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Résumé

Trouver un consensus est une tâche importante pour
de nombreux problèmes d’IA, que ce soit pour des problé-
matiques de fusion de croyances, de choix social, de né-
gociation, etc. Dans ce travail nous définissons des opé-
rateurs de consensus, qui sélectionnent un sous-ensemble
dans l’union des sources d’informations à réconcilier, tel
que aucune source n’est logiquement contredite. Nous
étudions différentes notions de maximalités liés à ces
consensus. D’un point de vue calculatoire, nous propo-
sons une transformation générique du problème, qui per-
met d’obtenir des méthodes qui se montrent efficaces en
pratique sur la plupart des expérimentations, même pour
des problèmes de très grande taille.

Abstract

Computing a consensus is a key task in various AI
areas, ranging from belief fusion, social choice, negotia-
tion, etc. In this work, we define consensus operators as
functions that deliver parts of the set-theoretical union
of the information sources (in propositional logic) to be
reconciled, such that no source is logically contradicted.
We also investigate different notions of maximality re-
lated to these consensuses. From a computational point
of view, we propose a generic problem transformation
that leads to a method that proves experimentally effi-
cient very often, even for large conflicting sources to be
reconciled.

1 Introduction

A ubiquitous concept in AI concerns forms of
consensus among several agents (e.g., [8, 21]), belief
sources (e.g., [11, 9]), and more generally several in-
formation or knowledge 1 sources, hereafter all simply
called sources. Consensuses can take different forms.
In this paper, they are investigated in a logic-based

1. In this paper, no difference is made between knowledge,
belief and information.

context and defined as sets of formulas that do not
contradict any of the sources to be reconciled, each
of the sources being itself a set of formulas. In this
respect, we adopt a liberal approach to the nature of
a consensus in the sense that a consensus is not ne-
cessary only made of some of the information present
in every source but can contain some information not
opposed by any source, where opposition is translated
by a logical conflict. However, this liberal attitude is
limited in this study in the sense that a consensus can
only be a subset of all the formulas in the sources.

For example, such a form of consensus can prove
helpful in a negotiation context since it allows a group
of agents to agree on a common position that is not
conflicting with the position of any member of the
group. For instance, a coalition of political groups that
tries to define and agree on a shared political agenda
can find such consensuses useful since they can be ad-
vocated and defended by each group. Indeed, each
group can explain that the contents of the consen-
sus does not conflict with its own specific positions.
Obviously, some consensuses are more appealing than
other ones and various families of preference criteria
can be used to select consensuses.

Technically, we consider consensus operators in Boo-
lean logic that thus deliver subsets Γ of the set-
theoretical union of n information sources [Φ1, . . . ,Φn]
such that Γ does not logically conflict with any Φi. We
require each source to be a satisfiable set of formulas :
an unsatisfiable source would lead to the absence of
consensus since no set of formulas is satisfiable toge-
ther with an unsatisfiable set of formulas. Of natu-
ral interest are consensuses that are maximal in some
sense. The simplest maximal consensus operators deli-
ver (cardinality or set-inclusion) maximal subsets of
formulas that obey the required absence of conflict
with each of the sources. Interestingly, they differ from
the well-studied family of maximal consistent merging



operators (e.g., [1, 12]), which can contradict some of
the sources by focusing on (preferred) maximal satis-
fiable subsets of

⋃n
i=1 Φi. Actually, we investigate a fa-

mily of consensus operators that implement a stepwise
prioritization of various forms of preference between
the sources to be reconciled and/or their contents.

Noticeably, a generic method to compute one
consensus according to these operators is presented
and is shown experimentally efficient for many large
difficult instances. The approach circumvents the dif-
ficulty of having to check the satisfiability of the candi-
date consensus with each source separately while pro-
viding at the same time the guarantee that the consen-
sus satisfies all the maximality and preference require-
ments.

