logic based framework of knowledge representation and rea-
soning many operators have been defined in order to capture different kinds of
change: revision, update, merging and many others. There are close links between
revision, update, and merging. Merging operators can be considered as extensions
of revision operators to multiple belief bases. And update operators can be con-
sidered as pointwise revision, looking at each model of the base, instead of taking
the base as a whole. Thus, a natural question is the following one: Are there nat-
ural operators that are pointwise merging, just as update are pointwise revision?
The goal of this work is to give a positive answer to this question. In order to do
that, we introduce a new class of operators: the confluence operators. These new
operators can be useful in modelling negotiation processes.

1 Introduction

Belief change theory has produced a lot of different operators that models the different
ways the beliefs of one (or some) agent(s) evolve over time. Among these operators,
one can quote revision [1, 5, 10, 6], update [9, 8], merging [19, 14], abduction [16], ex-
trapolation [4], etc.

In this paper we will focus on revision, update and merging. Let us first briefly
describe these operators informally:

Revision Belief revision is the process of accomodating a new piece of evidence that
is more reliable than the current beliefs of the agent. In belief revision the world is
static, it is the beliefs of the agents that evolve.

Update In belief update the new piece of evidence denotes a change in the world. The
world is dynamic, and these (observed) changes modify the beliefs of the agent.

Merging Belief merging is the process of defining the beliefs of a group of agents.
So the question is: Given a set of agents that have their own beliefs, what can be
considered as the beliefs of the group?

Apart from these intuitive differences between these operators, there are also close
links between them. This is particularly clear when looking at the technical definitions.
There are close relationship between revision [1, 5, 10] and KM update operators [9].
The first ones looking at the beliefs of the agents globally, the second ones looking at
them locally (this sentence will be made formally clear later in the paper)?. There is

3 See [8, 4, 15] for more discussions on update and its links with revision.



also a close connection between revision and merging operators. In fact revision op-
erators can be seen as particular cases of merging operators. From these two facts a
very natural question arises: What is the family of operators that are a generalization
of update operators in the same way merging operators generalize revision operators?
Or, equivalently, what are the operators that can be considered as pointwise merging,
just as KM update operators can be considered as pointwise belief revision. This can
be outlined in the figure below. The aim of this paper is to introduce and study the oper-
ators corresponding to the question mark. We will call these new operators confluence
operators.

Revision  ___ Update

Merging ?

Fig. 1. Revision - Update - Merging - Confluence

these new operators are more cautious than merging operators. This suggest that
they can be used to define negotiation operators (see [2, 20, 18, 17, 12]), or as a first step
of a negotiation process, in order to find all the possible negotiation results.

In order to illustrate the need for these new operators and also the difference of
behaviour between merging and confluence we present the following small example.

Example 1. Mary and Peter are planning to buy a car. Mary does not like a German car
nor an expensive car. She likes small cars. Peter hesitates between a German, expen-
sive but small car or a car which is not German, nor expensive and is a big car. Taking
three propositional variables German_car, Expensive_car and Small_car in
this order, Mary’s desires are represented by mod(A) = {001} and Peter’s desires by
mod(B) = {111,000}. Most of the merging operators* give as solution (in seman-
tical terms) the set {001, 000}. That is the same solution obtained when we suppose
that Peter’s desires are only a car which is not German nor expensive but a big car
(mod(B") = {000}). The confluence operators will take into account the disjunctive
nature of Peter’s desires in a better manner and they will incorporate also the interpre-
tations that are a trade-off between 001 and 111. For instance, the worlds 011 and 101
will be also in the solution if one use the confluence operator G4#:G™Ma% (defined in
Section 7).

