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ABSTRAT. We proposein this papera new family of belief meiging opemtors, that is basedon

a gamebetweersources: until a coheentsetof sourcesis readed,at eat rounda contest
is organizedto find out the wealestsources,thenthosesourceshasto concedgwealen their

point of view). Thisidealeadsto numepusnew interestingoperators (dependingof the exact
meaningof “weakest”and “concede; that givesthe two parametes for this family) andopens
new perspectivedor beliefmeging. Someexisting opertors are also recovered as particular

cases. Thoseopeifators can be seenas a specialcaseof Booth's Belief Negotiation Models
[BOO 02], but the achieved restriction forms a consistentfamily of meiging opertors that

worthsto be studiedon its own.

KEYWORDS:beliefmeiging, beliefnegyotiation.

1. Intr oduction

Theproblemof (propositionalpeliefmeging[REV 97,LIN 99,LIB 98, KON 99,
KON 023 KON 04] can be summarizedby the following question: given a set of
sourcegpropositionabelief bases}hatare(typically) mutuallyinconsistenthow do
we obtaina coherenbelief basereflectingthe beliefsof the set?

Theideahereis that some/eaclsourceshasto concedeon somepointsin order
to solve the conflicts. If onehassomenotion of relative reliability betweensources,
it is enoughand sensibleto force the lessreliable onesto give up first. Thereis
a variety of differentmeansto do that, which hasprovided a large literature, e.g.
[CHO 93, CHO 95, CHO 98, BEN 98a,BEN 98b]. But often we do not have such
information,andevenif we getit, it remainsthe morefundamentaproblemof how
to mege sourcef equalreliability [KON 99, KON 024.

In this paperwe will investigatethe melging methodshasedon a notion of game
betweenthe sources. The intuitive ideais simple: whentrying to imposeits wish,
eachsourcewill try to form somecoalitionwith the closest{morecompatible)other
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sources.Sothe sourcethatis the “furthest” from the otheroneswill certainlybethe
wealestone. And it will bethatsourcethatwill have to conceddirst. In this work,
we will notfocuson how the coalitionsform, we only take this ideato designatehe
wealestones.

So the meging is basedon the following game: until a coherentsetof sources
is reachedat eachrounda contestis organizedto find out the wealestsourcesthen
thosesourceshave to concedgwealentheir point of view).

We can stateseveral intuitions and justificationsfor the use of suchoperators.
We have alreadygiventhe first one: coalition with nearmindedsources.In a group
decisionprocesshetweenrational sources,t canbe sensibleto expectthe sources
to look for nearminded sourcesin orderto find help to defendtheir view, so the
“furthest” sourceis themorelikely to have to concedeonits view.

A secondintuition is the one given by a social pressureon the sources. When
confrontingseveral pointsof view, usuallypeoplethathave the moreexotic views try
to changetheir opinionin orderto be acceptedy the othermembersf thegroup,so
opinionsthataredefendedy the leastnumberof sourcesareusuallygiven up more
easilyin thenegotiationprocess.

A lastintuition thatgivesthemainrationalefor thatkind of operatoiis Condorces
Jurytheorem.Thistheoremstateghatif all themembersf ajury arereliable(in the
sensehatthey have greaterthan50% chanceto find the truth), thenlisteningto the
majority is themorerationalchoice.

After statingsomeusefuldefinitionsandnotationsin Section2, we will definethe
new family of operatorswve proposein Section3. The definition will usea notion
of wealeningandchoicefunctions. We will explore thesenotionsin Section4. We
will give someexamplesof specificoperatordgn Section5 in orderto illustratetheir
behaiour. We will look at the logical propertiesof thoseoperatorsn Section6. In
Section7 we will look at the links betweernthis work andrelatedworks (especially
Booth's proposal[BOO 01, BOO 02]). We concludein Section8 with someopen
issuesandperspectiesof this work.

2. Definitions

We considera propositionalanguagel over a finite alphabetP of propositional
symbols.An interpretationis afunctionfrom P to {0, 1}. Thesetof all theinterpre-
tationsis denotedV. An interpretationv is a modelof a formulay, notedw = ¢,
if andonly if it makesit truein the usualclassicaltruth functionalway. Let ¢ bea
formula, mod(y) denoteghe setof modelsof ¢, i.e. mod(¢) = {w € W | w = ¢}.
Corversely let X be a setof interpretations,form(X) denoteshe formula (up to
logical equivalence)whosesetof modelsis X .
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A belief basey is a consistentpropositionalformula (or, equialently a finite
consistensetof propositionaformulaeconsiderectonjunctiely). Let usnote K the
setof all beliefbases.

Leteq, ..., v, ben beliefbasegnot necessarilyifferent). We call belief profile
themulti-setW consistingof thosen beliefbases¥ = (¢4, ..., ¢, ) (i.e. two sources
canhave thesamebeliefbase).We note A ¥ the conjunctionof thebeliefbasef U,
i.e. AV = p1A---Ap,. Wesaythatabeliefprofileis consistenif /A ¥ is consistent.
Themulti-setunionwill be notedu andthe multi-setinclusionwill benotedC. The
cardinalof afinite (multi-)set¥ is noted# (V) (thecardinalof afinite multi-setis the
sumof thenumbersf occurrencesf eachof its elements).

Let us definethosemulti-setnotionsmore formally. As a set® (from elements
in asetA) canbe definedfrom its characteristidunctionys : A — {0, 1}, amulti-
set¥ (from elementsn asetA) canbe definedfrom its characteristidunction yy :
A — N, whereN is the setof nonnejative integers. Thenthe multi-setunion, noted
L, is definedas yg 9o = xw + xu/. The cardinality of a multi-setis definedas

#(V) = Laea xu(a).

Indeed,all setnotionsusedin this paper(subset,nclusion, union, etc.), arefor
multi-sets.For the sale of simplicity, andsinceit cannotleadto confusionsincethose
notionsareageneralizatiorof the setones,we will omit the “multi-".

