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Abstract

Iterated belief change aims to determine how the
belief state of a rational agent evolves given a se-
quence of change formulae. Several families of it-
erated belief change operators (revision operators,
improvement operators) have been pointed out so
far, and characterized from an axiomatic point of
view. This paper focuses on the inference prob-
lem for iterated belief change, when belief states
are represented as a special kind of stratified belief
bases. The computational complexity of the infer-
ence problem is identified and shown to be identical
for all revision operators satisfying Darwiche and
Pearl’s (R*1-R*6) postulates. In addition, some
complexity bounds for the inference problem are
provided for the family of soft improvement opera-
tors. We also show that a revised belief state can be
computed in a reasonable time for large-sized in-
stances using SAT-based algorithms, and we report
empirical results showing the feasibility of iterated
belief change for bases of significant sizes.

1 Introduction

Belief revision theory aims to study how to incorporate in the
beliefs of an agent a new piece of information that (typically)
contradicts them [Alchourrén et al., 1985; Girdenfors, 1988;
Hansson, 1999; Fermé and Hansson, 2011]. Whereas the
standard belief revision literature has been focused on the
single-step change process, considering the iterated case, i.e.,
to determine what happens when several successive revision
steps occur, is an important issue, that gave rise to a signif-
icant amount of work where iterated change operators have
been defined and investigated [Lehmann, 1995; Darwiche and
Pearl, 1997; Nayak et al., 2003; Booth and Meyer, 2006;
Rott, 2006; Jin and Thielscher, 2007; Konieczny and Pino
Pérez, 2008; Konieczny et al., 2010].

Improvement operators have been proposed as a gen-
eral class of iterated change operators [Konieczny and Pino
Pérez, 2008; Konieczny et al., 2010]. In this paper, we
will study two interesting subclasses of improvement op-
erators from a computational perspective. The first one is
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the class of iterated revision operators, which require the
change formula to be entailed in the revised set of beliefs
of the agent [Darwiche and Pearl, 1997; Nayak et al., 2003;
Booth and Meyer, 2006]. The second one is the class of soft
improvement operators: in contrast to iterated revision oper-
ators, these operators aim to increase in a “minimal way” the
plausibility of the change formula in the beliefs of the agent
[Konieczny and Pino Pérez, 2008; Konieczny et al., 2010].

In iterated belief change, it is standard to assume that the
current set of beliefs of an agent is given by an epistemic
state, i.e., an abstract object ® from which the actual beliefs
of the agent, denoted by B(®), can be extracted. In this pa-
per, the computational complexity of iterated belief change
operators * is investigated when epistemic states are repre-
sented by compact world rankings (CWRs). This represen-
tation will be formally introduced later. For the moment let
us just roughly describe a CWR as a special kind of strati-
fied belief base (an ordered set of formulae) that encodes a
total preorder over the interpretations. We focus on the (one-
step) inference problem: given a CWR ® = (¢1,...,¢5)
and two formulae pu, «, is it the case that B(® * u) E a?
The computational complexity of this problem is identified
for several families of iterated change operators %, and shown
as “mildly” hard (i.e., solvable using a constant number or a
logarithmic number of calls to an NP oracle). More in detail,
we show that:

1. for any iterated revision operator satisfying postulates
(R*1)-(R*6) [Darwiche and Pearl, 1997] the inference
problem is in ©%, i.e., only a logarithmic number of calls
to an NP oracle is necessary in the general case to decide
whether a formula is entailed by a revised epistemic state;

2. for the three soft improvement operators pointed out in the
literature [Konieczny et al., 2010], the inference problem
is shown to be in the Boolean Hierarchy BH [Wagner,
1987; Cai et al., 1988], i.e., only a bounded number of
calls to an NP oracle is needed to solve the problem; the
exact complexity of the problem within BH (complete-
ness results) is reported for each of those three operators;

3. hardness results for the inference problem, that rely only
on postulates and apply to all operators satisfying them,
have been identified as well. Thus, for any iterated re-
vision operator satisfying the postulates (R*1)-(R*6), the
inference problem is shown ©%-hard (hence, given the re-
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sults in 1., it is ©5-complete). For any soft improvement
operator, it is shown coNP(3)-hard.