This kind of operators is particularly adequate when the base describes a situation
that is not perfectly known, or that can evolve in the future. For instance Peter’s desires
can either be imperfectly known (he wants one of the two situations but we do not
know which one), or can evolve in the future (he will choose later between the two
situations). In these situations the solutions proposed by confluence operators will be

4 Such as A% and Adm-Gmaz [14],



more adequate than the one proposed by merging operators. The solutions proposed by
the confluence operators can be seen as all possible agreements in a negotiation process.
In the next section we will give the required definitions and notations. In Section
3 we will recall the postulates and representation theorems for revision, update, and
merging, and state the links between these operators. In Section 4 we define confluence
operators. We provide a representation theorem for these operators in Section 5. In
Section 6 we study the links between confluence operators and update and merging. In
Section 7 we give examples of confluence operators. And we conclude in Section 8.

2 Preliminaries

We consider a propositional language £ defined from a finite set of propositional vari-
ables P and the standard connectives, including T and L.

An interpretation w is a total function from P to {0, 1}. The set of all interpretations
is denoted by Y. An interpretation w is a model of a formula ¢ € £ if and only if it
makes it true in the usual truth functional way. mod(y¢) denotes the set of models of
the formula @, i.e., mod(p) = {w € W |w = ¢}. When M is a set of models we
denote by ¢, a formula such that mod(pyr) = M.

A base K is a finite set of propositional formulae. In order to simplify the notations,
in this work we will identify the base K with the formula ¢ which is the conjunction of
the formulae of K.

A profile ¥ is a non-empty multi-set (bag) of bases ¥ = {¢1,...,¢n} (hence
different agents are allowed to exhibit identical bases), and represents a group of n
agents.

We denote by A ¥ the conjunction of bases of ¥ = {¢1,...,0n}, e, AU =
©1 A ... A @n. Aprofile ¥ is said to be consistent if and only if A ¥ is consistent. The
multi-set union is denoted by L!.

A formula ¢ is complete if it has only one model. A profile ¥ is complete if all the
bases of ¥ are complete formulae.

If < denotes a pre-order on W (i.e., a reflexive and transitive relation), then <
denotes the associated strict order defined by w < w’ if and only if w < w’ and W’ £ w,
and ~ denotes the associated equivalence relation defined by w ~ «’ if and only if
w < w and W' < w. A pre-order is total if Vw,w' € W, w < w' or w’ < w. A pre-
order that is not total is called partial. Let < be a pre-order on A, and B C A, then
min(B,<) ={b€ B|Pa € Ba < b}.

3 Revision, Update and Merging

Let us now recall in this section some background on revision, update and merging, and
their representation theorems in terms of pre-orders on interpretations. This will allow
us to give the relationships between these operators.

5 Some approaches are sensitive to syntactical representation. In that case it is important to
distinguish between K and the conjonction of its formulae (see e.g. [13]). But operators of
this work are all syntax independant.



3.1 Revision

Definition 1 (Katsuno-Mendelzon [10]). An operator o is an AGM belief revision op-
erator if it satisfies the following properties:

RI) poputp

R2) If oAk Lthenpopu=pAp

R3) Ifu¥ Lthenpou¥ L

(R4) If o1 = @2 and py = o then p1 0 g1 = 2 0 g
(RS) (pop) Aok po(ung)

(R6) If (pop) Np¥ Lithenpo(und)t (pou)Ag

When one works with a finite propositional language the previous postulates, pro-
posed by Katsuno and Mendelzon, are equivalent to AGM ones [1, 5]. In [10] Katsuno
and Mendelzon give also a representation theorem for revision operators, showing that
each revision operator corresponds to a faithful assignment, that associates to each base
a plausibility preorder on interpretations (this idea can be traced back to Grove systems
of spheres [7]).

Definition 2. A faithful assignment is a function mapping each base ¢ to a pre-order
<, over interpretations such that:

I Ifwl=pand W' = ¢, thenw ~, W'
2. lfwlEpandw' W= @, thenw <, W'
3. Ifo=¢, then <,=<,

Theorem 1 (Katsuno-Mendelzon [10]). An operator o is a revision operator (ie. it
satisfies (R1)-(R6)) if and only if there exists a faithful assignment that maps each base
@ to a total pre-order <, such that

mod(p o u) = min(mod(p), <,).