Let £ bethesetof all finite non-emptybelief profiles.

Two belief profiles W, and WV, aresaidto be equvalent(¥, = U,) if andonly if
thereis a bijection between¥; and ¥, suchthateachbelief baseof ¥, is logically
equivalentto its imagein V.

3. Belief gamemodel

In [BOO 01, BOO 02] RichardBooth proposes frameavork for meiging sources
of informationincrementally He namedthis framework “Belief Negotiation Model”
(BNM). In this work we will usethe name“Belief GameModel” (BGM) becausen
our framework thereis no room for negotiation, so we find it more accurateandit
allows usto make a distinctionin this paperbetweerBooth’s proposalndours. The
BGM framework canbe seenasa restrictionof Booth’s BNM framework: the main
differencedbetweerBooth’s proposalandour is that Booth's onetake the sourcesas
candidatego wealening, whereaswe restrictoursehesto “points of view” (logical
contentof thesources)Thatmeanghatin Booth'sif onesourcehasto wealen,it can
be the casethat anothersourcewith exactly the samebeliefsdo not have to wealen
too (thatis notallowedin our frameawvork). Our proposainvolvesmoreanorymity by
sayingthatonly beliefsdecidewho hasto wealen,nottheidentity of onesource .Sim-
ilarly, the choicefunctionsare more“Markovian” in our frameawork thanin Booth’s
one,thatmeanghatwe only look atthe currentprofile to choosehebaseswhereasn

1. if a € A, xw(a) = n intuitively meanghata appears: timesin themulti-set¥.
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Booth'’s work, onecanusethewhole history of profilesto make the choice.We think
that those hypothesisare more realistic (and necessarypn a belief meging point
of view, whereasBooth's framework allows to model more generalizechegotiation
schemeswhereonecandecidefor examplethateachsourcehasto wealenoneafter
the other(seeSection7 for a deepercomparisorof thetwo approaches).

DEFINITION 1. — A choicefunctionis a functiong : £ — £ sud that:
—g(V)EV
—IfAV £ T,thendp € g(V)st.p £ T
—If & = ¥, theng(¥) = (V')

Thechoicefunctionaimsto find which arethesourcegshatmustwealenatagiven
round (seedefinition 3). As the wealeningfunctionaimsto wealenthe belief base,
andasthereis nowealer basethanatautologicalone,the secondconditionstateghat
atleastonenon-tautologicabasemustbe selected.Soit stateghatat eachroundat
leastonebasewill bewealen. This conditionis necessaryo ensureso alwaysreach
aresultwith Belief GameModel. Note that a consequencef this conditionis that
we have g(¥) # () assoonasthe profile containsat leastonenon-tautologicabase.
Lastconditionis anirrelevanceof syntaxcondition. It stateghatthe selectionof the
basego wealendoesnot dependon the particularform of thebasesbut only ontheir
informationalcontent.Notethatwe alsohase anadditionalproperty:anorymity, that
meansthat the resultdoesnot dependon the “name” of the source,but only on its
pointof view. Thisis dueto thefactthatwe work with multi-sets thatareequialent
by permutationIf oneworkswith anotherepresentatioforderedists of sourcedor
example),this anorymity propertycanbe given by the last condition, provided that
theequialencebetweertwo belief profilesis rightly defined(asin Section2).

DEFINITION 2. — Awealeningfunctionis a functiony : £ — £ sud that:

-k ¥(p)

—lfo=v(p),thenp=T

—If o= ¢/, thenv(p) = ¥(¢')

The wealeningfunction aimsto give the new beliefsof a sourcethat have been
choserto bewealened.Thetwo first conditionsensurethatthe basewill bereplaced
by a strictly wealer one (unlessthe baseis alreadya tautologicalone). Thelastcon-

dition is anirrelevanceof syntaxrequirement theresultof the wealeningmustonly
dependontheinformationcorveyedby thebasenot onits syntacticaform.

We extendthewealeningfunctionson belief profilesasfollows: let ¥/ beasubset
of U,

vo =] veu [ ¢

pED’ PEW\ T

This meanghatwe only wealenthe beliefbasesf ¥ thatarein ¥/, andtheother
onesdo notchange.
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DEFINITION 3. — A BeliefGameModelis a pair N' = (g, ¥) whete g is a choice
functionand v is a wealeningfunction.

The solutionto a belief profile ¥ for a Belief GameModel N' = (g, ¥), noted
N (W), is thebeliefprofile ¥ 5/, definedas:

—Vy =V

= Wit = Yy, ()
— U isthefirst ¥, thatis consistent

So the solutionto a belief profile is the result of a game on the beliefs of the
sourcesAt eachroundthereis acontesto find outthewealestbasegthelosers).and
thelosershave to concedeon their belief by wealeningthem.

It may prove reasonabl¢éhateachsourcehasits own wealeningfunction, thatde-
notesdifferentconcedingpolitics. After all, the pointis thatthe sourcehasto wealen
its beliefs,not how shedoesso. Sowe canfigure out a generalizatiorof the belief
gamemodel,wherethereis no onewealeningfunction,but onefor eachsourcé. But
thisis notthe pointin this papersowe will supposehatthereis a uniquewealening
functionfor all thesources.

In somecasesthe resultof the meging hasto obey someconstraintyphysical
constraintsporms,etc...).We will assumehattheseintegrity constraintsareencoded
asa propositionalformula (a belief base),and we will note this baseu. Thenwe
introducethefollowing notion:

DEFINITION 4. — Thesolutionto a belief profile ¥ for a Belief GameModel N =
(9, ¥) undertheintegrity constaints ., noted\,, (¥), is thebeliefprofile U}, defined
as:

—Ty=1T

Wit = Yy, ()
— W/, is thefirst U, thatis consistentvith 1

Oftenin thefollowing in this papemewill call resultof themeiging operatorBe-
lief GameModel), thebeliefbase/\ U- A p. Thisakuseof notationis notproblematic,
sincethis belief basedenoteshe consensugoint obtainedoy the belief profile ¥,
solutionof the Belief GameModel process.