2 Logical Preliminaries and Conventions

Let L be the standard language of Boolean logic.
Boolean variables are noted a, b, . . . The conjunctive,
disjunctive, negation, material implication and equiva-
lence connectives are noted ∧,∨,¬,→,≡, respectively.
A literal is a possibly negated variable and a clause
is a formula that consists of a disjunction of literals.
Formulas and sets of formulas are noted α, β, . . . and
Φ,Γ, . . . , respectively. Profiles are noted S, V, . . . The
cardinality of a set Φ is noted #Φ. Logically equiva-
lent formulas are considered indistinguishable. A set
of formulas is satisfiable (also said consistent) iff there
exists a truth value assignment of every variable such
that all formulas in the set are true according to usual
compositional rules. ` denotes the deduction relation
and > a tautology. A pre-ordering, noted �, is a bi-
nary relation that is both reflexive and transitive : we
often use its induced ≺ strict relation. From now on,
the profile S = [Φ1, . . . ,Φn] represents n sources Φi
where each Φi ⊂ L is satisfiable.

3 Basic Forms of Consensus

A consensus for S is defined as a subset of
⋃n
i=1 Φi

that does not logically contradict any Φi. Formally,

Definition 1. A set Γ ⊂ L is a consensus for S iff
Γ ⊆

⋃n
i=1 Φi and ∀ Φi ∈ S : Γ ∪ Φi is satisfiable.

Note that by definition any consensus is satisfiable.
Of wide-scope interest are consensuses that are maxi-
mal either with respect to cardinality or set inclusion.

Definition 2. A consensus Γ for S is max⊆ iff ∀ Θ
s.t. Γ ⊂ Θ ⊆

⋃n
i=1 Φi, ∃ Φi ∈ S s.t. Θ∪Φi is unsatis-

fiable.
A consensus Γ for S is max# iff ∀ Θ s.t. Θ ⊆

⋃n
i=1 Φi

and #Θ > #Γ, ∃ Φi ∈ S s.t. Θ ∪ Φi is unsatisfiable.

Clearly, any max# consensus is a max⊆ consensus
whereas the converse does not hold. Depending on the
context, max is used as a shortcut for either max# or
max⊆, or for any of them. When

⋃n
i=1 Φi is satisfiable,

this latter set is the unique max consensus for S. For
any S, there always exists at least one max consensus,
which can be the empty set. Notice also that none of
these forms of maximality (and none of the other ones
that will be investigated later in the paper) necessarily
delivers one unique consensus for S.

Interestingly, max consensuses can differ from maxi-
mal satisfiable subsets of

⋃n
i=1 Φi noted maxcons, ex-

tracted by belief merging operators (see e.g. [12]). In-
deed, maxcons are not required to be satisfiable with
each individual Φi. Accordingly, maxcons are not ne-
cessarily max consensuses for S and conversely, al-
though any consensus is included in a maxcons. As-
sume for example that t, w, u and p are Boolean va-
riables standing respectively for increase taxation on
pollution, increase wages, reduce unemployment and
reduce pollution. Let S be the programs of three poli-
tical groups that negotiate to form a coalition : S =
{Φ1,Φ2,Φ3} with Φ1 = {t,¬w}, Φ2 = {w∧ (t→ ¬u)}
and Φ3 = {u ∧ (¬w → ¬u), t→ p}. The unique max⊆
consensus for S is Γ = {t, t → p}, namely, increase
taxation on pollution and this will reduce pollution. If
the group adopts this consensus then it agrees that t
and p could hold. Notice that none of the members
of the coalition can deduce p based on its own Φ : p
is a kind of implicit group information produced by
the consensus. Notice that one of the maxcons of S is
Θ = {w ∧ (t → ¬u), u ∧ (¬w → ¬u), t → p} : Θ does
not entail t and Θ is not satisfiable together with Φ1.

