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ABSTRACT. We consider in this work the problem of iterated belief revision. We
propose a family of belief revision operators called revision with memory operators
and we give a logical (both syntactical and semantical) characterization of these
operators. They obey what we call the principle of strong primacy of update : when
one revises his beliefs by a new evidence, then all possible worlds that satisfy this new
evidence become more reliable than those that do not. We show that those operators
have a satisfying behaviour concerning the iteration of the revision process. Then we
provide four particular operators of this family.
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1 Introduction

Modelling belief change is a central topic in artificial intelligence, psychology
and databases. One of the predominant approaches was proposed by Al-
chourrén, Gardenfors and Makinson and is known as the AGM framework
[AGMS85, Gar88]. The main requirement imposed by AGM postulates is the
so called principle of minimal change saying that we have to keep as much of
the old information as possible. Another important requirement is the princi-
ple of primacy of update that demands the new information to be true in the
new knowledge base. A drawback of AGM definition of revision is that it is
a static one, in the sense that, with this definition of revision operators, one
can have a rational one step revision but the conditions for the iteration of the
process are very weak. The problem is that AGM postulates state conditions
only between the initial knowledge base, the new evidence and the resulting
knowledge base. But the way to perform other revisions on the new knowledge
base does not depend on the way the old knowledge base was revised. In partic-
ular, conditionals of the old knowledge base can be totally lost in the revision
process. We argue that, in order to have a rational behaviour concerning the
iteration of the revision process, one has to care about updating conditionals



of the old knowledge base. This fact has already been pointed out by Darwiche
and Pearl [DP94]. They show that AGM postulates are too weak to ensure a
good behaviour concerning the iteration.

What is new in our proposal is that with each new piece of information,
which is in general a simple formula, is associated a more complex information
and it is this information that is incorporated during the revision process.

Some non-prioritized revisions have been explored recently [Han97, Mak98,
FH99, Sch98] rejecting the principle of primacy of update. However, iterated
revision can be carried on accepting the principle that new information is much
more reliable than older one. In this paper we show how this is possible. We
call this policy of giving strong preference to new information over the old one
the principle of strong primacy of update: when one learns a new evidence in
which he has full confidence, all possible worlds that satisfy this new evidence
become more credible than the worlds that do not.

We claim that maintaining a knowledge base history allows to ensure a
rational behaviour concerning the iteration. The point is that one cannot
model an agent belief only by her present beliefs but has to care about how the
agent has got her beliefs. So an epistemic state cannot be represented only by a
knowledge base. One needs additional information as, for example, the history
of the knowledge bases accepted by the agent. Let us consider the two following
revisions in which a and b mean it is raining and the grass is wet respectively:
K; = ax*x(a — b) and K5 = (a — b) * a; we have then the same resulting
knowledge base, that is a A b. But if we learn later that b is not true, that is
the grass is not wet, do we have to obtain K; x —b = K5 x =b? We do not think
s0. According to the principle of primacy of update, in K; the information a is
less reliable than a — b so when we learn —b we are willing to accept the falsity
of the older information and so to obtain K; * —=b = —a A —b and, of course if
it is raining then the grass is wet still holds. Whereas in K, it is a — b which
is less reliable, then learning —b will lead to K3 * =b = a A =b and in this case
if it is raining then the grass is wet does not hold. The differences between
knowledge bases and epistemic states reside in conditionals. K7 *—b = —a A b
means that in K; the conditional “If —b then —a” holds, whereas in K> the
conditional is “If —b then a”.

The paper is organized as follows: in section 2 we recall some previous
approaches to iterated revision. In section 3 we define revision operators with
memory and give a logical characterization of these operators. We provide some
examples of revision operators with memory in section 4. Finally, we conclude
with a short discussion.

2 Belief revision

A knowledge base is often defined as a set of formulas not necessarily closed
under logical deduction. Nevertheless in this work we will deal with a finite



propositional language £ and we will identify a knowledge base with a formula
having the same logical consequences.

The set of all interpretations is denoted by W. Let ¢ be a formula, M od(p)
denotes the set of models of ¢, i.e. Mod(p) ={I €W : I = ¢}. Let M be a
set of interpretations, form(M) denotes a formula whose set of models is M.
When M = {I,J} we will use the notation form(I,J) instead of form(M)
for reading convenience. As usual, ¢ F 9 denotes the fact that 1 is a classical
consequence of ¢.

A pre-order < is a reflexive and transitive relation, and < is its strict coun-
terpart, i.e I < J if and only if I < J and J £ I. As usual, ~ is defined by
I~JifI<Jand J<I.

2.1 AGM Postulates for Epistemic States

We give here a formulation of AGM postulates for belief revision @ la Katsuno
and Mendelzon [KM91b]. More exactly we give a formulation of these postu-
lates in terms of epistemic states [DP97]. The epistemic states framework is
an extension of the knowledge bases one. In their formulation, Darwiche and
Pearl [DP97] do not define precisely what an epistemic state is. Intuitively an
epistemic state can be seen as a composed information: the information that
an agent has regarding some scenario (her actual beliefs), plus all information
that same agent has about how to perform revision. We will indicate in the
next section exactly what we mean by epistemic state.

To each epistemic state ¥ is associated a knowledge base Bel(¥) which
is a propositional formula and which represents the objective (logical) part of
W. The models of ¥ are the models of its associated knowledge base, thus
Mod(¥) = Mod(Bel(¥)). Let ¥ be an epistemic state and p be a sentence
denoting the new information. ¥ o y denotes the epistemic state resulting of
the revision of ¥ by u. For reading convenience we will write respectively
Ukp $Ap, Pou+ ¥ Apuand I =T instead of Bel(¥) F u, Bel(¥) A p,
Bel(¥ o u) +» Bel(¥) A p and I |= Bel(¥).

Two epistemic states are equivalent, noted ¥ = ', if and only if their ob-
jective parts are equivalent formulae, i.e. Bel(¥) <> Bel(¥'). Two epistemic
states are equal, noted ¥ = ¥, if and only if they are identical. Thus equal-
ity is stronger than equivalence. We will see in section 3 that equality can be
viewed as a dynamic equivalence whereas equivalence has to be considered as
a static equivalence.

The operator o is said to be a revision operator if it satisfies the following
postulates:

(R*1) Yoputpu
(R*2) T Ap¥ L then Pop A



(R*3) If p# L, then Topuk L

(R*4) If U1 =T, and p; ¢ o, then ¥y o pu; = Ty 0 py
(R*5) (Top) Nt To(uny)

(R*6) If (Tou)Apk L, then To(uAp) - (Topu)Ayp

This is nearly the Katsuno and Mendelzon formulation of AGM postulates,
the only differences are that we work with epistemic states instead of knowledge
bases and that postulate (R*4) is weaker than its AGM counterpart, in fact
it is the only postulate in which we use explicitly the epistemic nature of the
knowledge. See [DP97, FH96] for a full motivation of this definition.