This representation theorem is important because it provides a way to easily define
revision operators by defining faithful assignments. But also because their are similar
such theorems for update and merging (we will also show a similar result for conflu-
ence), and that these representations in term of assignments allow to more easily find
links between these operators.

3.2 Update

Definition 3 (Katsuno-Mendelzon [9,11]). An operator < is a (partial) update oper-
ator if it satisfies the properties (U1)-(U8). It is a total update operator if it satisfies the
properties (U1)-(US), (U8), (U9).

U1) poptp

U2) If ot p, thenpo = ¢

U3) If ¥ Land p¥ L thenpouk L

(U4) If o1 = @2 and 1 = ps then 1 © 1 = g © o



(US) (pop) Aot po(ung)

U6) If oot F po and p © o - 1, then p o uy = @ o o

U7) If pis a complete formula, then (¢ ¢ 1) A (@ o u2) F o (1 V ps)

(U8) (1 Vo) op=(prop)V(paomn)

U9) If p is a complete formula and (p o u) Ao ¥ L, thenpo (A @) F (pou) Ao

As for revision, there is a representation theorem in terms of faithful assignment.

Definition 4. A faithful assignment is a function mapping each interpretation w to a
pre-order <, over interpretations such that if w # W', then w <, W'

One can easily check that this faithful assignment on interpretations is just a special
case of the faithful assignment on bases defined in the previous section on the complete
base corresponding to the interpretation.

Katsuno and Mendelzon give two representation theorems for update operators. The
first representation theorem corresponds to partial pre-orders.

Theorem 2 (Katsuno-Mendelzon [9,11]). An update operator ¢ satisfies (Ul )-(US8)
if and only if there exists a faithful assignment that maps each interpretation w to a
partial pre-order <, such that

mod(p o p) = || min(mod(p), <,,,,)
wi=e

And the second one corresponds to total pre-orders.

Theorem 3 (Katsuno-Mendelzon [9, 11]). An update operator ¢ satisfies (Ul )-(U5),
(U8) and (U9) if and only if there exists a faithful assignment that maps each interpre-
tation w to a total pre-order <, such that

mod(p o) = | ) min(mod(p), <,,,,)
wh=ep

3.3 Merging

Definition 5 (Konieczny-Pino Pérez [14]). An operator /\ mapping a pair ¥, i (pro-
file, formula) into a formula denoted \,(¥) is an IC merging operator if it satisfies
the following properties:

Icoy A, (F)Fp

(ICY) If 1 is consistent, then A, (¥) is consistent

(IC2) If NV is consistent with 1, then N\ ,(¥) = AN¥ A p

(IC3) If% = Y5 and H1 = Uo, then All’l (Wl) = AIJ/Q (Wg)

(IC4) If o1 F pand o2 F p, then N,({p1,92}) A @1 is consistent if and only if
Au({e1,92}) A o is consistent

(IC5) A, (T1) ANAL(Pa) F A, (T UW,)

(IC6) If AL(¥1) A DL (Ws) is consistent, then A\, (W1 U W) = A, (F1) A A, (P2)

ACT) Dy () A iz b Dy ()



(IC8) If A, (V) A o is consistent, then /Ny, (¥) = Ay, (F)

There is also a representation theorem for merging operators in terms of pre-orders
on interpretations [14].