Notethatthedefinitionof theBelief GameModel andof thewealeningandchoice
functionsensureghateachbelief profile U hasa solutionassoonasthe constraints:
areconsistent.

2. Technically it forcesto drop outthewealeningfunctionfrom the belief gamemodelN and
to putit in theinput, i.e. theinput would be alist of sources thatarecouplescompouncbf a
beliefbaseandawealeningfunction: (¢;, ¥;)
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THEOREM 5. — Let ¥ bea beliefprofile, and i be a beliefbase If ¥ is non-empty
andy is consistentthen \ ¥/, Ay is consistenand Uy - is readedfor afinite number
of rounds.

To prove that Wy, is reachedor a finite numberof rounds,it is sufficient to note
that, at a givenround, either ¥; is consistenwith 4, so ¥\, = ¥;, andthe process
end,sowe aredone. Or ¥, is not consistentwith p, in this casethereis an other
round. Fromthe defintionof the wealeningof a profile, the resultingprofile ¥, ,; is
logically strictly wealerthan¥;, thatmeanghateachbaseof ¥, ; is eitherlogically
equialentto the correspondindpasein W, or logically strictly wealer thanthis base
(seedefinition 2). Now just notethatthe logically wealestprofile, is the onewhere
eachbaseds equivalentto T, andthatthis profile is achiezablefrom every givenbelief
profile by successie applicationsof thewealeningfunction. Sincewe work in afinite
propositionallogic setting,this canbe doneby a finite numberof rounds. Finally,
notethat this profile is consistentith every consistenintegrity constraintu. Soif
the processlescribedn definition4 hasnot stoppedbefore, it is guaranteedo give a
resultwith this belief profile.

4. Weakening and choicefunctions

In orderto definea particularBelief GameModel, we have to choosea choice
functionanda wealeningfunction. We will give in this sectionsomenaturalchoices
for thesefunctionsandseewhataretheresultingBGM operators.

4.1. Weakening functions

Let usfirst turn out to wealeningfunctions.Canwe find a “natural” one? In fact
it is a difficult task, sincethe exact choiceof a wealeningfunction dependson the
expectedbehaiour for the Belief GameModel anddependslsoon the existenceof
some“preferential” information. But if we have no suchadditionalinformation,we
have atleasttwo naturalcandidates drasticwealeninganddilation.

DEFINITION 6. — Lety bea beliefbase Thedrasticwealeningfunctionforgetall
theinformationaboutonesource i.e.: ¥1(p) = T.

Thiswealeningfunctionsimply forgetall theinformationin ¢ !

After this roughfunction, let us seea morefine grainedone. Let usfirst recall
whatis the Hammings distancebetweeninterpretationgalsocalled Dalal’s distance
[DAL 88]) sincewe will useit severaltimesin this paper

DEFINITION 7. — TheHammingdistancebetweerinterpretationsis the numberof
propositionalsymbolson which the two interpretationsdiffer. Letw and w’ be two
interpretations then

dy(w, ) =#{aeP

w(a) # w'(a)})
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Thenthedilation wealeningfunctionis definedas:

DEFINITION 8. — Lety bea beliefbase Thedilationwealeningfunctionis defined
as:

mod(Vs(p)) ={weW | E ¢ dy(w,o') <1}

This wealening function takes as modelsof the wealenedbaseV;(y), all the
modelsthatareat an Hammingdistancdessor equalto 1 from the modelsof ¢, i.e.
all themodelsthatarein the basep andall themodelsthatareachievableby flipping
the truth value of one propositionalsymbolin a modelof ¢. This is closeto the
dilation operatorusedin morpho-logic§BLO 00, BLO 04].

4.2. Choice functions

Let usnow turn to choicefunctions. The aim of this functionis to determinethe
“losers”, thatarethesourceshathave to conceddoy wealeningtheir beliefsatagiven
round.

Oneof thesimplestchoicefunctionsis identity (denotedy; ;). It is nottheexpected
behaiour for this function,but it canprove therationality of our operatorsf, evenin
this case we obtaina sensiblememging.

We will focuson two familiesof choicefunctions. Thefirst oneis model-based,
the secondoneis formula-basedWe think thatmostof the sensiblechoicefunctions
belongto oneof thosefamilies.

4.2.1. Model-basedthoicefunctions

We will focushereonsomemodelizationof whatcanbe called“social pressure”,
andcanbe viewed asa majority principle. Namely at eachroundit is the “furthest”
sourcesrom the groupthatwill concede.The exact choiceof the meaningof “fur-
thest"will fix the choseroperatorfor this family. Technicallywe will usea distance
betweerbelief basesandan aggreation functionto evaluatethe distanceof a belief
basewith respecto theothers.

We will startfrom thedefinitionof the distancebetweertwo beliefbases.

DEFINITION 9. — A (pseudo)distancded betweertwo beliefbasess a functiond :
L x L — IN sud that:

—d(p, ") =0iff oA Q' ¥ L
—d(p,¢") = d(¢', )

3. Remarkthatwe missanimportantpropertyof distanceswe have only d(p, ¢') = 0 if p =
¢, but notthe only if part. Remarkalsothatwe do not requirethetriangularinequality
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Two examplesof suchdistancesre:

0 ifpA KL
— / f— .
dp (¢, ¢') { 1 otherwise
—dg (@7 (»0/) = min dyg (wv wl)
wi=pw'l=¢’
DerFINITION 10. — An aggregation function is a total function f associatinga

nonn@ativeinteger to every finite tuple of nonngativeintegers and verifying (non-
decreasingnesg)minimality) and (identity).