A representation theorem, stating how revisions can be characterized in
terms of models, holds. In order to give such semantical representation, the
concept of faithful assignment on epistemic states is defined.

Definition 1 A function that maps each epistemic state ¥ to a pre-order <y
on interpretations is called a faithful assignment over epistemic states if and
only if:

1. IfIEY and JI=9, then [ ~¢ J
2. HIET and JI£ T, then I <g J
3. If \I/l = \Ilz, then SWIZSWZ

Now the reformulation of Katsuno and Mendelzon [KM91b] representation
theorem in terms of epistemic states is:

Theorem 1 A revision operator o satisfies postulates (R*1-R*6) if and only
if there exists a faithful assignment that maps each epistemic state ¥ to a total
pre-order <g such that:

Mod(¥ o p) = min(Mod(u), <w)

Notice that this theorem gives information only on the objective part of the
resulting epistemic state.

2.2 Darwiche and Pearl Postulates

As we have said in the introduction, a strong limitation of revision postulates is
that they impose very weak constraints on the iteration of the revision process.
Darwiche and Pearl [DP94, DP97] proposed postulates for iterated revision.
The aim of these postulates is to keep as much as possible of conditional be-
liefs of the old knowledge base. So, besides postulates (R¥*1-R*6), a revision
operator has to satisfy:



(C1) If a k- p, then (Topu)oa=Toa
(C2) fak -y, then (Topu)oa=Toa
(C3) If Yot p, then (Fopu)oak p
(C4) f Toa ¥ —p, then (Topu)oak —pu

These postulates can be explained as follows: (C1) states that if two pieces
of information arrive and if the second implies the first, the second alone would
give the same knowledge base. (C2) says that when two contradictory pieces
of information arrive, the second alone would give the same knowledge base.
(C3) states that an information should be retained after revising by a second
information such that, when revising the current knowledge base by it, the first
one holds. (C4) says that no evidence can contribute to its own denial.

Darwiche and Pearl provide a representation theorem for these postulates.

Theorem 2 Suppose that a revision operator satisfies (R*1-R*6). The oper-
ator satisfies (C1-C4) if and only if the operator and its corresponding faithful
assignment satisfy:

(CR1) IfI = pand J = p, then I <g J iff I <gop J
(CR2) IfI|=—p and J = —p, then I <g J iff I <wop J
(CR3) If I |=p and J = —p, then I <w J only if I <wop J
(CR4) IfI|=p and J = —p, then I <g J only if I <go, J

In [DP94] the set of postulates (C1-C4) has first been given as a comple-
ment to usual AGM postulates. Freund and Lehmann [FL94] have shown that
(C2) is inconsistent with AGM postulates. Furthermore Lehmann [Leh95] has
shown that (C1) plus AGM postulates imply (C3) and (C4). In [DP97] Dar-
wiche and Pearl have rephrased their postulates (and AGM ones) in terms of
epistemic states instead of knowledge bases. In this way, they have removed
these contradictions.

2.3 Boutilier natural revision

Before the work of Darwiche and Pearl, Boutilier proposed in [Bou93, Bou96]
a natural revision operator which aims to have good iteration properties. This
principle is called absolute minimization by Darwiche and Pearl and can be
characterized by [Bou93]:

(CB) f Wopht -y, then (Toyp)op=Topu



Which gives the following condition on the assignment: [DP97]

Theorem 3 Suppose that a revision operator o satisfies (R*1-R*6). o satisfies
CB if and only if the operator and its corresponding faithful assignment satisfy
(CBR):

CBR) IfIETopand JETopu, then I <y J iff I <go, J
p

So this operator can be seen as accomplishing a minimal change in the pre-
order associated with the epistemic state. When one learns a new piece of
information, one looks at the minimal models of this information according to
the pre-order of the old epistemic state. The pre-order of the new epistemic
state is exactly the same as the old one except that the minimal models of the
new information are the new minimal elements of the pre-order.

Darwiche and Pearl [DP97] have shown that applying this principle leads
to questionable results. However, natural revision even seems to be a simple
and meaningful operator.

2.4 Lehmann ranked revision

Lehmann [Leh95] proposed postulates for revision operators that ensure good
iteration properties. Its postulates are based on revision sequences. Let ¥ and
¥’ be two revision sequences, i.e. ¥ = ¢ 0...0¢,, and let ¢ and p be two
sentences:

(I1) ¥ is a consistent theory
(I2) Topt o
(I3) f Popt p,then T o — p
(I4) T F p, then To¥' =Fopuo W
(I5) If o F p, then Topopo ¥ =Topo U’
(I6) If T oV —pu, then Topopuo¥'=Topop Aol
(I7) TApETo-poyp
Contrary to Darwiche and Pearl postulates, these ones are not an extension
of AGM postulates, but Lehmann claims that they capture the spirit of AGM

postulates [Leh95]. He gives a semantical characterization in terms of widening
ranking models.

We will see in the following that the behaviour of Lehmann’s operators is
very far from the other proposals quoted in this paper and from revision with
memory operators. In particular we will show through some examples that
revision with memory operators satisfy very few of Lehmann’s postulates.



2.5 Spohn proposal

Spohn [Spo87] proposed to model the epistemic state of an agent by an Or-
dinal Conditional Function (OCF), which can be considered as a ranking on
interpretations.

Definition 2 An Ordinal Conditional Function k is a function from the set
of possible worlds W to the class of ordinals such that at least some world is
assigned 0.

The ordinal x(I) associated to a possible world I can be viewed as the degree
of disbelief of this world in the epistemic state represented by the OCF.

This function on possible worlds can straightforwardly be lifted to formulae
in the following way:
k(p) = min k(I
(¢) = min (1)
Thus a formula ¢ is believed in an epistemic state represented by & if k() =
0. Otherwise the degree of disbelief of ¢ is k(p).

This notion allows also to make a distinction between believed formulae.
Let’s define the degree of firmness of a formula in the following way:

© is believed with firmness « relatively to the OCF k if and only if

- either k(p) = 0 and a = k(—y),
- or k() > 0 and a = —k(p).

The revision on an OCF is called a (¢, ) -conditionalization of k, where & is
the current OCF, ¢ is the new evidence and « is the degree of firmness of this
new evidence. Intuitively, this degree of firmness represents the confidence in
the new information, the higher the value, the more reliable the new evidence.
The result of the conditionalization is a new OCF where the new evidence is
believed with firmness a.

Definition 3 Let k be an OCF, ¢ be a formula, o be an ordinal, the (v, a)-
conditionalization of k is the OCF K, o such that:

B — k(p) ifIE¢
Kp,all) = { k(I) — k(@) +a if [ E-p

Where a — b represents the unique ordinal ¢ such that b+ ¢ = a.
It is clear that Spohn operators satisfy AGM postulates (if a # 0) as well

as Darwiche and Pearl ones. Furthermore, the additional ordinal information
allows to define more subtle notions than the AGM formalism [G&r88]. But the



major flaw of this proposal is that it needs a degree of certainty for the incoming
information. For some applications this measure is given by the system but for
most of them we simply do not know the degree of certainty of new evidences.
Moreover, it is difficult to appreciate the distinction between such degrees: is
there any sense to make a distinction between a new evidence with a degree of
certainty of 100 and another one with a degree of certainty of 101 ?