Definition 6. A syncretic assignment is a function mapping each profile ¥ to a total
pre-order <y over interpretations such that:

folEYandw' EV, thenw ~y W'
IfwEYandw' Y, thenw <g W'

If U =Wy, then <y, =<y,

Vw £ ¢ ' ' W Sgppugey @

Ifw <y, v and w <g, W', then w <g, g, W’
Ifw <y, W and w <g, W', then w <y, Lz, W

SN

Theorem 4 (Konieczny-Pino Pérez [14]). An operator A is an IC merging operator
if and only if there exists a syncretic assignment that maps each profile ¥ to a total
pre-order <y such that

mod(A,,(¥)) = min(mod(p), <)

3.4 Revision vs Update

Intuitively revision operators bring a minimal change to the base by selecting the most
plausible models among the models of the new information. Whereas update operators
bring a minimal change to each possible world (model) of the base in order to take into
account the change described by the new infomation whatever the possible world. So, if
we look closely to the two representation theorems (propositions 1, 2 and 3), we easily
find the following result:

Theorem 5. If o is a revision operator (i.e. it satisfies (R1)-(R6)), then the operator ¢
defined by:
poun=\ o on
wi=p
is an update operator that satisfies (Ul )-(U9).
Moreover, for each update operator o, there exists a revision operator o such that
the previous equation holds.

As explained above this proposition states that update can be viewed as a kind of
pointwise revision.

3.5 Revision vs Merging

Intuitively revision operators select in a formula (the new evidence) the closest infor-
mation to a ground information (the old base). And, identically, IC merging operators
select in a formula (the integrity constraints) the closest information to a ground infor-
mation (a profile of bases).

So following this idea it is easy to make a correspondence between IC merging
operators and belief revision operators [14]:



Theorem 6 (Konieczny-Pino Pérez [14]). If A\ is an IC merging operator (it satisfies
(ICO-ICS)), then the operator o, defined as pop = A\, (), is an AGM revision operator
(it satisfies (R1-R6)).

See [14] for more links between belief revision and merging.

4 Confluence operators

So now that we have made clear the connections sketched in figure 1 between revision,
update and merging, let us turn now to the definition of confluence operators, that aim
to be a pointwise merging, similarly as update is a pointwise revision, as explained in
Section 3.4. Let us first define p-consistency for profiles.

Definition 7. A profile W = {1, ..., } is p-consistent if all its bases are consistent,
i.e¥p; €W, @; is consistent.

Note that p-consistency is much weaker than consistency, the former just asks that
all the bases of the profile are consistent, while the later asks that the conjunction of all
the bases is consistent.

Definition 8. An operator < is a confluence operator if it satisfies the following prop-
erties:

(UCO) ¢,(0) F
(UC1) If pis consistent and ¥ is p-consistent, then <, () is consistent
(UC2) If W iscomplete, W is consistent and \V & p, then (W) = AW
(UC3) If ¥ = W5 and p11 = i, then Oy, (W) = Opy, (P2)
(UC4) If p1 and s are complete formulae and o1 = 1, o F 1,
then <, ({1, 92}) A 1 is consistent if and only &, ({1, p2}) A @2 is consistent
(UC5) Cu(W1) AOu(Wa) F (W U W,)
(UC6) If ¥ and ¥y are complete profiles and <, (W1) A <, (P2) is consistent,
then Oli(wl (] Wg) - Oli(wl) A O}L(Wg)
(UCT) Oy () 7 1z F Oy pg(9)
(UC8) If ¥ is a complete profile and if <, (¥) A po is consistent
then O 1, pya () F O, () A
(UCY) 0, LV ¢'}) = 0, L {p}) v 0w L {'})

Some of the (UC) postulates are exactly the same as (IC) ones, just like some (U)
postulates for update are exactly the same as (R) ones for revision.

In fact, (UCO), (UC3), (UCS) and (UC7) are exactly the same as the correspond-
ing (IC) postulates. So the specificity of confluence operators lies in postulates (UC1),
(UC2), (UC6), (UCS8) and (UCI). (UC2), (UC4), (UC6) and (UCS) are close to the
corresponding (IC) postulates, but hold for complete profiles only. The present for-
mulation of (UC2) is quite similar to formulation of (U2) for update. Note that in the
case of a complete profile the hypothesis of (UC2) is equivalent to ask coherence with
the constraints, i.e. the hypothesis of (IC2). Postulates (UCS8) and (UC9) are the main
difference with merging postulates, and correspond also to the main difference between



revision and KM update operators. (UC9) is the most important postulate, that defines
confluence operators as pointwise agregation, just like (U8) defines update operators as
pointwise revision. This will be expressed more formally in the next Section (Lemma

1).