4 Maximal Number of Agreed Concepts

The knowledge represented in S can be such that
each Boolean variable translates one concept. We
might prefer a consensus that expresses an agreement
on a maximum number of concepts mentioned in S and
thus on a maximum number of variables. For example,
in a political negotiation, we might prefer a consen-
sus that translates an agreement on decrease taxation,
strengthen foreign policy and preserve social security
than another consensus with an agreement on only two
of these concepts.

Different notions of agreement on a Boolean variable
v (say, decrease taxation) in S can be defined. For
example, v (or, ¬v) might be required to be inferable
from each source ; a consensus that translates this
agreement should then contain the formula v (resp.,
¬v), or, at least, sufficient information to derive it.

In this paper, we adopt a wider-scope form of agree-
ment on a variable v that does not require v (resp.,



¬v) to be derivable in every source, or even simply
in one of them. We require any consensus that trans-
lates an agreement on the variable v to gather what is
directly expressed in each source about v, namely all
the formulas from S that contain at least one occur-
rence of the variable v. Notice that, as a consequence,
when at least one source contains that (resp., negated)
variable as a formula, any consensus that translates
an agreement on v must contain the formula v (resp.,
¬v). The intuition for this approach to agreement on
a variable is best understood in the clausal setting,
which will be our practical computational framework.
Indeed, a clause that contains a literal v as a disjunct
can be rewritten in implicative format, or rule, with
v as right-hand side and with the left-hand side sta-
ting conditions for v to hold. Accordingly, gathering
inside a consensus all clauses that contain v gathers
all conditions to derive v that are directly expressed.
Obviously, each source might or might not contain its
own ways to derive these conditions for v and the dif-
ferent sources might not agree on that.

A consensus Γ that agrees on a maximum number
of variables, interpreted as concepts, will thus be a
subset of

⋃n
i=1 Φi that is satisfiable with each Φi and

that contains occurrences of a maximum number of
variables that do not occur in S\

⋃n
i=1 Φi. Formally, let

Θ and Ψ be two sets of formulas, we note #var(Θ,Ψ)
the number of different variables occurring in Θ that
are not occurring at all in Ψ.

Definition 3. A consensus Γ for S is max#ac (”ac”
meaning agreed concepts) iff for any consensus Γ′ for
S s.t. Γ 6= Γ′, we have that #var(Γ

′,
⋃n
i=1 Φi \ Γ′) ≤

#var(Γ,
⋃n
i=1 Φi \ Γ).

Notice that there may exist consensuses for S
that contain occurrences of more variables than
max#ac consensuses for S do.

5 More Maximality Preference Criteria

We now examine other maximality-based preference
paradigms that can lead to the selection of different
or even smaller subsets of consensuses for S. We will
allow for their stepwise combinations : this will yield
possible additional progressive pruning of the set of
of preferred consensuses into a set of better preferred
consensuses.

First, let us give an example of stepwise combination
of criteria : the max#ac concept can be selected and
adapted to follow or precede the max⊆ (or the max#)
paradigm. We can for instance first select the max#ac

consensuses for S and adapt max# in such a way that
it only refines this latter set of consensuses. Clearly

this translates a sequencing and prioritization of pre-
ferences : 1. a preference for consensuses that agree on
a maximal number of concepts, and then 2. a pre-
ference for the consensuses (among these latter ones)
that contain a maximum number of formulas from the
sources. For short, this ordered combination of opera-
tions is noted max#(max#ac(S)).

Let us now examine other possible forms of prefe-
rences among sources. For example, one might prefer
a consensus Γ that totally satisfies a maximum num-
ber of sources when a source Φi is defined as totally
satisfied by Γ iff Φi ⊆ Γ.

Definition 4. A consensus Γ for S totally satisfies
a source Φi iff Φi ⊆ Γ. Γ is max#100%Φi

iff @Γ′ s.t.
Γ′ is a consensus for S that totally satisfies a strictly
greater number of sources of S than Γ does.