Given the performance of modern SAT solvers (that are
NP oracles), these results suggest that the existence of in-
ference algorithms for iterated belief change that prove ef-
ficient enough to tackle large-sized instances is not utopic.
In order to verify it, we implemented SAT-based algorithms
for the iterated belief change of CWRs (seven operators have
been considered). More precisely, for each change operator
under consideration, we implemented the change operation
D x p, i.e., we designed a procedure for deriving a CWR rep-
resenting ® x ¢ from a CWR representing ®, and from pu.
Interestingly, with epistemic states ® represented as CWRs,
the representation of ® x p does not exponentially blow up
in terms of size: the number of strata in the corresponding
CWR representation of ® % p is at most twice the one of .
As an interesting consequence, building the CWR @ x i can
be done in polynomial time given an NP oracle. We evaluated
our SAT-based algorithms for iterated belief change on many
benchmarks. The empirical results we have obtained confirm
the feasibility of iterated belief change from the practical side.

The proofs of propositions can be found on http://www.
cril.fr/~konieczny/SKLM-IJCAI20-long.pdf

2 Preliminaries on Iterated Belief Change

Let Lp be a propositional language built up from a finite set
of propositional variables P and the usual connectives. L
(resp. T) is the Boolean constant always false (resp. true).
An interpretation (or world) is a mapping from P to {0, 1}.
= denotes logical entailment, = logical equivalence, and [¢]
denotes the set of models of the formula (. In iterated change,
it is standard to assume that the set of beliefs of an agent is
represented by an epistemic state (ES for short) ®, which rep-
resents (i) the actual beliefs of the agent, i.e., a propositional
formula denoted by B(®), and (ii) some conditional informa-
tion guiding the revision process.

For conventional purposes, in the rest of the paper the sym-
bols o, e and * will respectively denote an iterated revision
operator, a soft improvement operator, and any iterated belief
change operator.

2.1 Iterated Revision

Let us start with Darwiche and Pearl’s iterated revision:

Definition 1 (DP-AGM revision operator [Darwiche and
Pearl, 1997]). A DP-AGM revision operator o is an operator
associating an ES ® and a formula p with a new ES ® o p,
such that for each ES ® and all formulae 1, 11’ :

(R*1) B(®op) |= p

R*2) If B(D) A e L, then B(® o ) = B(®) A py
R*3) Ifu b= L, then B(®opu) = L;

R*4) If u =1, then B(®opu) = B(Poy');

R*5) B(®Pou)Au' = B(®o (uAp));

(R*6) If B(® o u) A '} L,
then B(® o (uAu')) = B(®op)Ap.

Darwiche and Pearl also provided a characterization of DP-
AGM operators in terms of total preorders over worlds:

Definition 2 (faithful assignment). A function ® — =g that
maps each ES ® to a total preorder' over worlds <¢ is a
faithful assignment iff for all worlds w,w’:

1. Ifw E B(®) and ' |= B(®), then w ~¢ W';
2. Ifw |E B(®) and ' £~ B(®), then w <¢ W';

Proposition 1 ([Darwiche and Pearl, 1997]). An operator o
is a DP-AGM operator iff there exists a faithful assignment
O — =g such that for each ES ® and each formula p, [B(® o
)] = min([u], Xa).