5 Representation theorem for confluence operators

In order to state the representation theorem for confluence operators, we first have to be
able to “localize” the problem. For update this is done by looking to each model of the
base, instead of looking at the base (set of models) as a whole. So for “localizing” the
aggregation process, we have to find what is the local view of a profile. That is what we
call a state.

Definition 9. A multi-set of interpretations will be called a state. We use the letter e,
possibly with subscripts, for denoting states. If W = {p1,...,pn} is a profile and
e ={wi,...,wy} is a state such that w; = p; for each i, we say that e is a state of the
profile U, or that the state e models the profile U, that will be denoted by e = W. If e =
{wi,...,wn} is a state, we define the profile ¥, by putting Ve = {1, -+ P{wn} -

State is an interesting notion. If we consider each base as the current point of view
(goals) of the corresponding agent (that can be possibly strengthened in the future) then
states are all possible negotiation starting points.

States are the points of interest for confluence operators (like interpretations are for
update), as stated in the following Lemma:

Lemma 1. If & satisfies (UC3) and (UC9) then < satisfies the following

o, = \/ 0u(0)
el=v

Defining profile entailment by putting ¥ = ¥’ iff every state of ¥ is a state of ¥,
the previous Lemma has as a corollary the following:

Corollary 1. If < is a confluence operator then it is monotonic in the profiles, that
means that if O & W' then &, (W) = <, (0')

This monotony property, that is not true in the case of merging operators, shows one
of the big differences between merging and confluence operators. Remark that there is
a corresponding monotony property for update.

Like revision’s faithful assignments that have to be “localized” to interpretations for
update, merging’s syncretic assignments have to be localized to states for confluence.

Definition 10. A distributed assignment is a function mapping each state e to a total
pre-order <. over interpretations such that:

3 Ifw <e, Wandw <., W', then w <y e, W'



4 Ifw <e, W andw <., W', then w <y e, W'

Now we can state the main result of this paper, that is the representation theorem
for confluence operators.

Theorem 7. An operator < is a confluence operator if and only if there exists a dis-
tributed assignment that maps each state e to a total pre-order <. such that

mod(<,(P)) = U min(mod(u), <.) (1)

=4

Unfortunately, we have to omit the proof for space reasons. Nevertheless, we indi-
cate the most important ideas therein. As it is usual, the if condition is done by checking
each property without any major difficulty. In order to verify the only if condition we
have to define a distributed assigment. This is done in the following way: for each
state e we define a total pre-order <, by putting Vw,w’ € W w <, «’ if and only if
w E Oy, . (Pe). Then, the main difficulties are to prove that this is indeed a dis-
tributed assigment and that the equation (1) holds. In particular, Lema 1 is very helpful
for proving this last equation.

Note that this theorem is still true if we remove respectively the postulate (UC4)
from the required postulates for confluence operators and the condition 2 from dis-
tributed assignments.

6 Confluence vs Update and Merging

So now we are able to state the proposition that shows that update is a special case of
confluence, just as revision is a special case of merging.

Theorem 8. If < is a confluence operator (i.e. it satisfies (UCO-UC9)), then the oper-
ator o, defined as ¢ o p = < ,,(¢), is an update operator (i.e. it satisfies (UI-U9)).

