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Abstract. While three-valued paraconsistent logic is a valuable frame-
work for reasoning under inconsistency, the corresponding basic inference
relation is too cautious and fails in discriminating in a fine-grained way
the set of expected consequences of belief bases. To address both issues,
we point out more refined inference relations. We analyze them from
the logical and computational points of view and we compare them with
respect to their relative cautiousness.

1 Introduction

Inconsistency appears very often in actual, large sized belief bases used by in-
telligent systems such as autonomous robots or infobots. As a consequence, au-
tonomous belief based agents have to handle inconsistency some way, to prevent
inference from trivializing. Indeed, paraconsistency is acknowledged for a while
as an important feature of common-sense reasoning, strongly connected to sev-
eral central AT issues, like reasoning with exceptions and counterfactuals, and
helpful for many applications (for instance, model-based diagnosis).

In the following, the focus is laid on three-valued paraconsistent logic. The
additional third value (called middle element) intuitively means “both true and
false” and allows to still reasoning meaningfully with variables that are not
embedded directly in a contradiction.

Several inference relations can be defined in three-valued paraconsistent logic.
For any of them, trivialization is avoided by weakening the classical entailment
relation. Compared with other approaches to inconsistency handling, like be-
lief merging or those based on the selection of preferred consistent subbases
where trivialization is avoided by weakening the belief base (while keeping clas-
sical entailment as the inference mechanism), the three-valued logic approach is
helpful in the situation where a single source of inconsistent information must
be treated. The basic inference relation from three-valued paraconsistent logic
has the advantage to benefit from a simple semantics, where each connective is



truth functional. Furthermore, the corresponding decision problem is only coNP-
complete in the general case [8], while tractable fragments (for which classical
entailment is intractable, like the CNF one) exist [6].

However, the basic inference relation from three-valued paraconsistent logic
suffers from important drawbacks. One of them (shared by many paraconsistent
inference relations) is the fact that inference is too cautious. In particular, it
does not coincide with classical entailment in the case where the belief base
is classically consistent. Another important drawback is that consequences of
the underlying belief base with different epistemic status are not discriminated.
Indeed, when some piece of information is derived from a belief base, we cannot
state whether:

— It is mecessary, which means that its negation cannot be the case.

— It is plausible, which means that its negation is not a consequence (intuitively,
there is no reason to question the piece of information, even if it cannot be
completely discarded that it could be false).

— It is possible, which means that its negation also is a consequence (there are
some arguments in favor of the piece of information, and other arguments
against it).

Such a myopia can be really problematic, especially because the set of all
consequences of a paraconsistent relation based on three-valued logic can be
classically inconsistent. Thus, in some situations, missing the consequences of
the belief base that are only possible can be a good point. A still more cautious
agent would even prefer to focus only on the necessary consequences of its beliefs
since it forms a classically consistent set.

This paper contributes to fill the gap. Inference relations are pointed out,
for which the separation between different epistemic status of consequences is
handled. Following Priest [21] and others (e.g. [2]), cautiousness is avoided by
focusing on preferential refinements of the basic inference relation. Typically, a
principle of inconsistency minimization is at work: roughly, the worlds that are
as close as possible to classical interpretations are preferred. While minimization
is understood with respect to set inclusion in Priest’s LP,, logic, other minimiza-
tion schemes can be taken into account, especially those for which some variables
are more important than others [18].

Then three mechanisms are suggested to refine both the basic and the pref-
erential inference relations of three-valued logic. The first one is based on a
principle of argumentation: « is derivable from the belief base X' if « is a conse-
quence of X but its negation is not. This way, possible consequences are avoided.
The second one relies on a principle of uncertainty minimization: only those a
that are evaluated to true (and not the middle value) in every model of X are
kept. Thus, only the necessary consequences of X' are kept. The third one can
be viewed as a generalization of the second one, « is a consequence of X if for
every interpretation w, w(a) is “at least as true” and “at most as false” as w(X)
(which means that uncertainty about a decreased).

Our contribution is a systematic investigation of these inference relations
along two fundamental dimensions:



— The logical dimension. We check each inference relation against the three-
valued counterpart of system P (for preferential), a normative set of postu-
lates that interesting valuable inference relations should satisfy [13,15].

— The computational dimension. We identify the computational complexity of
the decision problem corresponding to our inference relations.

We also compare all the inference relations that are considered with respect
to cautiousness. This additional dimension is orthogonal to the two other ones
since an inference relation can satisfy high standards for both the logical and the
computational dimensions without being interesting if it is very cautious. The
results from our analysis constitute a base line from which an inference relation
offering the best compromise with respect to what is expected (cautiousness,
myopia, logical properties, complexity) can be elected.