One can see from Prop. 1 that given an ES ® and a for-
mula g, the set of models of B(® o 1) can be character-
ized independently of the choice of the DP-AGM revision
operator o. However, postulates (R*1-R*6) impose no re-
striction on the rest of the ordering <g,,. Thus four addi-
tional “rigidity” postulates (CR1-CR4) have been introduced
[Darwiche and Pearl, 1997]. In addition, postulate (PR) was
also introduced to also require a strict increase of the plau-
sibility of models of p within < [Booth and Meyer, 2006;
Jin and Thielscher, 2007]: 2

(CR]) Ifw = pand w’ = p, thenw < W' < w <goy W'
(CR2) Ifw = pand w' = p, then w <o W' < w <oy W'
(CR3) Ifw = pand W'}~ p, then w <o W' = W <oy W's
(CRY) Ifw = pand w’ = p, then w < W' = w <goy W3

(PR) If w = pand ' = p, then w =g w' = w <oy W'

DP-AGM operators satisfying (CR1-CR2) and (PR) are
called admissible operators [Booth and Meyer, 2006]. Note-
worthy, these operators also satisfy (CR3-CR4).

Let us now introduce four well-known DP-AGM operators
from the literature. For space reasons, each one of them is
semantically characterized by additional postulates on their
corresponding faithful assignment. This also allows one to
see how the revised ES ® o p is constructed in terms of total
preorders (an illustrative example is given in Fig. 1).

Boutiler’s natural revision. Denoted by op, it is the DP-
AGM operator satisfying (CR1-CR4) and the following ad-
ditional postulate [Boutilier, 1996]:
(CBR) Ifw,w’ [~ B(®opp),thenw =g w' < w 2pogzu W'
This operator does not satisfy (PR).
Nayak’s lexicographic revision. Denoted by oy, it is the

DP-AGM operator satisfying (CR1-CR4) and the following
additional postulate [Nayak et al., 2003]:

(R) Ifw = pand ' & p, then w <go, W'
This operator satisfies (PR).

"For each preorder <, ~ denotes the corresponding indifference
relation, and < the corresponding strict ordering.

%For space reasons, we only provide the semantic versions of the
postulates, i.e., in terms of properties on faithful assignments.
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Lehmann’s ranked revision. Denoted by oy, it is the DP-
AGM operator characterized by a widening ranked model
[Lehmann, 1995]. Although Lehmann initially characterized
the operator in terms of functions mapping ordinals to non-
empty subsets of worlds, it can equivalently be character-
ized in terms of a faithful assignment satisfying the following
properties:
(L1) fw,w fEpand Vo'’ = p, w <o W,

then w <go, , w's
L2) f " E pstw” < o',

then w <¢ W © W =<@o,, W';

This operator satisfies (CR1), (CR3) and (CR4) but it does

not satisfy (CR2) or (PR).

Booth and Meyer’s restrained revision. Denoted by
opn, it is the DP-AGM operator satisfying (CR1-CR2),
(PR), and the following additional postulate [Booth and
Meyer, 2006]:

(DR) fw =y, w = B(® oy 1) and o’ & p,
then W’ <o w = W <dogupu W-

2.2 Soft Improvement

Soft improvement operators, unlike DP-AGM ones, do not
satisfy the success postulate (R*1) [Konieczny et al., 2010].
Instead, they satisfy the following one:

(I1) There exists n > 0 such that B(® ™ u) = u,

where ®e" is inductively defined as ® o' o = ® @ o and for
eachn >1,Pe"l o= (de"a)ea.

Definition 3 (soft improvement operator). A soft improve-
ment operator is an operator e associating an ES ® and a
formula ju with a new ES ® e i such that postulates® (I1-110)
from [Konieczny et al., 2010] are satisfied.

Konieczny et al. [2010] also provided the following repre-
sentation theorem :

Definition 4 (soft gradual assignment). A strong faithful as-
signment is a faithful assignment such that for each n > 0,
and each ES ®, we have <peq;e...ea,, ==depse...e8, When
all formulae «;, B;, 1 € {1,...,n} are such that a; = 5.

A soft gradual assignment is a strong faithful assignment
satisfying (CR1), (CR2), (PR) and the following property:
(S84 Ifw = pand W' = p, then w' <g w = W' <pop w.