Concerning merging operators, one can see easily that the restriction of a syncretic
assignment to a complete profile is a distributed assignment. From that we obtain the
following result (the one corresponding to Theorem 5):

Theorem 9. If A is an IC merging operator (i.e. it satisfies (ICO-IC8)) then the opera-
tor < defined by
Ou) =\ Lu(%)

el=v

is a confluence operator (i.e. it satisfies (UCO-UC9)).
Moreover, for each confluence operator <, there exists a merging operator /\ such
that the previous equation holds.

It is interesting to note that this theorem shows that every merging operator can be
used to define a confluence operator, and explains why we can consider confluence as a
pointwise merging.



Unlike Theorem 5, the second part of the previous theorem doesn’t follow straight-
forwardly from the representation theorems. We need to build a syncretic assignment
extending the distributed assignment representing the confluence operator. In order to
do that we can use the following construction: Each pre-order <. defines naturally a
rank function r. on natural numbers. Then we put

w <g ' if and only if Z re(w) < Z re(w)
e=v e=v

As a corollary of the representation theorem we obtain the following
Corollary 2. If < is a confluence operator then the following property holds:
If NP\ pand W is consistent then AW A p <, (9)
But unlike merging operators, we don’t have generally &, (V) = AW A p.

Note that this “half of (IC2)” property is similar to the “half of (R2)” satisfied by
update operators.

This corollary is interesting since it underlines an important difference between
merging and confluence operators. If all the bases agree (i.e. if their conjunction is
consistent), then a merging operator gives as result exactly the conjunction, whereas a
confluence operator will give this conjunction plus additional results. This is useful if
the bases do not represent interpretations that are considered equivalent by the agent,
but uncertain information about the agent’s current or future state of mind.

7 Example

In this section we will illustrate the behaviour of confluence operators on an example.
We can define confluence operators very similarly to merging operators, by using a
distance and an aggregation function.

Definition 11. A pseudo-distance between interpretations is a total function d : VWX
W — Rt s.t. for any w, w' € W: d(w,w') = d(w',w), and d(w,w") = 0 if and only if
w=uw'

A widely used distance between interpretations is the Dalal distance [3], denoted
dr, that is the Hamming distance between interpretations (the number of propositional
atoms on which the two interpretations differ).

Definition 12. An aggregation function f is a total function associating a nonnegative

real number to every finite tuple of nonnegative real numbers s.t. for any x1, ..., Ty, ,
y € RT:
- ifx <y, then f(z1,...,2,...,2y) < f(21,...,Y,...,2,) (non-decreasingness)
- f(z1,...,zy) =0ifandonlyifv1 =... =z, =0 (minimality)

- flz)=x (identity)



Sensible aggregation functions are for instance max, sum, or leximax (Gmazx) ©

[14].

Definition 13 (distance-based confluence operators). Let d be a pseudo-distance be-
tween interpretations and f be an aggregation function. The result Oﬁ’f (&) of the

confluence of W given the integrity constraints | is defined by: mod(Oﬁ’f(W)) =
Ueew min(mod(p), <c), where the pre-order <. on WV induced by e is defined by:

- w < W ifand only if d(w,e) < d(w', e), where
- d(w,e) = fld(w,w1)...,d(w,wy)) withe = {w1, ...

s Wn }.

It is easy to check that by using usual aggregation functions we obtain confluence
operators.

Proposition 1. Ler d be any distance, OZ?E (¥) and Oﬁ’cm“‘”(W) are confluence op-
erators (i.e. they satisfy (UCO0)-(UC9)).

Example 2. Let us consider a profile ¥ = {1, 2, 3, ¢4} and an integrity constraint
u defined on a propositional language built over four symbols, as follows: mod(p) =
W\ {0110, 1010,1100, 1110}, mod(p1) = mod(p2) = {1111,1110}, mod(ps) =
{0000}, and mod(p4) = {1110,0110}.