For the cases where we can not attach such a numerical information to
the new evidence it seems that we have only two solutions in the OCF spirit.
Spohn presents these two solutions as two limiting cases and criticizes this two
approaches. He proposes his OCF as a median choice. It turns out that one of
this limiting cases corresponds to Boutilier’s natural revision operator. But the
other case has never been investigated more deeply. In fact, our basic revision
operator with memory corresponds to the other limiting case (actually it is a
particular conditionalization) and what follows in this paper is an investigation
of the properties of this family of operators. We will first define what we call
revision operators with memory and then we will address Spohn criticisms.

3 Revision operators with memory

As we have already said, an epistemic state is intuitively a complex information:
a knowledge base denoting the objective (logical) part of this epistemic state,
plus an additional information, that we call conditional set, representing the
preferences of the agent, i.e. what he is willing to accept. This additional
information can take different forms, such as a pre-order over possible worlds,
a set of conditional sentences, an epistemic entrenchment [NFPS96], a revision
history, etc. In order to formalize these ideas we will consider a very simple
syntactic definition of epistemic state.

Essentially, an epistemic state is a list of formulas (a revision history) to-
gether with its objective part. For simplicity reasons we will only consider
consistent knowledge bases. So from now on all formulae considered will be
consistent formulae. Nevertheless with some little (but technical) changes we
can treat the case of L.

Formally the epistemic states are constructed from the consistent formulas
in the following way:

Definition 4 1. [T] is an epistemic state.

2. If W is an epistemic state and ¢ is o consistent formula, then [¥ - ¢] is
an epistemic state

3. Each epistemic state is built by a finite number of applications of the
previous two rules.

4. To each epistemic state ¥ we associate a formula (), the objective part
(the knowledge base) of U.



The set of epistemic states will be denoted E.

We will denote [p1 - ... - ¢,] the epistemic state [...[[T - @1]- 2] .. ©n]-
When O = [p; - ... p,] and O’ = [¢] -...- ¢!, then [T - ¥'] will denote the
epistemic state [p1 ... @n @) ... QL]

We will now consider a notion of equality between epistemic states, that
extends the notion of identity between two epistemic states. In fact, this def-
inition highlights the fact that the equality between epistemic states is not
simply a syntactical identity, but it means that the two cognitive states are the
same, since different ways can lead to the same cognitive state. Equality can
be considered as a dynamic equivalence. Whereas equivalence denotes simply
the fact that statically the knowledge bases of two epistemic states are logically
equivalent, equality states an extensional equivalence, that is, all revision start-
ing from these two epistemic states will lead to epistemic states with equivalent
knowledge bases. So, more precisely, we have the following definition:

Definition 5 ¥; = Uy iff for all ¢, [¥; - @] ¢ [P2 - ¢]

We are going to consider interpretations of epistemic states. An interpreta-
tion is a function I : E — ET together with a function 77 : ET — £. The
elements of E' are the concrete realizations of epistemic states (for instance, a
concrete epistemic state can be encoded by several means, such as a pre-order
over possible worlds, an epistemic entrenchment [NFPS96], etc.). We ask that
the interpretations are compatible with the equality notion of Definition 5, that
is

Vo (a(I([%1- ) & 7' (I([P2- ) = 1(T1) =1(T2)

We ask too that 7!/ and 7 are compatible, i.e.

The operators o we will consider will be functions from ET x £* into ET,
where L£* is the set of consistent formulas. We ask that

I(¥) oo =I([¥ - ¢])

Before proposing a set of postulates for revision operators with memory, we
first give an example of a construction of those operators from a given faithful
assignment in order to show the motivation of the logical characterization. Note
that, among other things, this construction will show how to build an operator
with memory from a given classical AGM revision operator.

We assign to each knowledge base ¢ a total pre-order <., which represents
the models of the knowledge base (at the lowest level) and the credibility a



priori of “alternative worlds”. It can be viewed as the epistemic state the
agent would have if she has no prior knowledge and learns this evidence. This
assignment can be interpreted as the agent’s revision policy.

We impose very few constraints on this assignment, assuming it is faithful,
that is:

Definition 6 A function that maps each consistent knowledge base ¢ to a pre-
order <, on interpretations is called a faithful assignment over knowledge bases
if and only if:

1. IfIEpand J =, then I =, J
2. IfI=p and J |~ @, then I <, J

3. If o1 = o, then <, =<,

Note that two definitions of faithful assignment are available, one working on
epistemic states (Definition 1), and the other one working on knowledge bases
(Definition 6). This assignment on knowledge bases will induce an assignment
on epistemic states in the following way:

Definition 7 Consider a faithful assignment that maps each consistent knowl-
edge base ¢ to a total pre-order <,. Let ¥ = [p;-...- py] be an epistemic
state. We define <g as:

o Ifn =1, then <g=<,,

o Otherwise, I <g J if I <,, J or
IT~, JandI <, .. .pon_J

The pre-order <y is called the conditional set of . The objective part of ¥, de-
noted w(¥), is the sentence (up to logical equivalence) such that Mod(w(¥)) =
min(W, <y)

This faithful assignment over epistemic states allows us to define an in-
terpretation in the following way: E! is the set of total pre-orders over val-
uations. The function I : E —s E! is defined by putting I(¥) =<g. The
function 7! : ET — £ is defined by n!(<) = ¢ where ¢ is a formula such that
Mod(y) = min(W, <).

It is easy to see that the following theorem holds:

Theorem 4 If the function that assigns to each knowledge base ¢ a pre-order
<, is a faithful assignment (over knowledge bases),then the function that as-
signs to each epistemic state ¥ o pre-order <g as defined in Definition 7 is a
faithful assignment (over epistemic states).



Corollary 5 Let <y be a faithful assignment over epistemic states as in Defi-
nition 7. Let o be a revision operator such that Mod(¥op) = min(Mod(u), <g).
Then o satisfies (R*1-R*6).

Notice that this corollary gives only properties about the knowledge base
resulting of the revision, that is, the objective part of the resulting epistemic
state. Nevertheless, the revision process has to specify the full new epistemic
state and we need some additional logical properties in order to characterize
this kind of operators. Thus, we define revision with memory operators as the
operators satisfying the axioms of the following definition.