Proposition 2 ([Konieczny et al., 2010]). An operator e is
a soft improvement operator iff there exists a soft gradual as-
signment ® =g such that for each ES ® and each formula*
p, [B(® og p)] = min([u], Ze).

As opposite to DP-AGM operators, when performing a
change ® e 1 soft improvement operators e require the plau-
sibility of all models of u w.r.t. <4 to be increased only to a
“small” extent. This behavior is reflected by (S4).

Lastly, let us introduce the (semantic) characterization of
the three soft improvement operators found in [Konieczny et
al., 2010].

3Postulates are not recalled here. For space reasons we will focus
on the corresponding assignment properties. The reader is invited to
check [Konieczny er al., 2010] for more details.

“® oy ;1 = ® " y where n is the smallest integer such that

B(® o™ 1) = pu.
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Figure 1: [llustration of an ES @ as a total preorder over worlds, and
the changed ES ® * p for x € {op,0n,0L,0BM, 0,81, ®5} with
(1] = {ws, ws, we, ws}

One-improvement. Denoted by e, it is the soft improve-
ment operator satisfying the following additional property.
For all w,w’, w < ' is a shortcut for (w < w’ and
P w < W’ < W

(S5) Ifw = pand w’ B~ p, then w’ Ko w = w <pey W'

Half-improvement. Denoted by ey, it is the soft improve-
ment operator satisfying the following two additional proper-
ties:

(SH1) Ifw |= p, W' £ p, W' <o w and Fw” = u such that

W ~g w, then w <gey, W';

(SH2) Ifw = p, W' = p, w K¢ wand Jw” = p such that
W’ > w, then W’ <oy w.

Best-improvement. Denoted by e, it is the soft improve-
ment operator satisfying the following two additional proper-
ties. A formula « is separated in < for a given total preorder
= iff for all w,w’, if w E avand W' £ o thenw % W'

(SBl) If w E p, w' £ p, w <o w and p is separated in
<o, then w =<gq, W'

(SB2) Ifw = p, W' - p, w' <o wand p is not separated in
=3, then W' <gpey w.

3 Complexity Results

From now on, we assume that each change operator « is char-
acterized in terms of a faithful assignment (cf. Def. 2 and 4),
and each ES & is represented by a compact world ranking
(CWR for short):

Definition 5 (compact world ranking). A compact
world ranking (CWR) is a vector of consistent for-
mulae (p1,...,0n), n > 1, such that for all i,j,
i#j= i Npj = Land \!_| p; is valid.

Stated otherwise, a CWR is a total ordering over a set of
consistent formulae whose sets of models are jointly exhaus-
tive and pairwise disjoint (JEPD). To obtain the ES & (in
terms of faithful assignment) corresponding to a given CWR
(p1,--+,pn), one simply sets w =g W iff w E ¢; and
W' = ; for some i, s.t. ¢ < j. Doing so, it is easy to
see that B(®) = ;. Abusing notations, in the following ®
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will denote both an ES and the CWR representing it. Lastly,
inaCWR ® = (¢1,...,p,), foreach i € {1,...,n}, the
formula ; is also called the ith stratum of ®, and ® is said
to have n strata.

A CWR can be seen as a special kind of stratified belief
base (SBB), as considered in several papers about revision
and inference (see e.g., [Rott, 2009]), but in a CWR each stra-
tum must be a single formula and the JEPD condition must be
satisfied. The aim is to compactly represent a total preorder
over the interpretations.

We are interested in identifying the computational com-
plexity of the following decision problem:

Definition 6 (=,). Let x be a change operator. =, is the
decision problem defined as follows:

e Input: A CWR @, formulae p, a.
e Question: Does B(® i) = a hold?