—ifz <y, thenf(xy,...,2,...,2,) < f(Z1,. Yy, Tn).
(non-decreasingness)
- f(z1,...,z,) = 0ifandonlyif z; = ... =z, = 0. (minimality)
— for everynonnegativeinteger z, f(z) = x. (identity)
We saythat an aggregationfunctionis symmetridf it alsosatisfies
— For anypermutationo, f(x1,...,2,) = f(Zs(1),-- -+ Zo(n)) (symmetry)
DEFINITION 11. — A model-basedhoicefunctiong®" is definedas:

g (W) = {pi € U [ h(d(pi, p1), - - (i, ) I's maximal}
wheie & is an aggregationfunction,andd is a distancebetweerbeliefbases.

We saythat the model-basedhoicefunctionis symmetridf the aggregationfunc-
tion is symmetric.

Wewill focusonsomespecificaggreationfunctionsin this paperbut we canuse
differentaggreation functionshere.In particularwe will only focuson symmetrical
aggreationfunctionsin this paper(to fit with choicefunctionrequirementsput note
thatthe definition allows non-symmetricafunctions. This allows to defineoperators
thatare not anorymous,i.e. whereeachbasehasnot the sameimportance.Soone
canusepriorities (a weightor a pre-orderon the sources¥or denotingdifferentlevel
of reliability, differenthierarchicaimportancegtc.

We will usein the following as examplesof aggreation functions,two typical
onesthesum(notedX) andthe maximum(notedmaz).

4.2.2. Formula-basedahoicefunctions

Not all interestingchoicefunctionsarecapturedn thedefinitiongivenin theprevi-
oussection.In particular alot of interestingchoicefunctionscanbe definedby using
maximal consistensubsets.Note, howvever that, converselyto usualformula-based
meming operator§BAR 92, KON 00], we usemulti-setsinsteadof simplesets.

DEFINITION 12. — Let MAXCONS(¥) be the setof the maxconsof ¥, i.e. the
maximal (with respectto multi-setinclusion) consistentsubsetsof W. Formally,
MAXCONS() is thesetof all multi-setsM sud that:

- M C ¥and
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—ifMC M CU,then A\M = L.

DEFINITION 13. — A formula-basedhoicefunctiong™¢ is a functionof the setof
themaxconf U andthebeliefbasei.e. :

g™e(V) = {p; € ¥ | h(p;, MAXCONS(T)) is minimal }

Examplesof the useof maxconsarenumerouslet us seetwo of them.
DEFINITION 14, —

—h™ (o, MAXCONS(W)) = #({M | M € MAXCONS(¥) andy € M})
—h™2(p, MAXCONS(¥)) = max({# (M) | M € MAXCONS(¥) andy € M})

Thefirstfunctioncomputeshenumberof maxconghebeliefbasebelonggo. The
secondunctioncomputeghesizeof the biggestmaxconghebelief basebelongso.

We will noteg™¢! (respectiely ¢™?) theformula-baseahoicefunctionthatuse
h™el (resp.h™?).

5. Instantiating the BGM framework

In this sectionwe will try to illustrate how interestingthe definedBelief Game
Modelframenork is by giving severalexamples We will first seesomeof thesimplest
operatorghatwe candefinewith thisframevork. Thenwewill illustratethebehaiour
of morecomplex operatorn atypical meiging example.

5.1. Some simple examples

Letusfirst seewhatoperatorareobtainedwith thesimplestwealeningandchoice
functions (that meansthat we will either choosethe wealening function to be the
drasticone,or the choicefunctionto beidentity).

—{(gia, ¥7): In this casethe belief baseresultof the BGM on ¥ underthe con-
strainty is the conjunctionof all the basesf the profile with theintegrity constraints
(A ¥ A p) if this conjunctionis consistentand . otherwise. This operatoris called
thebasicmemging opertor [KON 99].

—{(giq, ¥5): In this case,at eachstepof the game, eachsourcewealensusing
dilation. This givesthe well known model-basedneging operatorA?# ™2 defined
in [REV 93,REV 97, KON 02a].

— (g%»-*, w1): Here,theresultis the cardinality-maximatonsistensubsebf ¥
if it is uniqueandconsistentvith the constraintg:, andit is simply i otherwise.This
operatoris a new one. It is interestingsinceit canbe viewed asa generalizeccon-
junction: it givesthe conjunctionof all thebasesindtheconstraintsf it is consistent,



284 JANCL - 14/2004.Uncertaintyin multiple datasources

but if it is not, it tries to find the resultby doing the leastnumberof repairs(forget
onebelief base)of the belief profile. If thereis no ambiguityon the correction(i.e. a
uniquecardinality-maxcons}thenit acceptst astheresult.

— (g?»max_y): This operatorgivesasresultthe conjunctionof all the formulas
thatbelongto all maxcong(alsocalledfree formulasin [BEN 97, BEN 99]) andthe
integrity constraintsf it is consistentand . otherwise.

— (g™, v+ ): This operatorgivesthe conjunctionof the formulasthatbelongto
the maximumnumberof maxconsandthe integrity constraintsf consistentand i
otherwise.

— (g™, v1): In this casethe belief baseresultof the memging is the conjunction
of the belief baseghatbelongto the biggestmaxcondor cardinalityandthe integrity
constraintsf consistentandy otherwise.

Theseoperatorarenotlogically independentsomeof themarelogically stronger
thanothers,asstatedn thefollowing proposition.

THEOREM 15. — In figure 1 an arrow betweenan operator A and an opemtor
B (A — B) meansthat opemtor A is logically stronger* (or lesscautious)than
opeifator B. Resultoobtainedby transitivity are not represented.

(v o
(gid, 0 /<g¢d, V)
<gmcl’v_r <ng,max’vT>

Figure 1. Cautiousness

5.2. An example

We will seeonanexample[REV 97], whatis thebehaiour or someBGM opera-
tors, namelythe operators(g?:~ | ws), (g@#:h™ ws), (g™l ws) and (g™, W5).
Here is the example : There are three sources¥ = {¢1,p2, @3} with the
following belief basesMod(¢1) = {(1,0,0),(0,0,1),(1,0,1)}, Mod(ps2) =
{(0,1,0),(0,0,1)}, Mod(es) = {(1,1,1)}. Thereareno constrainton the result,
sou=T.