Definition 8 Let (E!,I,7!) be an interpretation. Let o : E! x L — E' an
operator. o 1is said to be a revision operator with memory if and only if the
following conditions hold :

(HO) 7[T] & T

(H1) [T 9]k o

(H2) If U A is satisfiable, then [¥ -] = ¥ A @

(H3) [V - ¢] is satisfiable

(H4) If Uy = Uy and @1 ¢ @y, then [Ty - 1] = [Ty - 5]
(H5) [Tl Apt[T-oAp]

(H6) If [T - | A is satisfiable, then [U - o Ap] - [® -] Ap
(H7) [¥- W] =[¥-7([¥])]

(HO) states that the knowledge base associated with the empty history is T
and that the epistemic state corresponding to an empty history is the same as
the one occurring when we know only tautologies. Notice that, in the presence
of the other postulates, (HO) implies that [¢] = [T - ¢]. (H1-H6) are exactly
postulates (R*1-R*6) except for (H4) which is stronger than (R*4). Postulate
(H7) is asort of associativity of the constructor of epistemic states. It expresses
the strong confidence in the new information. This will be seen more clearly
from the semantic point of view below.

Now we state a theorem regarding representation of these operators with
memory in terms of families of pre-orders on interpretations. This gives a more
constructive definition of those operators. We define first what a conservative
assignment is:

IThese conditions, written in syntactical manner, have to be satisfied in the usual semanti-
cal way. Thus, for instance, the operator satisfies (H7) iff 71 (I([¥-¥'])) <> 7L (I([¥ -7 ([¥'])]))-



Definition 9 A function that maps each epistemic state ¥ to a total pre-order
<y on interpretations is colled a conservative assignment if and only if:

IfI=Yand JET, then [ ~g J
FIET and JIE T, then I <y J

If ¥y =W,, then <gy,=<y,

If © = [¢] then min(W, <w) = Mod(y)
IfI < J, then I <pg.,) J

If I~ J, then I <pg.,) J iff I <o J

S SN e~

The pre-orders defined in definition 7 satisfy these properties. Conversely,
when one has a conservative assignment one recovers straightforwardly the
lexicographical order defined in definition 7 when one starts from the faithful
assignment @ =<,

In particular, this implies that a conservative assignment is completely de-
termined by a unique faithful assignment over formulae.

We can strengthen the properties on the assignment by demanding the
following property:

7. If I} pand J & @, then I <(y.,) Jiff I <g¢ J

This condition is the condition (CR2) of Darwiche and Pearl (cf. section
2.2). We call such an assignment a strong conservative assignment.

We have the following representation theorem:

Theorem 6 Let (E',I,w!) be an interpretation. Let o : ET x L — ET an
operator. The operator o satisfies postulates (HO-H7) if and only if there exists
a conservative assignment that maps each epistemic state U to a total pre-order
<g such that:

Mod(x' (I(¥) o ¢)) = min(Mod(p), <v)

The proof of this theorem is given in the Appendix. However, let us notice
that, by the conditions imposed to operators, the left hand side member of the
previous equality can be written as Mod([¥ - ¢]).

This theorem has two important consequences. But before we state them,
let us introduce some useful notation.

Definition 10 Let <1 and <5 be two partial pre-orders over valuations. The
lezicographical partial pre-order associated to =<1 and =<2, denoted =j.p(<, ,<s),
is defined by

I Siea(=1,20) Jf (I <1 J) or (I ~1 J and I <5 J)



In particular, when <; and =; are total pre-orders we have that <je; (<, <)
is a total pre-order. Notice that the total pre-order associated with an epistemic
state in the Definition 7 is the (reversed) lexicographical order on the sequence
of pre-orders associated with knowledge bases.

Now, we can state the first consequence of theorem 6: it shows how to
construct revision operators with memory when the interpretation of epistemic
states are pre-orders over valuations. More precisely, we have the following
result:

Corollary 7 Let E! be the set of total pre-orders over valuations. Let I :
E — ET and ! : ET — L be an interpretation. Theno: E'xL* — El isa
revision operator with memory iff there is a faithful assignment over consistent
knowledge bases, ¢ =<, such that the following conditions hold:

(1) I(¢]) =<¢

(ii) I([¥ - ¢]) =<iex(<,,1(9))
(iii) I(¥) o = I([¥ - ¢])
(iv) #'(<) = min(W, <)

This corollary states that revision operators built from a lexicographical
order as done in Definition 7 are exactly characterized by postulates (HO-HT).
So, the conditions on pre-orders are captured by these logical properties.

We will call the interpretations and the revision operators of corollary 7 the
standard interpretations and the standard revision operators with memory.

The other consequence of Theorem 6 is that the standard revision operators
with memory are in some sense universal. More precisely we have the following:

Corollary 8 Let I : E —s E! and n! : EY — L be an interpretation. Let
o: El x £* — ET be a revision operator with memory. Then there exists a
standard revision operator with memory o' : ET x £* — ET such that

1

w (I(T) o) = 7" (1(¥) ' )

What this corollary says is that any revision operator with memory can be
simulated by a standard revision operator at the level of the objective part.

Now, we will look at some logical properties of this family of revision oper-
ators.

Theorem 9 If an operator satisfies (HO-H6), then (H7) is equivalent to the
following postulates:

(H7) If[o-pl = p, then [ - - p] = [T - 4]



(H’8) If V' + u, then [T - U+ p

The proof of this theorem is given in the Appendix. It is also interesting to
note that postulates (HO-H7) imply the following property:

(C) If ¢ A u is satisfiable, then [T - ¢ - p] = [T - p A y]

(C) states that when one revises successively by two consistent pieces of infor-
mation, it amounts to revise by their conjunction. It is close to a postulate
proposed by Nayak and al. [NFPS96] called Conjunction, but (C) is weaker
than Conjunction, since it requires only the equivalence of the two resulting
epistemic states, not the equality. Thus, the two epistemic states have the same
objective part but can have different conditional sets.

The following two theorems are easy to prove:

Theorem 10 A revision operator with memory satisfies postulates (C1), (C3)
and (C4). It does not, in general, satisfy (C2).

We have in fact the following representation theorem:

Theorem 11 A revision operator satisfies postulates (HO-H7) and (C2) if
and only if there exists a strong conservative assignment (i.e. a conservative
assignment satisfying condition 7) which maps each epistemic state ¥ to a total
pre-order <y such that:

Mod([\Il - QO]) = min(Mod(p), <y)

This theorem states that a subclass of revision operators with memory sat-
isfy (C2), but we will see in the next section that there is a unique revision
with memory operator (the basic one) that satisfies these requirements.

Postulate (C2) has been shown to be inconsistent with AGM Postulates by
Freund and Lehmann [FL94]. So Darwiche and Pearl slightly modify AGM
Postulates in [DP97] and then remove the contradiction. We claim that (C2)
is not always desirable. The next example shows that satisfying this postulate
leads to counterintuitive results.