We assume that the reader is familiar with the complexity
classes NP and coNP. We briefly recall below some complex-
ity classes of interest in this paper, all at the first level of the
polynomial hierarchy. The class ©F = PNP[O(log n)] [Wag-
ner, 1987; Eiter and Gottlob, 1997] is the class of languages
that can be recognized in polynomial time by a determinis-
tic Turing machine using a number of calls to an NP oracle
bounded by a logarithmic function of the size of the input.
The Boolean hierarchy BH is the Boolean closure of NP un-
der Boolean operations (see [Cai et al., 1988] for the formal
definition of BH). Roughly speaking, a problem belongs to
the class NP (k) or coNP (k) only if solving it requires at most
k calls to an NP oracle.

3.1 Iterated Revision

Prop. 3 below tells us that for any DP-AGM operator o, one
can precisely characterize the computational complexity of
deciding whether a formula is entailed by a revised CWR: it
“only” requires a logarithmic number of calls to an NP oracle.
This result highly relies on the following lemma:

Lemma 1. Let o be a DP-AGM operator. Then for any CWR
b = (¢1,...,pn) and any formula p, B(® o u) = ¢;, A p,
where i, = min;eqr, . o3 {0 | @i ApE L)

Proposition 3. Let o be a DP-AGM operator. Then =, is
OF-complete.

These results echo results of the same nature about (one
step) base revision [Nebel, 1998], and showing that the infer-
ence problem for revision is NP-hard and coNP-hard when
the operator under consideration satisfies the revision postu-
lates. They cohere with other results pointed out in [Libera-
tore, 19971, where the complexity of inference for a given se-
quence of change formulae is identified (the problem is PNP-
complete for many iterated revision operators).

3.2 Soft Improvement

Let us start with a useful lemma:

Lemma 2. Let o be a soft improvement operator, & =
(¢1,.-+,9n) be a CWR and p be any formula. Then:

(a) if p1 A b= L then B(D o u) = @1 A p; and
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(b) if (p1 V 2) A = L then B(D o 1) = .

The above result provides a set of sufficient conditions
to characterize the beliefs of a revised CWR: given a CWR
® = (¢1,...,¢n) and a formula p, B(P e 1) can be charac-
terized in the case when p is consistent with 1, or when p is
inconsistent with ¢; V ¢9. As a consequence, one can derive
the following hardness result for soft improvement operators:

Proposition 4. Let @ be a soft improvement operator. Then
k=, is coNP(3)-hard, even when ® has at most three strata.

This means that for any soft improvement operator e, at
least three calls to an NP oracle are necessary to decide =,.
Interestingly, this is also an upper bound for the case of one-
improvement. This result uses the following lemma which
characterizes B(®P oo p) in the case not covered in Lemma 2:

Lemma 3. Let ® = (p1,...,p,) be an ES, p be any for-
mula, and assume that o1 A p = L and oo A\ p = L. Then

B(®eo p) =1V (p2 A ).
Proposition 5. Let & = (¢1,...,¢n) and o, p be two for-
mulae. Then \:.O can be decided by the following procedure:

1. if o1 A A —alE L then return False;
if o1 A p [ L then return True;
3. if (o1 V (o2 A p)) A —a b= L then return False;

4. Return True;

o

So as a consequence of Prop. 4 and 5, we get that:
Proposition 6. =, is coNP(3)-complete.

For half-improvement and best-improvement, five calls to
an NP oracle are necessary and sufficient to provide an an-
swer to the inference problem: Prop. 7 and 8 below show
membership to coNP(5), while Prop. 9 shows coNP(5)-
hardness. The proofs take advantage of the following useful
lemma, which shows how B(® ey p) and B(D ep p) are
characterized in the remaining case not covered in Lemma 2:

Lemma 4. Let ® = (p1,...,9,) be an ES, p be any for-
mula, and assume that o1 A p = L and oo A p = L. Then

_J eV ifes g,
B(®en 1) = { p1 otherwise.

_ ) o1V ifpisseparatedin 2g,
B(®epp) = { V1 otherwise.