The rest of this paper is organized as follows. In Section 2, both the syntax
and the semantics of the three-valued logic we are concerned with are presented;
the corresponding (basic) inference relation is defined. In Section 3, more refined
inference relations are described, and analyzed both from their logical side and
from their computational side; they are also compared with respect to cautious-
ness. In Section 4 we study some special cases of preferential inference relations
of interest. As a conclusion, we briefly discuss in Section 5 the results of the
paper and we give some hints about future work.

2 A Three-valued Paraconsistent Logic

In the following, we consider a three-valued paraconsistent logic. Let’s take some
space to explain the meaning of the third truth value. We do not embrace here the
paradigm of many-valued logics where additional truth values are “in between”
true and false. We stay in the classical paradigm where the truth value of a
formula is true or false. In fact, even with two truth values, there are more than
two epistemic attitudes about a formula (see [10]), there are four distinct ones
depending on whether or not we can prove truth or falsity of the formula from
the base:

{} We cannot prove the truth nor the falsity of the formula. This is typi-
cally the case when there is not enough information in the belief base to
conclude.

{0} We can prove the falsity of the formula (but not its truth), so the formula
is “false” in the usual meaning.
{1} We can prove the truth of the formula (but not its falsity), so the formula
is “true” in the usual meaning.
{0,1} We can prove both the truth and the falsity of the formula, i.e. the
formula is “contradictory” in the usual meaning.

The problem is that in classical logic if a formula is contradictory, then it
pollutes all the belief base ( “ex falso quodlibet sequitur”). We want to avoid this
contagion, and so we will use a logic in which a truth value “both” denotes that a
formula can be proved at the same time “true” and “false” in the belief base. This



will allow to highlight contradictory formulas, but still reasoning “reasonably”
about the other formulas. Thus the third truth value “T” we will use has to be
understood as some encoding of the epistemic attitude {0,1}, and not as a truth
value like “0” and “1”.

2.1 Syntactical Aspects

Several presentations of the logic are possible, depending on the chosen set of
connectives. We focus on one that is functionally complete [2], contrariwise to
several presentations based on more restricted fragments, like those reported in
[9], [20], [11] or [16].

Definition 1 (language). £* is the propositional language over a finite set £
of propositional symbols, generated from the constant symbols true, false and
both, the unary connective = and the binary connectives V, A, and D.

We will write propositional symbols a, b, ... and formulas will be denoted by
lower case Greek letters a;, 3, ... A belief base, that will be denoted by an upper
case Greek letter such as X, is a finite set of formulas (conjunctively interpreted).

Clearly enough, the fragment of £* built up from —, V, A coincides with a
standard language for classical propositional logic. It is referred to as {—, A, V}
fragment. A proper subset of this fragment is composed by the CNF formulas,
i.e. the (finite) conjunctions of clauses, where a clause is a (finite) disjunction of
literals (the symbols from £, possibly negated).

2.2 Semantical Aspects

Definition 2 (interpretation). An interpretation w over L is a total function
from L to the set of truth values {0,1,T}. The set of all interpretations over L
is noted W.

Whatever the interpretation w from W, we have w(true) = 1, w(false) =0
and w(both) = T. All the connectives are truth functional ones and the se-
mantics of a formula a from L£* in an interpretation is defined in the obvious
compositional way given the following truth tables (Table 1).

When working with more than two truth values, one has to set the set of
designated values, i.e. the set of values that a formula can take to be considered
as satisfied. Since we want to define a paraconsistent logic, we choose D = {1, T }:
intuitively, a formula is satisfied if it is “at least true” (but it can also be false!).

We are now ready to define notions of models and of consequences:

Definition 3 (model, consequence).

- w is a model of X, denoted w |= X, iff for all @ € ¥, w(a) € D. mod(X)
denotes the set of models of X.

— «a is a consequence of X, noted X |= a, iff every model of X is a model of .

- X is consistent iff it has ot least one model (mod(X) #0).



|a|ﬁ||—|a|a/\ﬂ|avﬁ|a Z),6‘|

o011 0 0 1
of1y11 0 1 1
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110{0] O 1 0
1|10 ] 1 1 1
1T|iio| T 1 T
TI0O||T] O T 0
TIL|T| T 1 1
TT|T| T T T

Table 1. Truth tables.

It is easy to see that many additional connectives can be defined as syntactic
sugars in the three-valued logic we focus on. For instance:

—a ¢ B =4f (@D B)AN(B D a). & is an equivalence operator. a <> ( is
evaluated to a designated truth value iff both a and 8 are evaluated to a
designated truth value, or none of them is (or, equivalently,  and S have
the same set of models).