Example 1 Consider a circuit containing an adder and a multiplier. In this
example we have two atomic propositions, adder_ok and multiplier_ok, denoting
respectively the fact that the adder and the multiplier are working. We have
initially no information about this circuit (¥ = T) and we learn that the adder
and the multiplier are working (u = adder_ok A multiplier_ok). Then someone
tells us that the adder is not working (¢ = — adder_ok). There is, then, no
reason to “forget” that the multiplier is working, which is imposed by (C2) :
a = so by (C2) we have [T -p-a] =[¥-a]l=a

So, in some cases, postulate (C2) induces exactly the same kind of bad
behaviour it tries to prevent.



4 Some revision operators with memory

We give in this section four standard operators with memory, the first one
is called Basic memory operator since it corresponds to the simplest faithful
assignment we can define. We show that even with such a basic operator, an
agent can build complex preference orderings. We prove that this is the sole
revision operator with memory that satisfies (C2). Then we give the Dalal
memory operator, showing the behaviour of operators with memory when the
pre-orders are more complex. Finally, we show how to generalize Ryan revision
with OTP (Ordered Theory Presentation) [Rya94] in order to obtain two more
revision operators with memory.

4.1 Basic memory operator

Let us define the assignment that maps each consistent formula to a pre-order
in the following way:

Definition 11 Let ¢ be a consistent formula and I,J two valuations.
I<b Jifand onlyif I = or
ITEpand JEe

So we have what we shall call a basic order, which is a two-level order (at
most), with the models of ¢ at the lower level and the other worlds at the
higher level.

It is easy to show that the assignment that maps each consistent knowledge
base ¢ to a pre-order SZ is a faithful assignment. We can now use corollary 7
to define a standard operator.

Definition 12 The basic memory revision operator, o®, is the standard oper-
ator defined after the faithful assignment ¢ —)SZ using the characterization
of corollary 7. In particular:

(@) ol = Stea(<b,1(¥))> and
Mod(x! (I(¥) o* ) = min(Mod(), <)

Even with this basic order on knowledge bases, one can build very complex
epistemic states. This is due to revision history. We illustrate the behaviour of
this operator through some simple examples.

Example 2 Consider a language L with only two propositional letters a and b.
We will denote interpretations simply by the truth assignment, i.e 10 denotes
the interpretation mapping a to True and b to False. Two interpretations are
equivalent, with respect to the pre-order, if they appear at the same level. An



interpretation I is better than another interpretation J (I < J) if it appears at
a lower level. Let us see some examples of epistemic states:

00 01

o _ 10, 000110 o, _ 00181 o 1
=la-b] " Q1 —[anb] 11 —[aAb-a] ™ 1 —lanb-a-=b]" (0
11 10

01 é(l] 11

<top-g= 11 Poba(ant)= 10 <Laans~(anpy= 0001
00 10 01 10

With these examples, one can show that revision operators with memory
do not satisfy Lehmann’s postulates (I14), (I5) and (I6). Let us take [a A b -
a--b] # [aAb-—b] as a counterexample for (I4) and (I5). Also, we have
[a-b-—(aAb)] Z[a- aAb-—(aAb)] as a counterexample for (I6). The basic
operator satisfies (I7) since, as we show below, it satisfies (C2) (see section 4.2
for a counterexample for (I7)).

For each ordering, there exists a revision history leading to the ordering.
Sufficiently long sequences of different (non-equivalent) formulas lead to linear
pre-orders, that is, pre-orders where there is no pair of equivalent interpreta-
tions. So, with such pre-orders, the objective part of the resulting epistemic
states are complete formulae. This can be viewed as a learning process: when
an agent has a long revision history he keeps preferences over possible worlds
due to his past experience. Note that Darwiche and Pearl operators lead to
the same kind of linear orders whereas, conversely, Lehmann operators lead to
basic orders, that is, pre-orders in which all the non-model interpretations are
equivalent. This is why revision with memory operators do not satisfy most
of Lehmann’s postulates. It seems that no iterated revision process can avoid
belonging to one of these two limiting cases. So the question is to know if one
case is better than the other. We consider that the former is preferable to the
latter since, as we noticed above, a linear order as a limiting case can be inter-
preted as a learning process whereas, conversely, basic orders seem to denote
a forgetting attitude. When you reach such pre-orders all severe revisions, i.e.
revisions by an information that is not consistent with the current knowledge,
amount only to this new information, that is, if ¥ F -y then ¥o pu = pu.

The order paired with each epistemic state by the basic order is a strong
conservative assignment. It is easy to show then that the sole revision operator
with memory that satisfies the conditions of the strong conservative assignment,
is the basic operator:

Theorem 12 The sole revision operator with memory that satisfies (HO-H7)
and (C2) is the basic memory revision operator.



In [Spo87] Spohn criticized this revision method by outlining three flaws
of this approach. First, this operator is not reversible, that is, if you know
the current epistemic state and the last new evidence incorporated, there is
no means to recover the old epistemic state. It is true in Spohn formalism
and in the one presented here. But in [BDP99, BKPP99, BKPPQO] epistemic
states are coded by polynomials and the basic operator is a “multiplication”
on polynomials. Given this representation, the basic operator is reversible.

Second, this operator is not commutative, that is, given ¢; and @2 two
logically independent propositions, the epistemic state resulting of the accom-
modation of these two propositions is not the same if ¢; arrives before ¢y or
if 9 arrives before ; or if the two propositions arrive together. According to
Spohn (Nayak and al. [NFPS96] give a similar property), if two propositions
do not contradict each other, then the resulting epistemic state does not have
to depend on the order of accommodation of these evidences. Evidently, re-
vision with memory operators do not obey this requirement since they give a
high primacy to the last evidence. However, a weak form of this requirement
is satisfied since these operators verify property (C), which expresses this idea
on the objective part of the resulting epistemic states.

Thirdly, Spohn underlines that the hypothesis that being informed about
¢ makes all the possible worlds satisfying ¢ more reliable than the possible
worlds satisfying —p is a strong one. It is true that this assumption is strong,
which is why we call it strong primacy of update. But, on one hand, the study
of the properties of this operators was missing and seeing this basic operator as
a particular case of the more general revision with memory operators helps to
justify such an approach. On the other hand, when we dispose of no additional
information attached to the new evidence that could help to define the revision
as in the Spohn approach, the two possibilities that provide a minimal set of
rational properties seem to be Boutilier’s natural revision operator and revision
with memory operators.

Finally, we can note that Liberatore has shown [Lib97] that several problems
are computationally simpler for the basic memory operator than for the other
iterated belief revision proposals (including Boutilier’s natural revision [Bou93],
Lehmann’s ranking revision [Leh95] and Williams’ transmutations [Wil94]).

4.2 Dalal memory operator

We use in this section the Hamming’s distance between interpretations and
then the Dalal’s distance between an interpretation and a formula [Dal88],
defined in the following way:

Definition 13 Let I and J be two interpretations, the Hamming’s distance
dist(I,J) is defined as the number of propositional letters the two interpre-
tations differ on. Let ¢ be a consistent knowledge base, the Dalal’s distance



between I and ¢ is:

d(I,p) = 5n':ir;(dist(1, J))

Let’s define the assignment that maps each knowledge base to a pre-order
in the following way:

Definition 14 Let ¢ be a knowledge base and I,J two interpretations.
d . .
I <G J if and only if d(I, ) < d(J,¢)

So we have a pre-order, with the models of ¢ at the lowest level and the other
worlds in the higher levels.