4. An operatorA is logically strongerthananoperatorB iff for all profile ¥, A(¥) F B(¥),
where A(¥) denoteghebelief baseresultof theBGM A ontheprofile .
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—(gdH=hE,v5> : As U is not consistent)et us do the first round. d(p1,2) =
0, dlp1,3) = 1, d(pa,03) = 2. S0 hg(er) = 1, hzlp2) =

hZ(ps) = 3. Thatgivesg?m:h” (U) = {p3}. So s is replacedl by ¥s(ps) =
form({(1, 1,1),(1,1,0),(1,0,1),(0,1,1)}). We have not yet reacheda con-
sistent ¥, so let us do a further round. Let us first compute the newv dis-
tances. d((pl,(pg) = 0, d((pl,(p3) = 0, d((pg,g@g) = 1. So hg(g&l) = 0,
hE(gs) = 1, h3(ps) = 1. Thatgives g%#"" () = {ps,03}. S0 ¢, is re-
placedby V5 (i22) = form({(0,1,0), (0,0,1), (1,1,0), (0,0,0). (0, 1,1), (1,0, 1)}),
and o3 is replacedby vs(p3) = form({(1,1,1),(1,1,0),(1,0,1),(0,1,1),(0,
1,0),(1,0,0),(0,0,1)}). We have reacheda consistentelief profile, so the result
is Mod(¥, = 1) ={(0,0,1),(1,0,1)}.

— (g%-h™™ 'ws) . As U is notconsistentlet usdothefirst round.d(¢1, ¢2) = 0,
d(p1.03) = 1, d(p2.03) = 2. SOhg™(p1) = 1, hy™(p2) = 2, hg™(ps) =
2. That gives g% """ () = {p3,03}. S0 ¢y is replacedby v;(py) =
form({(0,1,0),(0,0,1),(1,1,0),(0,0,0),(0,1,1), (1,0,1)}), and ¢3 is replaced
by vs(ps) = form({(1,1,1),(1,1,0),(1,0,1),(0,1,1)}). The obtainedprofile is
consistentsotheresultis Mod(¥ jay.nmax y,y) = {(1,0,1)}.

o

— (g™, ¥5) : W is not consistent,and MAXCONS(W) = {{p1, 2}, {¢3}}-
So hy(er) = hyl(e2) = hg(es) = 1, and g"N(¥) =
¥. So we wealen the three bases, which gives respectiely V¥s(p1) =
form({(1,0,0),(0,0,1), (1,0,1),(0,0, 0), (1, 1,0),(0,1,1), (1,1, 1)}), ¥5(sp2) =
form({(0,1,0),(0,0,1),(1,1,0), (0,0,0),(0,1,1),(1,0,1)}), and V¥s(p3) =
form( {(1,1,1),(1,1,0),(1,0,1), (0,1,1)}). This belief profile is consistentand
theresultingbaseis M od(¥ (gme1 y,y) = {(1,0,1),(1,1,0),(0,1,1)}.

— (g™, ¥5) :© W is not consistent, and we ha/e MAXCONS(¥) =
{{on, o2 {wst). So hg@(p1) = hg©(p2) = 2 and hig©(ps) =
1, and gm%(v) = {p3}. So 3 is replaced by Vs(p3) =

form({(1,1,1),(1,1,0),(1,0,1),(0,1,1)}).  The belief profile is still not
consistent, so we need one more round. Now we have MAXCONS(¥) =

{on o2} {pr st} So k(1) = hgPpa) = hg©(es) = 2,
and ¢g™?(¥) = W. So we wealen the three bases, which gives respec-
tively Vs(p1) = form({(1,0,0),(0,0,1),(1,0,1),(0,0,0),(1,1,0), (0,

1, 1)7 (L 1, 1)})' v5(902) = fOTm({(Oa 1, O)a (0, 0, 1); (17 1, O)v (Oa 0, 0)7 (Ov L, 1)7
(17 0, 1)})’ and V(;((pg) = form( {<1a 1, 1)7 (15 1, 0)5 (17 0, 1)7 (05 1, 1)}) The
belief profile is consistent, and the resulting base is Mod(V gme y;)) =
{(0,0,1),(1,0,1),(1,1,0),(0,1,1)}.

As we can note, on this examplethe four operatorsgive different (non trivial)
results. As all theseoperatorgake dilation aswealening functions,we sometimes
have the interpretation(1, 1, 0) asmodelof the baseresultof the memging, whereas

5. In orderto avoid unnecessaryotations,we do not usesubscriptsto denotethe different
wealeningstepsof thebaseswe simplyreplacehebeliefbasedy theirwealenedcounterparts.
Hopefully, it cannotleadto confusions.
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it is amodelof noneof theinitial belief bases.This meanghat, corverselyto usual
formula-basedneming operator§BAR 92, KON 00,KON 04], theresultof theBGM
doesnot (always)imply the disjunctionof the belief baseof the profile.

6. Logical properties

Somework in beliefmerging aimsatfinding setsof axiomaticpropertieoperators
may exhibit in orderto ensurethe expectedbehaiour [REV 93, REV 97, LIB 98,
KON 98, KON 99, KON 02b]. We focus here on the characterizatiorof Integrity
Constraint4IC) memging operator§K ON 99, KON 024.