— Oa =4 (ma) D false. Oa is evaluated to 1 when « is evaluated to 1,
otherwise O is evaluated to 0. Thus, [J is a necessity operator.

— o =gy 0. ¢ is the (dual) possibility operator.

- Oa = (Oa) V (O-a). O« is evaluated to 1 when « is evaluated classically
(to 1 or 0), otherwise G« is evaluated to 0.

One can observe that the implication connective D does not coincide with
usual material implication =>!. This does not change anything when truth values
0 and 1 are considered, only, so the D connective can be considered as one of
the possible generalizations of the implication connective of classical logic. It
is the “right” generalization of classical implication, because D is the internal
implication connective [3] for the defined inference relation in the sense that a
deduction (meta)theorem holds for it: YAa =S iff Y EaDp.

An interesting feature of the inference relation |= is that inconsistency cannot
occur in the {—,A,V} fragment (this is not the case when the full language is
considered since, for instance, false and O(a A —a) are inconsistent formulas).
Indeed, every formula from the {—, A, V} fragment has at least one model [6].

As evoked in the introduction, = has several other interesting properties.
From the computational side, deciding it is “only” coNP-complete in the general
case [8], and is even in P in the CNF fragment [16, 6]. From the logical side, it
satisfies all the (three-valued counterparts of) postulates from system P and is
even monotonic.

But the price to be paid is a very weak inference relation. Especially, it is
well-known that disjunctive syllogism is not satisfied: a A (—a V b) [~ b. Sub-
sequently, the set of consequences from a classically consistent belief base does

! a=>ﬂ=def (‘!Q)V,@.



not necessarily coincide with its classical deductive closure (we will see how to
circumvent this).

Furthermore, |= does not make any distinction between consequences with
different epistemic status. For example, consider the following belief base:

Y ={(Qa) AbAcA-c}.

From the belief base X, both a, b and ¢ can be derived, whereas they have
quite different status. a for example is necessary, since in each model of X, a is
necessarily true. b is plausible, since we have some evidence about its truth but
no evidence at all about its falsity. ¢ is only possible, since we have contradictory
pieces of evidence about it.

3 A Study of Refined Consequence Relations

3.1 Refining Basic Inference

In order to avoid both weak and myopic inference relations, four mechanisms
can be exploited:

— taking advantage of some preferential information to focus on a subset of
the set of models of the belief base.

— considering only argumentative consequences of the belief bases.

— selecting those consequences of the belief base that are necessarily true.

— selecting as consequences of the belief base formulas that are so to speak
“more true” than the belief base.

Formally, the four principles above give rise to the following inference re-
lations. Let < be any binary relation on W; min(mod(X), <) denotes the set
{w € mod(X) | fw' € mod(L) w' < w and w £ w'}.

Definition 4 (refined inference relations).

— Let < be a standard binary relation on W: 2
Y ES a iff Yw € min(mod(X), <), w E a.

- Y Eagaiff ¥ aand X | -a.

- Y aiff Vw € mod(X), w(a) =1.

- Y aiff VweW, w(X) <t w(a), where the truth ordering <; is given by
the reflexive-transitive closure of 0 <; T <; 1.

Combining the first mechanism with any of the three other ones results in
some additional inference relations:

Definition 5 (refined inference relations). Let < be a standard binary re-
lation on W:

- E|=§,.ga iff Z ES a and X S —a.

- ¥ S a iff Yw € min(mod(X), <), w(a) = 1.

- ¥ ES o iff Vw € min(mod(X), <), w(Z) <; w(a).

2 We will call standard any binary relation on W whose definition is independent from
the belief base X under consideration.



3.2 Cautiousness

Assuming that the belief base is consistent?, we have derived the following re-
sults:

Theorem 1. The inclusions between inference relations reported in Figure 1
hold.

':S
= -

< |:§rg
NN
Farg =
\\F _

Fig. 1. Cautiousness (assuming ¥ consistent)

Figure 1 gives a Hasse diagram of inclusion in the set of our inference rela-
tions. An arrow X — Y means that relation X is strictly more cautious than Y,
i.e. X ¢ Y. Arrows that would stem from transitivity of inclusion are omitted.