We use Corollary 7 to build an operator from the assignment gg.

Definition 15 The Dalal memory revision operator, o%, is the standard op-
erator defined after the faithful assignment ¢ —>§Z using the characterization
of Corollary 7. In particular:

I(¥) ot p = Stea(<d,I(¥))> and
Mod(r! (I(¥) o ) = min(Mod(p), <4
From theorem 12 we know that the Dalal memory operator does not
satisfy (C2). This can be easily shown through Example 1. Let ¥ = T,

u = adder_ok A multiplier ok and a = —adder_ok (in the following the two
propositional letters denote respectively adder_ok and multiplier_ok).

00

10 11
d __ d__ d__
<d— 00011011 <i= 0110 <i= D1
11
11
10 11 10
d — d —
Stw-al™ (0 01 <fwwal= g
01

So a F =y but [¥ - - a] = —adder_ok A multiplier ok whereas [¥ - a] =
—adder _ok.

Remark 1 The Dalal memory operator does not satisfy (I7)

For example, TA=(a AbD) ¥ [T -aAb-—=(aAD)].



4.3 Ryan OTP operator

Mark Ryan has proposed to apply his Ordered Presentations of Theories (or
OTP) to belief revision [Rya94]. Very roughly, an OTP is a multi-set of for-
mulae equipped with a partial pre-order. This pre-order represents the relative
reliability of the sources of each formula. To give the definition of OTP is not
a subject of this work, the interested reader can see e.g [Rya9l, Rya92]. We
will simply introduce the notions needed to define the OTP revision operator.

We will see that Ryan’s proposal does not satisfy the desired properties of
revision with memory operators; we will then give two modifications of Ryan
OTP revision operator that satisfy the required properties. These operators
are interesting since, as in the two previous examples, there are no a priori
pre-orders. Furthermore this information is provided by the formula itself in a
very natural (syntactical) way.

First we have to define what the monotonicities of a formula are.

Definition 16 Let I be an interpretation and p be a propositional letter, then
IP! (respectively ITP1) denotes the interpretation that is identical to I on each
propositional letter except (maybe) on the propositional letter p that is assigned
to true (resp. false).

Definition 17 Let ¢ be a consistent formula and p be a propositional letter.

1. ¢ is monotonic in p if I |= ¢ implies that 117l E .
2. ¢ is anti-monotonic in p if I |= ¢ implies that I [=r] = .

The set of symbols in which ¢ is monotonic (resp. anti-monotonic) is noted
@t (resp. ¢7). These two sets are called the monotonicities of . If ¢ < L,
then ot == =10

After this definition, Ryan defines an inference relation that he named nat-
ural entailment.

Definition 18 ¢ naturally entails u, written ¢ oy p, if o F p, o7 C p™ and
o Cu.

This relation has some nice properties, in particular and conversely to clas-
sical entailment, it does not allow to add irrelevant disjuncts in the conclusions
(for example p ~, pV q). See [Rya91, Rya92] for more details.

Finally, the preference relation associated with a formula ¢ is given by the
set of natural consequences that the interpretations satisfy, that is:

Definition 19 Let ¢ be a formula, and I,J two interpretations, the relation
=<, ts defined as: I <, J if for each p such that ¢ |~ p it holds (J = p =

I'E p).



So an interpretation is better than another if it satisfies more natural con-
sequences. Note that the relation <, is a partial pre-order.

In order to define the OTP revision operator we use the technique of Defi-
nition 7.

Definition 20 Let EI°"" be the set of partial pre-orders over valuations. The
OTP revision operator, o1 : E! x £* — E! and the OTP interpretation
I°TP . g — EIOTP, %7 DB 5 £ are defined starting from the
assignment ¢ ==, in the following way:

() 1977 () ==,

(i) IOTP([T - @) ==en(<,., 1077 (w))
(iii) IOTP (L) 0OTP o = [OTP([F - o))
(iv) 777" (%) = min(W, <)

OTP
7.‘.I

In particular M od( ([ - ¢])) = min(Mod(yp), I°TF(¥)).

Because the starting assignment takes partial pre-orders as values, the op-
erator o9TP does not satisfy all the postulates. More precisely, we have the
following result:

Theorem 13 The OTP revision operator satisfies postulates (H0), (H1), (H3),
(H4), (H5) and (H7), but does not satisfy (H2) and (H6).

A counter-example to (H2) and (H6), given in [Rya94], is the following:

Let o1 = pVqVr, pa = -pA—-gA—-r and p3 = (p <> q) A—r. Then for (H2),
take U = [¢; - ] and ¢ = 3. Then Mod(x!°" " (I°TP(¥))) = {011,101, 110}
and Mod(p) = {000,001,010,100,110,111}, so Mod(x'""" (¥) A ) = {110}
whereas Mod(r!°"" ([¥ - ¢])) = {110,001}. The same counter-example holds
for (H6) also by putting ¥ = 1, ¢ = @2 and u = 3.

These two violations of the rationality postulates seem to be very awkward.
Especially (H2) seems hardly debatable. We will next see how we can modify
Ryan’s definition in order to satisfy these properties.

The easiest way to modify the OTP revision operator in order to obtain
revision with memory operators is to “complete” the <, partial pre-orders to
total pre-orders. This can be achieved by two means.

Closure of the pre-order

First, following the construction of the rational closure of a conditional knowl-
edge base [LM92], we can figure out a lazy deformation of the pre-order, that



is, the deformation that transforms the partial pre-order in a total pre-order
with a minimal effort.

Definition 21 Let p,(I) be the “distance from I to ¢” in the following sense:
1. If T € min(W, <,,) then p,(I) =0,

2. Otherwise p,(I) = a, where a is the length of the longest chain of strict
inequalities Iy <, ... <y I with Iy € min(W, <) and I, = I.

This “distance” gives a total pre-order on interpretations:
Definition 22 | SgTPl J if and only if p,(I) < py(J).

Finally, we define a revision operator as usual with the characterization of
Corollary 7.

Definition 23 The OTP; revision operator, o®T*1 s the standard operator
defined after the faithful assignment ¢ —)SgTP 1 using the characterization of
Corollary 7. In particular:

I(lIl) OOTP1(p=<

Stea(<O7F1 1wy ond

Mod(x! (I(¥) 0°T": )) = min(Mod(p), I(T))

We illustrate this principle of “minimal effort” with an example: Let ¢ =
(—a V =b) A —c be a knowledge base.