DEFINITION 16 (IC MERGING OPERATORS). — A isanlC megingoperatoif and
onlyif it satisfieghefollowing properties:

(IC0) Au(T) = p

(IC1) If pis consistentthenA , () is consistent

(IC2) If A\ ¥ isconsistenwith i, thenA,(¥) = AV A p
(IC3) If 1 = ¥y and s = po, thenA,, (¥q) = A, (P2)

(IC4) If o1 = pandyps = p, thenA, ({¢1,02}) A 1 is consistenif and only if
Au({p1,02}) A @y is consistent

(IC5) Au(‘ljl) A Au(‘PQ) = Au(‘pl U Ws)

(IC6) If AL (T1) AAL(T,) isconsistentthenA , (T U Ts) = A, (T1) AAL(T2)
(IC7) AL (0) A po = Dy aps ()

(IC8) If AL, (T) A ps is consistentthenA , p,., (¥) = A, (T)

The intuitive meaningof the propertiesis the following: (IC0O) ensureghat the
resultof memging satisfiesthe integrity constraints.(IC1) statesthat, if the integrity
constraintsare consistentthenthe resultof meiging will be consistent.(IC2) states
thatif possibletheresultof memgingis simply theconjunctionof thebeliefbaseswvith
theintegrity constraints.(IC3) is the principle of irrelevanceof syntax: the resultof
meiging hasto dependonly on the expressedpinionsand not on their syntactical
presentation.(/IC4) is a fairnesspostulatemeaningthat the resultof meiging of two
belief baseshouldnot give preferenceo oneof them(if it is consistentith oneof
both,it hasto be consistenwith the otherone.) It is a symmetrycondition,thataims
to rule out operatorghat can give priority to one of the bases. (IC5) expresseghe
following idea: if belief profilesareviewed asexpressinghe beliefsof the members
of agroup,thenif ¥, (correspondingo afirst group)compromise®n a setof alter
nativeswhich A belongsto, and ¥, (correspondingo a secondgroup)compromises
on anothersetof alternatveswhich containsA too, then A hasto be in the chosen
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alternatvesif we join thetwo groups.(IC5) and (IC6) togetherstatethatif onecould
find two subgroupsvhichagreeon atleastonealternatve, thentheresultof theglobal
meiging will be exactly thosealternatvesthe two groupsagreeon. (IC7) and (IC8)
statethat the notion of closenesss well-behaed, i.e. thatan alternatve thatis pre-
ferredamongthe possiblealternatves (i1 ), will remainpreferredif onerestrictsthe
possiblechoiceq(i1 A p2). For moreexplanationsonthosepropertiesseelKON 024.

So,let usseenow whatarethe propertiesof BGM operators.

THEOREM 17. — BGM operators® satisfy properties (IC0), (IC1), (IC2), (IC3),
(IC7), (IC8). They do not necessarilysatisfyproperties(IC4), (IC5), (1C6).

PrROOF. —

(ICO0) is satisfiedby definition (seedefinition4), sincetheresultof the BGM pro-
cesss thebase/\ ¥/, A 1, soit implies .

(IC1) is satisfiedby definition (seetheorenb).

(IC2) by definition of the BGM (seedefinition 4), if A ¥ is consistenwith y,
thenthe halting conditionis satisfiedbeforeary wealeninground,so ¥, = ¥, and

ANV A= ANT AL

(IC3) is a straighforvard consequencef the third condition of the wealening
functions,andof thelastconditionof thechoicefunctions.

(IC7)and(IC8) aresatisfied Firstnotethatif A, (V) A s, is notconsistentthen
AN (O)Apia = Ay aps (), so(IC7) is trivially satisfied Now, in thecaseA ,, () A
pe consistentlet us prove (IC7) and (IC8), thatis Ay, (¥) = Ay, (W) A pio.
As A, () = Wit A g, andby definition 4, W/} is thefirst profile ; suchthat
A U; A uq is consistent. As we alsoknow that, by hypothesis, A U; A 1 A po IS
consistent,U; is alsothe first profile suchthat A U; A u1 A ps is consistent. By
definitionit meansthat 42 = ;. Sowe getthat Uk} = T\, Fromthatwe
get(Wi Apr) Apg = W2 Ay Apo, whichisexactly A, (W) Ape = Ay ap, (9).

So, asstatedin the previous proposition,BGM operatorgio not fit all properties
of IC mewging operators.On the otherhand,we know for examplethatthe operator
(gia, ¥5) = Adu-max gatisfiesalso (IC4), (IC5) [KON024. So the questionis to
know if we canensuremore logical propertiesby making somerestrictionson the
wealeningand/orthe choicefunctions.

A first remarkis that (IC4) cannotbe provedto hold for any BGM operatoybut it
is satisfiedfor all the particularoperatorave have definedin this paper

THEOREM 18. — If thewealeningfunctionis dilation or drastic wealening andif
the choicefunctionis a symmetrianodel-baseahoicefunctionor the formula-based
choicefunctiong™c! or ¢™2, thenthe BGM operator satisfieg(IC4).

6. Definedfrom ary choicefunctionandary wealeningfunction.
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ProoOF. — Firstnotethatfor all thoseoperatorsf thetwo basesareconsistentvith
the constraints(i.e. 1 A pa A 1), thenthe resultof the memging is (from (1C2))
ANp({e1,92}) = @1 A w2 A, SO(IC4) is trivially satisfied. The interestingpart of
(IC4) iswheng; A @2 A 1 is notconsistent.

If the choicefunctionis a symmetricmodel-basedhoicefunction, thensimply
note that the distanceusedto definethe model-basedunctions are symmetricby
definition, sod(p, ¢’) = d(¢’, ). Let notealsothatby definition of the distance
d(p, ) = d(¢',¢") = 0. So,naw, usingthe symmetryconditionof the aggreation
function, it is easyto shav that h(d(p, @), d(p, ")) = h(d(¢', @), d(¢’,¢")), that
meanghaty andy’ arealwaysboth maximal,andthatthey alwaysboth have to be
wealened. If we usedrasticwealeningasthe wealening function, we have that ¢
andy’ arereplacedby T andT. Sotheresultof themegingis consistentvith ¢ and
¢©’. So(IC4) is satisfied.If thewealeningfunctionis dilation, thenwhenwe wealen
© (resp. ¢') for the nt” time, we getasthe resultthe basep™ (resp. ¢'™) thatis the
formula (up to logical equivalence)whosemodelsare the onesthatareat a (Dalal)
distancdessor equalto n to modelsof ¢ (resp. ¢’). So,let notethefinal profile of
theBGM ¥; = {¢%, ¢}, if A\ U; A  is consistentjt meansthatdg (¢, p) = 0,
but by symmetryit impliesthatdg (¢?, ¢') = 0, so(recallalsothat, by definition of
dilationdg (¢%, ¢) = 0 anddy (¢t ¢’) = 0) that A\ ¥; A ¢’ is consistentSo(IC4) is
satisfied.