As comments to these cautiousness results one can note that, unsurprisingly,
the preferential inference relations usually contain their original counterparts,
except that [=arg is not contained in |=§rg. The fact that all the inference
relations are contained in |= or == is not surprising since they aim at separating
consequences with different epistemic status: =arg, =1, ¢ are less cautious
than |=. Similarly, the relations |:§rga ES and =5 are less cautious than |=<.
The strong principle of uncertainty minimization (focusing on truth value 1)
is more demanding than both the weak one (based on the <; pre-order) and
argumentation (= is included in |=; and in |=arg) and this is still the case

when some preference information is taken into account (=5 is included in =5
<
and Farg)-

3.3 Logical Properties

Following seminal works in non-monotonic logic [12,17, 13, 15], a set of normative
properties that a non-monotonic inference relation should satisfy has been given
in [13]. This set of properties is called system P (for Preferential).

3 Without this assumption, many of the inference relations trivialize, either because
they coincide with the total relation £* x £* or with the empty one (argumentative
relations). The only change with respect to cautiousness is that =1 (resp. =5) is no
longer included in |=arg (resp. ':grg).



Definition 6 (system P). An inference relation |~ is preferential if it satisfies
the following properties (system P):

(Ref) apa Reflexivity
(LLE) If E a + B and al~y, then Shy Left Logical Equivalence
(RW) If = 8 D v and af~f, then apy Right Weakening

(Or) If apy and By, then aV By Or
(Cut) If a ABpry and al~B, then apry Cut
(CM) If apB and apry, then o A By Cautious Monotony

Those properties have been stated in the framework of classical logic, but as
we work here in a three-valued setting, we have to consider that |= denotes the
three-valued inference relation, as given in Definition 3. In the same vein, we refer
to the “classical” three-valued implication connective D, and the equivalence
connective «> in the properties above. Following Arieli and Avron [2], we call
the relations satisfying those properties three-valued preferential relations.

We will say that a relation is monotonic if it satisfies the following:

(Mon) If apy, then a A Sk Monotony

Theorem 2. The logical properties of P satisfied by the inference relations con-
sidered in the paper are as given in Table 2.

Ref LLE RW Or Cut CM Mon

= Y A R
ES v v v v v v
Farg v v vV
=1 v v v vV
|=§rg v v v

T v v v v
= v v v v Y

Sl v v v

Table 2. Logical Properties of the Inference Relations

One can note that |:S inference relations, that are the less cautious ones,
satisfy all properties of system P, and that all the preferential inference relations
have the same logical properties as their original counterpart (except monotony
of course). (Or),(Cut), (CM) are always satisfied. We can also observe that, un-
surprisingly, (RW) is lost for all relations aiming at discriminating consequences
obtained by = and <.

3.4 Computational Complexity

We assume the reader familiar with some basic notions of complexity, especially
the complexity classes coNP and IIZ of the polynomial hierarchy PH and the
class BH, of the Boolean hierarchy (see [19] for a survey).

We have derived the following results:



[Inference|Complexity of its decision problem|

= coNP-complete
=1 coNP-complete
=5 coNP-complete
Farg BH>-complete
== in 175
Farg in A

T in IT}

i in Hg

Table 3. Complexity Results

Theorem 3. The complexity results reported in Table 3 hold (where it is as-
sumed that < can be tested in (deterministic) polynomial time).

In the light of these results, the following observations can be done. First, all
the inference relations considered in this paper are intractable, the complexity
varying from the first level to the second level of the polynomial hierarchy. Sec-
ond, focusing on the necessary consequences does not imply a complexity shift
(=1 is just as complex as |=, and |:1S is just as complex as =5). As it is the case
in other frameworks [7], the corresponding argumentative versions of inference
relations are mildly harder. Finally, as expected, preferring some models may
definitely lead to more complex inference (under the standard assumptions of
complexity theory). Especially, when < is the preference pre-ordering proposed
by Priest (preferring interpretations that are as classical as possible with respect
to set inclusion), the decision problems associated to =< and |=1S are complete
for IT¥, and this is still the case when the belief base X' is from the CNF frag-
ment and the query is an atom. Intuitively, when Priest’s preference relation is
considered, two independent sources of complexity must be dealt with: the first
one lies in the number of preferred models and the second one in the difficulty
to check whether a model is preferred. The decision problem associated to |:§rg
is both X¥-hard and II}-hard, showing that it is not in X% U II7, unless the
polynomial hierarchy collapses.

4 Preference Based Inference Relations

In the previous section, for the inference relations =5, |:§rg and |:1S we consider
a binary relation < with no special property. But one can expect this relation
to express some kinds of preferences and thus to have some specific properties.
A first intuitive need is to work with a pre-order for example, since preference
relations are often transitive ones.