111 111
PN
011 101 110 011 101
N
001 001 110
000 010 100 000 010 100

The left hand side presents the partial pre-order <. Arrows I < J denote
I <, J (for reading convenience we do not represent transitivity, reflexivity and
the equivalence between minimal interpretations). The right hand side presents
the gngl corresponding pre-order. It is clear that if I <, J then I <8TP1 J.
Thus the only interpretation that is not straightforwardly placed is 110. The
“minimal effort” is being illustrated here as follows: the first place where can
be placed 001 is at the second level, so it is the chosen level. Conversely, for
the interpretation 011 for example, the first “acceptable” level is the third one
because there is an interpretation (001) that is strictly better than 011 which
is occupying the second level.

As a consequence of Corollary 7 and the fact that ¢ —»<97" is a faithful
assignment, we have the following result



Theorem 14 The OTP; operator is a revision with memory operator.

Using cardinalities

A second way to define a total pre-order from an OTP revision operator is
to interpret it differently. The idea of the <, order, defining OTP revision
operator, is that an interpretation I is better than another J for a knowledge
base ¢ if I satisfies all the natural consequences that J satisfies. In other terms
I is better than J if I satisfies more natural consequences than J. Following
this idea we can then focus uniquely on the number of natural consequences
satisfied.

Definition 24 T 58“’2 J if and only if card({p | ¢ oy pond J = p}) <
card({p | ¢ by p,and I = p}).

Then we can define an operator using this pre-order and the characterization
of Corollary 7.
Definition 25 The OTP, revision operator, o®TT2, is the standard operator
defined after the faithful assignment ¢ —>§ng 2 using the characterization of
Corollary 7. In particular:

I(‘Il) OOTP2cp=<

Stea(<OTP2 1wy ond

Mod(x! (I(¥) 0°TP )) = min(Mod(p), I(¥))

This definition is also a “completion” of the <, pre-order since if I <, J,
then I ggTP2 J. And, as a consequence of Corollary 7 and the fact that
© =<9 is a faithful assignment, we have the following result

Theorem 15 The OTPs operator is a revision with memory operator.

Conclusion

We have shown in this paper the connection between the problem of the iter-
ation of the revision process and revision histories. Thus, revision history is
a means to warrant rational iteration properties. A representation theorem is
provided, showing that one can impose in logical terms conditions on the set
of epistemic states.

We have compared our approach to iterated revision with previous related
works. In particular, we have shown that the only revision with memory op-
erator that satisfies postulate (C2) proposed by Darwiche and Pearl is the
basic memory operator. This illustrates the fact that (C2) is a very strong
requirement.



We have adopted here a drastic strategy, applying the principle of strong
primacy of update. Adopting the principle of primacy of update as a reasonable
requirement, surely leads to finding the possible worlds that satisfy this new
information more reliable than those that do not satisfy it.

The ontology for this family of operators is the one given by this principle
of strong primacy of update. Consider an agent that learns successively some
pieces of evidence about some world. All these evidences are observations about
this world and the agent has full confidence in newer evidence. Moreover, when
a new piece of evidence arrives, it increases the confidence in possible worlds
that best fit this new evidence according to the agent’s revision policy. Then,
when a new piece of information arrives, the agent reconsiders the relative
reliability of all possible worlds according to her past experience and to the
new piece of information.

The principle of primacy of update is often criticized, since it can not be ac-
cepted in all circumstances. Sometimes we have more confidence in our current
beliefs than in the new information. Some non-prioritized revisions, denying
this principle, have been explored recently [Han97, Mak98, FH99, Sch98]. If
we accept this point of view, our framework can be used in an amazing way
by reversing the revision arguments, i.e. by revising the new information by
the old epistemic state (uo ¢ = [p - p]). Thus we obtain a family of “revision”
operators that give a strong primacy to the current knowledge. Then, the new
information is not accepted as true in the new epistemic state, but its confi-
dence is increased. For example, if two possible worlds are equally plausible
for an epistemic state, and if the new information is satisfied by only one of
these possible worlds, then this world will be considered more reliable than the
other one in the new epistemic state. So we can imagine applications using al-
ternatively these two definitions of revision operators, according to the relative
reliability of the current beliefs and the new information.

We would like to finish these remarks by raising the following question:
how to build a contraction operator having good properties with respect to
iteration? Indeed, this question hides another one: which are the desirable
properties of the contraction in the process of iteration? Concerning the first
question, let us remark that Harper’s identity is not enough to define a con-
traction operator at the level of epistemic states.
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Appendix: Proofs

Proof of theorem 6 : 2

In order to simplify the notation we identify I(¥), I(¥ o ), 7! (I(¥)) with
T, [T -], 7(T) respectively.

(Only if) Let [ - ] be an operator that satisfies (H0-H7). Let us define an
assignment that associates to each epistemic state ¥ a pre-order <y defined
by VI,J e W, I <g Jifand onlyif I |= [¥- form(I,J)]. We prove that <y is
a total pre-order, that the assignment is a conservative assignment, and that
Mod([¥ - ¢]) = min(Mod(g), <u).

First we show that <g is a total pre-order :
Reflezivity: From (H1) and (H3) we have that VI [T - form(I)] = form(I),
that is I <g I.

Transitivity: Assume that both of I <y J and J <g L hold. We show that
I<g L.

Case 1: [¥-form(I, J, L)]Aform(I, L) is not consistent. Then [¥-form(I,J, L)]
= form(J). So [¥ - form(I,J,L)]A form(I,J) = form(J). By (H5) and (H6)
it follows that [¥ - form(I,J)] = form(J), so by definition I £y J. Contra-
diction.

Case 2: [¥ - form(I,J,L)] A form(I,L) is consistent. Suppose towards a
contradiction that I £y L, that is, from (H1) and (H3), [¥ - form(I,L)] =
form(L). By (H5) and (H6) we have [¥ - form(I,J,L)] A form(I,L)] = [¥ -
form(I,L)] = form(L). So I £ [® - form(I,J,L)]. From (H1) and (H3)
we have that either [U - form(I,J,L)] = form(J,L) or [¥ - form(I,J,L)] =
form(L). In the first case we get [¥ - form(I,J,L)] A form(I,J) = form(J
by (H5) and (H6) we conclude [¥ - form(I,J)] = form(J), that is I £y J.
Contradiction. In the second case we get [¥ - form(I,J,L)] A form(J,L) =
form(L), by (H5) and (H6) we conclude [¥ - form(J,L)] = form(L), that is
J £g L. Contradiction.

Totality: VI,J € W, from (H1) we have that [¥ - form(I,J)] + form(I,J)
and from (H3) that [¥ - form(I,J)] ¥ L, so either I = [¥ - form(I,J)] o
JE[¥- form(I,J)], that is I <g¢ Jor J <g I.

=

Now we verify the conditions of the conservative assignment;:

1. If I = ¥ and J = U, then by (H2) we have [¥ - form(I,J)] = form(I,J).
That is, by definition, I <g¢ J and J <g I, s0 I ~y J.
2.IfI =¥ and J [~ ¥, then by (H2) we have [U - form(I,J)] = form(I).