If the choicefunctionis g™<! or ¢™<2, let us notethatthe maximalconsistensets
are{y} and{¢'}, sothe ¢ andy’ areboth minimal, andthatthey alwaysboth have
to bewealened.If we usedrasticwealeningasthewealeningfunction,we have that
@ andy’ arereplacedby T andT. Sotheresultof the meging is consistenvith ¢
andy’. So(IC4) is satisfied.If the wealeningfunctionis dilation, we usethe same
symmetryargumentasfor symmetricmodel-basedhoicefunctions. n

The property (IC5) can also be recorered for someBGM operators,but (IC6)
seemshardly recorerable. Thosetwo properties((IC5) and (IC6)) areimportantfor
classicalmeging operators so we canwonderif the BGM operatoramissingthose
propertiexanstill becalled“merging” operatorsOneanswetto thisis thattheBGM
operatorsaim at focusingon the interactionbetweerthe beliefs of the sourcessoit
seemaaturalto looseproperty (IC6). Indeed,whereasclassicalmeiging operators
aim atgiving theresultof themeiging processn anidealframenork, BGM operators
seemmoreadequatelyeflectthe behaiour of a realmulti-sourcemeiging process.

Anotherimportantlogical link to be underlinedis the relationshipbetweerBGM
operatorsand AGM belief revision operatordALC 85, GAR 88, KAT 91, GAR 92].
Belief revisionaimsto make theminimumchangen abeliefbasen orderto take into
accountnew informationthatis morereliable thanthe currentbelief base(andthat
usually contradictsthe currentbelief base). Technicallythoseoperatorscan be de-
scribedasfollows: until thebeliefbaseis consistentvith thenew item of information
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(seemasanintegrity constraintthenwealenthebelief basé. Statedthisway, we can
immediatelyseethe parallelwith BGM operatorsincethey aredescribedsfollows :
until thebelief profile is consistentvith the constrainthenwealensomebeliefbases.
The following resultshavs moreformally that, asexplainedabore, BGM operators
canbeseemasadirectgeneralizatiorof AGM belief revision operators.

THEOREM 19. — Let N = (g, ¥) bea BGM operator. Let and u betwo belief
basesTheopenmator o definedaspo . = N, ({¢}) isan AGM beliefrevisionoperator
(i.e. it satisfiegroperties(R1-R6)of [KAT 91]).

PrROOF. — It is easyto seethatif werestrictbelief profiles¥ to singletons{}, then

postulates(IC0), (IC1), (IC2), (IC3), (IC7), (IC8) directly translateto (R1-R6).
After thatthe prooffollows from theorenl?. ]

In particular we have thateachBGM usingthe dilation wealeningfunctionis a
generalizatiorof Dalal’s revision operatofDAL 88].

Finally let usseeanothercardinalityrestrictionon the belief profile.

THEOREM 20. — Let N = (g%" ws) bea BGM opemtor definedfroma symmet-
ric model-basedhoicefunctionand dilation wealeningfunction. Let ¢1, 2 and i

be three belief bases,thenthe opemtor NV, ({1, ¢2}) is the model-basedneging

opemtor AZ#max({), o }) [KON 024.

Notethatthe previousresultholdsonly whenwe meigetwo belief bases.

7. ComparisonbetweenBGM and BNM

In this sectionwe will mainly compareour proposalwith Booth’s Belief Negotia-
tion Model (BNM) [BOO 02]. Let usfirst briefly recallBooth’s proposal.

Belief profilesin this framework are no longer multi-setsbut vectorsof belief
basesnoted V. Letusnoteé the setof belief profiles,andlet us noteY: the setof
all sequenceévectors)of belief profiles,andc oneelementof this set.WhenX is a
vector we will note X* theiith elementof the vectorand X™ the lastelementof the
vector

Soa sequencef belief profiles 7 is of theform & = {¥,,...,¥,}, with each
¥, beinga vectorof beliefbasesi.e. ¥; = (¢, 1,...,in,). And, for example,the
notations3 standsfor \173, andthenotations™ standsor \ff,n.

Thena BNM ngyotiation(choice)functionis definedas:

DEFINITION 21. — A BNM neyotiationfunctionis a function g®™ : ¥ — & suh
that:

7. It is the intuitive meaningbehindKatsunoand Mendelzonrepresentatiotheoremin terms
of faithful assignmentfKAT 91].
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cCao

—g™(@) # 0

—If p; € ¢®™™(&), theny; £ T

And a BNM wealeningfunctionis definedas:
DEFINITION 22. — A BNM wealeningfunctionis a function v&"" : Y — & sudh
that:

_ (6:771)1' [ vBNM(a.’)’L

—If (™)t = voW™(F)i, then(é™)i = T

Finally thesolutionto aBNM is definedas:
DEeFINITION 23. — Thesolutionto a beliefprofile U for a BeliefNggotiationModel
NBEW = (g®" we"W) undertheintegrity constaints z1, notedV:"(¥), is givenby the
functionf? : £ — 3 definedas:

—N@) =3 = (Tg,..., ;)

with U = 0, k is thesmallestinteger sud that A Ty A 1 is consistentandfor eath
0 < j < k wehave( g; denoteg ¥y, ..., ¥;)):

V(o) if (F5)" € (o))
(0;) otherwise

(Uj41)' = {

Finally, the beliefbaseresultof theBNMis A \ffk A L.