Proposition 7. Let & = (¢1,...,¢n) and o, p be two for-
mulae. Then |:.H can be decided by the following procedure:

1. if o1 A A —a e L then return False;
if o1 A\ p = L then return True;

if o1 A~ fE L then return False;

if po A~ = L then return True;

if o2 A - [~ L then return False;

“nkh LN

6. Return True;

Proposition 8. Ler ® = (¢1,...,¢n) and «, p be two for-
mulae. Then |:.B can be decided by the procedure described
in Prop. 7, where line 4 is replaced by the following:
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4. if T £ L then return True,
where I' = \/"_, 2 A A 02 A =t and each cp{

‘ i
(resp. 17) is defined as the original formula p; (resp. ) by
renaming each propositional variable x into a fresh one x7.
Proposition 9. =, and |=, = are coNP(5)-hard. Hardness

holds in each case even when ® has at most three strata.
So from Prop. 7-9, we get that:
Proposition 10. =, and |=,  are coNP(5)-complete.

4 Implementing Iterated Belief Change

We describe now for each belief change operator x among
the seven considered in the previous section how to encode
a changed CWR @’ = ® * u, given any initial CWR & =
(¢1,.-.,%n) and any change formula p. In every case, ¥’
consists of formulae that are Boolean combinations (obtained
using the connectives A, V, —) of the input formulae ¢; and p.
Noteworthy, our encodings could easily be adapted to other
belief revision operators, e.g., those listed in [Rott, 2009].

4.1 Iterated Revision

For any DP-AGM operator o, the general idea in the con-
struction of the CWR @' = ® o y is described as follows.
One searches for the smallest index 7. such that ¢;, A p is
consistent, which defines the first stratum of ® o . Then, de-
pending on the operator o under consideration, the remaining
strata ; (j # 4.) of ® either (i) remain unchanged in ® o p,
or (ii) are split into two consecutive strata ¢; Ay and ¢; A =g
in ® o p, or lastly (iii) are (disjunctively) merged with others
and ranked according to an order specific to o.

In the descriptions, given a vector ¥ = (t1,...,9%)
of formulae whose sets of models are JEPD (but where
some formulae v; may be inconsistent), we say that ¥/ =
(1, ...,4)) is a L-fitering of ¥ when W' is defined as the
restriction of W to its consistent formulae, listed in the same
order (identifying those formulae requires consistency tests).
Obviously enough, the resulting vector ¥/ is a CWR.

Boutiler’s natural revision. We define the vector of for-
mulae ¥ = (¢1, ..., %,11) as follows. We first search for i,
and define ¥; = ¢;, A p. Then we set 9,11 = ¢; for each
i € {1,,2* - 1,2* + ].,...,TL}, andwi*_,_l = 1/}1‘* A .
Then we define &' = ® op p as the L-filtering of U.
Nayak’s lexicographic revision. We define the vector of
formulae W = (¢1,...,%25) as ¥y = @; A pand ¢y, =
piN—pforeachi € {1,...,n}. Then we define &' = Doy p
as the | -filtering of .

Lehmann’s ranked revision. We define the vector of for-
mulae U = (Y1,...,¢Yn—i 42) a8 1 = @i, A p, o =
(i, ANop) V \/Z*:_l1 vi,and foreachi € {3,...,n—i.+2},
1V = @i, +i_2. Then we define &’ = ®oyp pu as the | -filtering
of U.

Booth and Meyer’s restrained revision. We first define
the vector of formulae U = (¢1,...,%2,) as i1 = ;A
and 1o; = ; A foreach i € {1,...,n}. Then, we asso-
ciate with W its | -filtering ¥’. Lastly, we take advantage of
the procedure described above for computing Boutiler’s nat-
ural revision and define ® = ® oy, pas ' = ¥ op p.
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4.2 Soft Improvement

In contrast to what happens in the iterated revision case, in
order to perform an improvement of any formula into a CWR,
we do not need to search for the corresponding (;, in the
CWR.

One-improvement. We define the vector of formulae ¥ =
(Y1, ng1) @s 1 = ©1 A phy Y1 = @0 A op, and for
eachi € {2,...,n}, ¥, = (pi—1 Aop) V (@i A p). Then we
define @’ = ® o p as the L -filtering of W.