In this section we will investigate more deeply and compare four particular
relations. Two of them prefer the most defined interpretations, i.e. the inter-
pretations with a maximum of classical truth values. The first one takes the
maximum for set inclusion (it was defined by Priest in [21]), the second one for
cardinality. The last two relations give preference to interpretations that satisfy
the more formulas in the belief base (w.r.t. set inclusion and cardinality). They



are inspired by an inference relation defined by Besnard and Schaub [5]. Before
defining formally those relations, we first need the following definitions:

Definition 7 (inconsistent set, satisfaction set).

— The inconsistent set of an interpretation w is
w={ael]| wl)=T}
— The satisfaction set of an interpretation w given a belief base X is
Sy(w)={aeX¥| w(a)=1}.
Definition 8 (preferential inference relations). Let w and w' be two inter-
pretations from W. <p, <cp, <5¢ and <5pg are defined by:
—w<pw iff w! Cuw'
- w<gpw iff card(w!) < card(w'!)
- w<gsw iff Sp(w) 2 Sx (W)
- w<gpg W iff card(Ss(w)) > card(Sxs(w"))
The corresponding preferential inference relations =p, Ecp, |:§S, |:ng
are those obtained using respective pre-orders <p, <cp, SZB;S, SgBS for the
definition of the preferential relation ==.

Note that Sgs and Sg s are non-standard binary relations since they de-
pend on a belief base X'. The logical properties have been studied for standard
binary relations. Non-standard binary relations give operators that do not satisfy
all properties ((LLE) is often missing).

Theorem 4. The inclusions between inference relations reported in figure 2

/
\

|=1§s - '=ng

Ep

Fcp
E

Fig. 2. Cautiousness

As the pre-orders <p and <¢p are standard pre-orders, from Theorem 2 we
get that the two inference relations =p and |Ecp are three-valued preferential
relations (they satisfy all the logical properties).

Theorem 5. =p and =cp satisfy (Ref), (LLE), (RW), (Or), (Cut) and (CM).
E&s and =&gg satisfy (Ref), (RW), (Or), (Cut) and (CM). *

One of the main interests of those four relations is that they coincide with
classical inference when the belief base is classically consistent, and that they
give meaningful inferences otherwise.

Finally, while the decision problems associated with |=p and |=§g are II5-
complete, those associated to =cp and Eggg are in A, “only”.

4 Note that those two preference relations are based on sets of formulas, so one has to
consider a generalization of the logical properties to sets of formulas (see e.g. [2]).



5 Conclusion

In this paper, we have investigated several three-valued inference relations for
paraconsistent reasoning, both from the logical and the computational point of
view. We have highlighted the fact that the basic three-valued inference relation
can be refined with respect to the status of derived facts.

In the light of the results obtained, it appears that no relation is better than
all the other ones with respect to both criteria. On the one hand, discriminating
consequences does not imply a major complexity shift but leads to lose some
valuable expected properties. On the other hand, avoiding too cautious relations
can be achieved while keeping many interesting logical properties but typically
leads to an increase in complexity. The choice of a good compromise depends
mainly on what is expected in priority (avoiding cautiousness or myopia).

An interesting family of three-valued inference relations are those based on
the selection of preferred models based on cardinality. Indeed, those relations
have good logical properties, they also coincide with classical inference when the
belief base is classically consistent (provided that a suitable preference relation
has been chosen), and to give meaningful conclusions when the belief base is
classically inconsistent. Furthermore, their decision problem remains at the first
level of the polynomial hierarchy.

When working with more than two truth values a question that may arise is
how many truth values are needed. In [2], Arieli and Avron showed that four-
valued logics play a central role in billatice-based multi-valued logics, showing
that more than four values are not necessary (the other logics can be charac-
terized by a four-valued one). In such four-valued logics (e.g. [22,1]), based on
Belnap’s seminal work [4], the fourth value L means “not known”, i.e. it denotes
the epistemic attitude where we can prove neither the truth nor the falsity of
the formula (see Section 2). Even if this truth value adds expressivity to the lan-
guage and is useful to express ignorance (when one wants to be able to express
the fact that an agent is agnostic about a formula), it does not help much as far
as paraconsistency is concerned.

A future work concerns the design of three-valued inference relations as
“blackbox” tools for paraconsistent reasoning in the classical framework. The
idea is, from a classical two-valued belief base (possibly inconsistent), to derive
facts with a three-valued logic (allowing to rule out the ex falso quodlibet), and
finally to come back to the classical framework by translating three-valued mod-
els into two-valued ones. Several means can be envisioned for the last step, in
particular one can use a generalization of the forgetting operator [14] to three-
valued logics.
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