We changesomenotation,in orderto shav the closenessvith our presentvork.
Fortheoriginal presentatiomnddetailedexplanationonthedefinitionsseg[BOO 02,
BOOO01].

ThemaindifferencedetweerBNM andBGM are:

— BNM'’s definition of belief profile asvectorsallows us to speakaboutsources
separatelySowhentherearetwo identicalbelief basesn the belief profile, it is pos-
sibleto wealenonly oneof thesebasesThisis not possiblein theBGM frameawvork.

— TheBNM ngyotiationfunctiontakesasinputthewholenegotiationhistoryfrom
theinitial belief profile. Soit is possibleto implementa negotiationprocessuchthat
eachsourcewealensafterthepreviousone(for example, sourcel, thensource2, . . .),
or suchthatwe preventa sourceto wealentwo timessuccessiely. The BGM choice
functionsaremoreMarkovian, taking only into accounthe currentbelief profile.

— Similarly, the BNM wealeningfunction alsotakesasinput the whole negotia-
tion history. It allows usto wealen differently two identicalbelief basesbtainedat
differentroundsor to wealendifferentlytwo identicalbelief baseof the samebelief
profile.

— Accordingto the previousitemsideas theirrelevanceof syntaxconditionof the
BGM wealeningfunction,andthe anorymity conditionof the BGM choicefunction
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arenotrequiredin theBNM frameawork.

The main differencebetweenBooth’s proposaland our is that Booth's takesthe
sourcesascandidateso wealening,whereasve restrictoursehesto “points of view”
(logical contentof thebases) Thatmeanghatin Booth'sif onesourcehasto wealen,
it canbe the casethat anothersourcewith exactly the samebeliefs do not have to
wealen too. Our proposaladdsmore anorymity by sayingthat only beliefs decide
who hasto wealen, not theidentity of onesource.Similarly, the choicefunctionsare
more“Markovian” in our frameavork thanin Booth’s one.We think thatthosehypoth-
esisaremorerealistic (and necessarydn a belief memging point of view. Whereas
Booth's frameawvork allows us to model more generalizedhegotiation framenorks,
whereonecandecidefor examplethateachsourcehasto wealenoneafterthe other
So, despitethe closenes®f the models,andthe objective factthat our proposalis a
particularcaseof Booth’s one (i.e. eachof our operatorscanbe definedin Booth’s
framework), the intendedapplicationsof thosetwo frameworks are quite different.
And the particularpropertiesachiezed by addingthoserestrictionsshavs that this
framavork formsa consistenfamily of memging operatorsit explainswhy it is worth
focusingonthe modelwe have defined.

A lastdifferenceis that,in this paperwe areinterestedn theresultof the process
(asabeliefbase) whereaBNM framework aimsat studyingthe resultingprofile, in
connectiorwith anotionof “social contraction” See[BOO 02] for a studyof logical
propertiedor socialcontraction.

An additional contribution of this work is to give examplesof purely proposi-
tional logic BNM operators. In [BOO 02], Booth proposetwo examplesof BNM,
bothworking on ordinal conditionalfunctions(OCF)[SPO88], but noneon a propo-
sitional belief base. So this work can be seenas an investigation of what kind of
operatorghis definition cangive on propositionabelief baseqthroughaddingaddi-
tional requirements).

8. Conclusion

We have proposedn this papera new family of belief meging operatorsthatwe
call Belief GameModel (BGM) operators.The hypothesifor thoseoperatorgs that
all thesourcesareapriori reliable,or thatwe know thatsomesourcesarelessreliable
thanthe others,but without knowing which ones. This hypothesideadsto choosing
a majority approachjustified by Condorce® Jury Theorem. The ideabehindthe
Belief GameModel is simple: Until a coherentsetof sourcess reachedat each
rounda contestis organizedto find out the wealestsourcesthenthosesourceshave
to conceddwealentheir point of view). Thisidealeadsto numerousew interesting
operatorandopensnew perspectiesfor belief meiging. Someexisting operatorsare
alsorecoveredasparticularcases.

Not surprisingly the operatorsdefineddo not satisfy all logical propertiespro-
posedfor IC memging operators. The reasonis that thoselogical propertiesaim at
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giving constrainton theresultof the memging in anideal framevork, whereaBGM
operatorsaim at describingmore accuratelywhat canhappenin a real multi-source
ernvironment. So usuallC meging operatorscan be seenas a normativeapproach
to meging. They shav the way to a purely logical result. Corversely BGM op-
eratorsadopta descriptiveapproachto meiging, taking into accountthe interaction
betweenthe sources. They try to simulatemore adequatelywhat can happenin a
group-decisiomprocessSothey aremaybemorerealistic.

This papermainly aimsto introduceBGM operatorsput it providesseveralopen
questionghatareleft for furtherresearch.

The first oneis aboutthe definition of BGM operatorsand the computationof
theresult. We give aniterative definition of BGM operatorsthatleadsto aniterative
computatiorof theresult. Thequestioris to know if we canfind anon-iteratve equiv-
alentdefinition. We know that somesimple operatorsanbe definednon-iteratvely.
But the questionis to know if all operatorsor a non-trivial subclasof themarealso
definablenon-iteratvely.

Anotheropenquestionis aboutthe logical characterizatiorf this family. In this
paperwe studythelogical propertiesof this family with respecto the generaldefini-
tion of IC meging operators.The questionis to know if we canfind a setof logical
propertieghatcharacterizeBGM operators.

Finally, we have recentlystudiedthe strategy-proofnes®f the usualpropositional
meging operatorsshaving that mostof themarenot stratgy-proof[EVE 04]. And
we have exhibited several restrictionson which stratgy-proofnesscan be achieved.
So an interestingquestionis to comparethe stratgy-proofnessof BGM operators
with the oneof the classicaimerging operators.
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