W [1111]1110{0000(0110| es e es ea es eg  |OLF[OLEmx

) Gmax|X Gmax|X Gmax|Y Gmax|Y Gmax|X Gmax
0000[ 4 [ 3 | O [ 2 [114430]/10 442010 4330[9 4320[ 9 3330 8 3320
0001 3 | 4 | 1 | 3 |114331{103331|124431|11 4331|13 4441|12 4431
0010[ 3 | 2 | 1 | 1 |9 3321|8 33118 32217 3211|7 2221| 6 2211| x X
0011 2 | 3 | 2 | 2 |9 32228 2222{103322| 9 3222|11 3332|10 3322 X
0100 3 | 2 | 1 | 1 |9 33218 33118 3221|7 32117 2221| 6 2211| X X
0101 2 | 3 | 2 | 2 |9 3222|8 222210 3322| 9 322211 3332|10 3322 X
0110 2 | 1 | 2 | 0 |7 2221|6 2220|6 2211|5 2210|5 2111|4 2110
0111 1 | 2 | 3 | 1 |7 3211|6 31118 3221|7 3211| 9 32228 3221| X X
10000 3 | 2 | 1 | 3 |9 3321{103331|8 3221|9 3321|7 2221|8 3221| x X
1001) 2 | 3 | 2 | 4 |9 3222(104222|10 3322|11 4322|11 3332|12 4332
1010) 2 | 1 | 2 | 2 |7 2221|8 22226 2211|7 2221|5 21116 2211
1011) 1 | 2 | 3 | 3 |7 32118 3311|8 3221|9 33219 3222|10 3322 x
1100) 2 | 1 | 2 | 2 |7 2221|8 22226 2211|7 2221|5 2111|6 2211
1101 1 | 2 | 3 | 3 |7 3211|8 3311|8 3221|9 3321|9 3222|10 3322 X
1110f 1 | 0 3 | 1 |5 3110/6 3111|4 31005 3110| 3 3000| 4 3100
1111) 0 | 1 | 4 | 2 |5 4100/ 6 4200| 6 41107 4210|7 4111|8 4211| x

Table 1.

The computations are reported in Table 1. The shadowed lines correspond to the in-
terpretations rejected by the integrity constraints. Thus the result has to be taken among

8 leximax (Grax) is usually defined using lexicographic sequences, but it can be easily repre-

sented by reals to fit the above definition (see e.g. [13]).




the interpretations that are not shadowed. The states that model the profile are the fol-
lowing ones:

e; = {1111,1111,0000,1110},eo = {1111,1111,0000,0110},

es = {1111,1110,0000,1110},e4 = {1110,1111,0000, 0110},

es = {1110,1110,0000,1110},es = {1110, 1110,0000,0110}.

For each state, the Table gives the distance between the interpretation and this state
for the X aggregation function, and for the Gmax one. So one can then look at the best
interpretations for each state.

So for instance for Oﬁvz (¥), e; selects the interpretation 1111, ey selects 0111
and 1111, etc. So, taking the union of the interpretations selected by each state, gives
mod (% (@) = {0010,0100,0111,1000, 1111},

Similarly we obtain mod(Oﬁ’Gm“‘”(W)) = {0100,0011, 0010, 0101,0111, 1000,
1011,1101}.

8 Conclusion

We have proposed in this paper a new family of change operators. Confluence operators
are pointwise merging, just as update can be seen as a pointwise revision. We provide
an axiomatic definition of this family, a representation theorem in terms of pre-orders
on interpretations, and provide examples of these operators.

In this paper we define confluence operators as generalization to multiple bases of
total update operators (i.e. which semantical counterpart are total pre-orders). A per-
spective of this work is to try to extend the result to partial update operators.

As Example 1 suggests, these operator can prove meaningful to aggregate the goals
of a group of agents. They seem to be less adequate for aggregating beliefs, where
the global minimization done by merging operators is more appropriate for finding the
most plausible worlds. This distinction between goal and belief aggregation is a very
interesting perspective, since, as far as we know, no such axiomatic distinction as been
ever discussed.
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