Half-improvement. We first define the vector of formulae
U = (1,...,1%2) as Poi—1 = @i Appand o; = @ A=y, for
each i € {1,...,n}. Then, we associate with ¥ the vector
O = (04,...,0s,) defined as 0 = 1, b3, = pa,, and for
eachi € {1,...,n—1},

[02; = Y2 V P21 and O 1 = 1] if Yo 40 = L,
[02; = 12; and 0o; 1 = 1o, 1] otherwise.

Lastly, we define &' = ® e p as the | -filtering of ©.

Best-improvement. We first define the vector of formulae
U = (Y1,...,%2,) as Poi_1 = @; A pand o = p; A -,
foreach i € {1,...,n}. Now, let ¥’ be the L-filtering of ¥.
Then &' = ®epyis defined as ' = U if U’ £ &, otherwise
' =T ep .

S Empirical Results

To evaluate from the practical viewpoint the belief change
operators considered in the previous sections, we made some
experiments. We generated belief change instances that con-
sist of consistent, yet non-valid propositional formulae ¢ so
that the CWR considered at start is of the form (¢, =), and
sequences of change formulae y, and we computed the cor-
responding changed CWR for each one of the seven opera-
tors. We measured the cumulated time required to compute
the resulting CWR, and the corresponding number of strata.
The propositional formulae ¢ and y considered in our exper-
iments are 3-CNF formulae (i.e., conjunctions of clauses of
size at most 3), built using the modularity-based random gen-
erator presented in [Girdldez-Cru and Levy, 2015]. This gen-
erator takes advantage of a modularity parameter, impacting
the community structure of the produced instances. As advo-
cated in this paper, the corresponding formulae can be consid-
ered as pseudo-industrial random instances given that indus-
trial instances are not purely random but have some structure.

The SAT solver used in the experiments is MiniSAT [Eén
and Soérensson, 2003]. It takes as inputs CNF formulae. Since
the formulae occurring in the CWRs obtained after a se-
quence of change are not in CNF in the general case, achiev-
ing the consistency tests used to implement a change opera-
tion (cf. previous section) requires first to turn the correspond-
ing formulae into CNF'. This is done through the introduction
of new variables, while preserving the set of logical conse-
quences over the variables considered at start [Plaisted and
Greenbaum, 1986]. All the experiments have been conducted
on a cluster of Intel Xeon E5-2643 (3.30 GHz) quad core pro-
cessors with 32 GiB RAM. A time-out of 900s and a memory-
out of 7.6 GiB has been considered for each instance.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

°B oN oL °BM
0 oy —— o —o—

1000 —
.

100 /,./"“ 100 e

, / //

4 10

iV /

0.1/ 1 S

20 40 60 80 100 120 20 40 60 80 100 120
number of iterations number of iterations

(a) Time in sec (severe change) (b) Nb of strata (severe change)

1000

]

e 100 et

100 //:/»’/ o
= o //’

Vi

N
0.1 1 i i i i i i

20 40 60 80 100 120 20 40 60 80 100 120
number of iterations number of iterations

(c) Time in sec (light change)  (d) Nb of strata (light change)

Figure 2: Empirical results.

Fig. 2(a) presents on its y-axis the median cumulated time
(in seconds, over 100 instances) for computing the output
CWRs associated with a sequence of change formulae, the
length of it being given on the z-axis. For each instance,
the 3-CNF formula ¢ considered at start is built over 4048
variables, has 12144 clauses, and is obtained using a modu-
larity of 512, while every change formula p of the sequence
is a 3-CNF formula generated from 814 variables (among the
4048 ones used in ), with 2442 clauses and for a modularity
picked up at random between 3 and 50. Given the number of
variables and clauses in it, every such p corresponds to a “se-
vere” change scenario. It must also be noted that nothing en-
sures that the communities existing in any p are connected to
the ones existing in . Fig. 2(b) gives on its y-axis the median
number of strata in the resulting CWRs obtained for the same
inputs, depending on the number of change formulae, given
on the z-axis. Fig. 2(c) and 2(d) report results of the same
nature as the ones given in Fig. 2(a) and 2(b), respectively,
but considering “light” changes. Thus, every change formula
1 of the sequence is a 3-CNF formula generated from 45 vari-
ables (among the 4048 ones used in (), with 135 clauses.
Logarithmic scales are used for the y-axis in each figure.