2The proof that postulates (H1-H6) corresponds to conditions 1-3 on the assignment is
mainly the same as Katsuno and Mendelzon one [KM91a]



That is, by definition, I <¢ J and J L¢ I, s0 I <g J.

Straightforward from (H4).

4. If ¥ = [¢], then from (HO) and (H2) we get that ¥ = ¢, then by conditions
1 and 2 we get that min(W, <g¢) = Mod(p).

5. If I <y, J, then by definition [¢ - form(I,J)] = form(I) and from (H7)
[T-¢- form(I,J)] = [¥ - Bel([y - form(I,J)])]. Furthermore from (H1)
and (H3) we get that [¥ - Bel([p - form(I,J)])] = form(I), so we have
[V .- form(I,J)] = form(I). That is by definition I <[g.,) J.

6. If I ~[,) J, then by definition [¢- form(I,J)] = form(I,J). So [¥ - Bel([¢-
form(I,J)]) = [¥ - form(I,J)]. From (H7) we have [¥ - ¢ - form(I,J)] =
[¥ - Bel([p - form(I,J)])], that gives [T - - form(I,J)] = [¥ - form(I,J)].
That is directly by definition: I <[y.,) J if and only if I <g J.

@

Finally we show that Mod([¥ - ¢]) = min(Mod(p), <w). First for the inclusion
Mod([¥ -¢]) C min(Mod(p), <y) assume that I |= [P -] and suppose towards
a contradiction that I € min(Mod(p), <w). So we can find a J |= ¢ such that
J <g I. Then I £ [¥ - form(I,J)]. As [¥ -] A form(I,J) is consistent,
from (H5) and (H6) we have [¥ - o] A form(I,J) = [¥ - form(I,J)]. But
TE[Y- form(I,J)], so I [~ [¥-¢]. Contradiction.

Conversely, assume that I € min(Mod(p),<y). We want to show that
I=[¥-¢l. As I € min(Mod(yp),<w), then for each J such that J = ¢ we
have I <g J. Thatis I = [¥- form(I,J)]. As [T -¢]A form(I,J) is consistent,
from (H5) and (H6) we have [¥ - o] A form(I,J) = [¥ - form(I,J)]. And as
I'E[®- form(1,J)], it follows that I |= [T - ¢].

(If) Let us consider a conservative assignment that maps each epistemic
state ¥ to a total pre-order <y and define an operator [-] by putting Mod([¥ -
¥]) = min(Mod(y), <y), which is enough to capture the whole epistemic state
[P - o] because of definition 5. We want to show that [-] satisfies (HO-HT).
(HO) First we have straighforwardly by condition 4 that if ¥ = [T], then
min(W, <g¢) = Mod(T). From this and condition 1 and 2 we get Bel([T]) = T.
It remains to show that [| = [T], which is true from definition 5 if for all
@ [¢] = [T - ¢]. By definition we have Mod([T - ¢]) = min(Mod(yp), <[T)
and from the first part of (HO) we know that for all I,J € W I ~1) J, so
Mod([T - ¢]) = Mod(p). It remains to show that Mod([¢]) = Mod(p) and we
conclude by transitivity. By definition Mod([¢ - T]) = min(W, <[,1) and by
condition 4 that gives Mod([¢ - T]) = Mod(y). By condition 6, since for all
I,J e WI ~1) J, we conclude that I <(,.1) Jiff I <) J. From this it is easy
to see that [p- T] = [¢]. Then we obtain Mod([¢]) = Mod(y), as required.
(H1) By definition Mod([¥ - ¢]) C Mod(yp), so [¥ - ¢] F .

(H2) Assume that ¥ Ay is consistent. We want to show that min(Mod(y), <w)
= Mod(¥ A ¢). First note that if I = ¥ then from conditions 1 and 2 I €
min(W, <g). Soif I = ¥ Ap then I € min(Mod(p), <w). So min(Mod(y), <w
) D Mod(¥ A ¢). For the other inclusion consider I € min(Mod(p), <w).



Suppose towards a contradiction that I &£ ¥ A ¢. Since I [~ ¥ by condition
2 we have that VJ = ¥ J <g I. In particular VJ E $Ap J <g¢g I. So
I ¢ min(Mod(y), <w). Contradiction.

(H3) If ¢ is consistent, then Mod(y) # () and, as we have a finite number of
interpretations , we have no infinite descending chains of strict inequalities , so
min(Mod(p), <w) # 0. So [¥ - ¢] is consistent.

(H4) Direct from condition 3.

(H5) Let us take I = [T -] Ap. Since I = [T -] wehave VI E @ I <¢ J. In
particular for all J such that J =@ A pu, I <g J holds. Then I |=[¥ - ¢ A p].

(H6) Assume that [¥ - @] A p is consistent, so 3J |= [¥ - @] A p. Consider
I E [¥ - ¢ A p] and suppose towards a contradiction that I [~ [P - ¢]. Then
J <g I and since J = ¢ A p, then I ¢ min(Mod(p A p),<g). That is,
I B[P - ¢ A p). Contradiction.

(H7) First we state the following fact, the proof of which is quite easy.

Fact: I |= Bel(P) iff I € min(W, <g).

From the fact, we have that I |= Bel([¥ - ®']) if and only if I = min(W, <[g.w
). But I € min(W, <[g.y]) can be rewritten using conditions 5 and 6 in
I € min(min(W, <¢+),<w). Using again the fact, we have min(min(W, <g
), <w) = min(Bel(¥'), <g), and by definition, min(Bel(¥'), <y¢) = Bel([¥ -
Bel(¥")]). So we have that I = Bel([¥-¥']) if and only if I |= Bel([¥-Bel(¥')]).

Proof of theorem 9 :

(H7) implies directly (H'7), and (H7) and (H1) imply (H’8). To show that
(H’7) and (H’8) imply (H7) we will show that (H’7) and (H’8) correspond to
condition 5 and 6 on the conservative assignment and then we will deduce the
implication using the representation theorem. Let [-] be an operator that
satisfies (H0-H6) and (H’7-H’8). Let’s define an assignment such that for each
epistemic state ¥ we define a pre-order <y by putting VI,J € W, I <y J if and
only if I |=[¥ - form(I,J)]. The proof is the same as the one of the previous
theorem, it remains only to show that conditions 5 and 6 on the conservative
assignment hold:

5. If I <[y J, then by definition [p - form(I,J)] = form(I) and from (H’8) if
[p- form(I,J)] F form(I), then [¥--form(I,J)] F form(I). Furthermore
from (H3) we get that [¥-¢- form(I, J)] ¥ L, so we have [¥-p- form(I,J)] =
form(I). That is by definition I <[g., J.

6. If I ~,) J, then by definition [p - form(I,J)] = form(I,J). So from (H'7)
as [¢- form(I,J)] = form(I,J), then [¥-¢- form(I,J)] = [¥- form(I, J)].
That is by definition: I <[y.,) J if and only if I <g J.
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