These empirical results show that both the time needed to
compute the revised CWRs and the number of strata in them
do not grow very quickly with the number of changes (un-
surprisingly for Lehmann’s ranked revision, the number of
strata never increases by definition). This can be explained
by the fact that the logical strength of the formulae corre-
sponding to the strata of a CWR increases with the number of
strata. Indeed, though the complexity of achieving a change
step depends on the number of consistency checks that are
performed (hence, on the number of strata of the CWR), the
consistency checks become at some point easier when the for-
mulae of the CWR involved in them have few models, and are
more likely to be inconsistent with the change formula (and as
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such, filtered out). Experimentally, the nature of the change
(severe vs. light) does not seem to have a strong impact on
the number of strata in the resulting base (it has a more salient
influence on the computation times). Interestingly, these ex-
periments show that feasibility of iterated belief change for
bases and sequences of change formulae of significant sizes.

6 Related Work

A closely related work is [Liberatore, 1997] where the com-
plexity of iterated belief revision was investigated, given a
sequence of change formulae. Our work differs from Lib-
eratore’s one in a number of directions. First, among the
seven operators we considered, five were not studied in [Lib-
eratore, 1997] as they have been introduced a decade later.
Second, some of our complexity results apply to any DP-
AGM operator (Prop. 3) and any soft improvement operator
(Prop. 4), while Liberatore [1997] focused on “concrete” re-
vision operators. Lastly, the results from Liberatore [1997]
are all theory-oriented, while we also performed experiments
to show the extent to which iterated belief change is feasible
in practice.

From the practical side, though there exist a couple of
implementations of (one-step) belief revision operators (see
mainly [Chou and Winslett, 1991; Dixon and Wobcke, 1993;
Liberatore, 1999; Williams and Sims, 2000; Gorogiannis
and Ryan, 2002; Delgrande et al., 2007; Thimm, 2014;
Konieczny et al., 2017]), only few papers describe pieces of
software for iterated belief revision. Indeed, the case of iter-
ated belief revision is more tricky since it requires the repre-
sentation of (complex) epistemic states. The system for iter-
ated belief revision presented in [Zhuang ez al., 2007] is based
on a notion of compiled epistemic entrenchment (roughly,
each cluster of formulae in the ranking is turned into its prime
implicate form). Such compiled epistemic entrenchments can
be viewed as compact encodings of epistemic states based on
formulae, which contrasts with the representations of epis-
temic states we considered (our CWRs are compact, formula-
based encodings of epistemic states based on worlds). The
experiments reported in [Zhuang et al., 2007] consider a lim-
ited number of propositional variables (only 5).

7 Conclusion

In this paper, iterated belief change has been considered from
a computational perspective. A number of complexity results
for the inference problem has been provided for several (fam-
ilies of) iterated change operators, and empirical results have
been reported as well. As future work, we plan to identify
the computational complexity of the inference problem when
a sequence of change formulae is considered, focusing on the
change operators not considered in [Liberatore, 1997]. In ad-
dition, since iterated contraction operators [Booth and Chan-
dler, 2016; Konieczny and Pino Pérez, 2017] are closely re-
lated to iterated revision operators, one can take advantage of
our framework to encode and compute the resulting CWRs
for these operators too. This is left for future work. Lastly,
we will implement some other change operators (especially,
those described in [Rott, 2009]) and make the code we devel-
oped for generating and querying CWRs available online.
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