The consensuses defined so far handle all sources
(resp., all formulas in the sources) with no specific prio-
rity or preference among them. There has been a tre-
mendous amount of work in AI about preferred maxi-
mal satisfiable subsets of formulas (see e.g., [17, 4])
when such priorities or preferences are to be taken into
account. Adapting this to consensuses requires the ad-
ditional condition of consistency with each source to
be handled. Let us just give two examples.

A simple criterion discriminates among formulas
by means of a pre-ordering between all formulas of⋃n
i=1 Φi.

Definition 5. Assume that a preference pre-ordering
≺ applies to all formulas in

⋃n
i=1 Φi in such a way that

α ≺ β whenever α is preferred over β.
A consensus Γ for S is a max≺ consensus for S iff
no consensus for S contains a formula α such that
α ≺ β ∀β ∈ Γ.

A second form of preference adapts a well-known
way to handle inconsistencies in stratified belief bases
([3, 4]) to the consensuses extraction problem : it gives
each source a specific weight and states an ordering
between these weights. Formally, this yields :

Definition 6. Assume that all Φi in [Φ1, . . . ,Φn] are
under a total ordering < such that Φi is preferred
over Φj whenever i < j. A consensus Γ for S is a
max[Φ1<···<Φn] consensus for S iff for every consen-
sus Γ′ for S, @j ∈ [1 . . . n] s.t. ∀i < j we have that

(Γ ∩
⋃i
k=1 Φk) = (Γ′ ∩

⋃i
k=1 Φk) and (Γ ∩ Φj) ⊂

(Γ′ ∩ Φj).

Importantly, various forms of integrity constraints
can be easily mixed up with the consensus concept :
for instance, they can be formulas that can be external
or not to S and that must belong to any consensus,
or simply be satisfiable with any consensus. They can



also be variables that represent concepts for which an
agreement must be reached in the sense, for example,
that any formula in S containing any occurrence of
these variables must belong to any consensus. In the
same vein, a pre-ordering among variables could ex-
press a preference ranking among variables on which
preferred consensus should agree on.

6 More on max Consensuses vs. maxcons

Let us come back to the difference between max⊆
(and max#) consensuses and maxcons. As every
consensus is included in a maxcons, one natural ques-
tion is whether or not a same set of consequences can
be drawn from the intersection of either all max⊆
(resp., max#) consensuses or all maxcons. Interes-
tingly, the additional constraint requiring consistency
with all sources makes both inference relations differ.
Indeed, skeptical inference from max consensuses and
maxcons differs in the general case. Assume X is a pro-
file. The set of skeptical consequences from X , noted
SKI (X ), is defined as follows.

Definition 7. SKI(X ) = {ϕ s.t. ∀ Θ ∈ X : Θ ` ϕ}

Assume c ∈ {⊆,#} in the following. Let us note CcS
(resp., Mc

S) the set of all max c consensuses (resp.,
maxconsc) for S.

Proposition 1. SKI(Mc
S) *SKI(CcS),

SKI(CcS) *SKI(Mc
S)

maxcons have been used to define merging operators
[1, 12], so we can check which merging properties [12]
are satisfied by max consensuses. This requires to mo-
dify slightly consensuses for S to include an additional
non-empty set of formulas µ to play the role of inte-
grity constraints ; let us note C⊆S,µ the corresponding
operator :

Definition 8. A set Γ ⊂ L is a consensus for S under
the constraints µ iff µ ⊆ Γ ⊆

⋃n
i=1 Φi ∪ µ and ∀ Φi ∈

S : Γ ∪ Φi is satisfiable.

As consensuses are syntax-based and as their aim is
distinct from the goal of merging operators, it is not a
surprise that few properties from those operators are
satisfied by C⊆S,µ.

Proposition 2. C⊆S,µ satisties (IC0) and (IC2). It
does not satisfy (IC1), (IC3), (IC4), (IC5), (IC6),
(IC7), (IC8).

Finally, about the relationship between the different
notions of consensus : it is easy to show that using
preferences allows more inferences to be drawn.

Proposition 3. SKI(C⊆S ) ⊆ SKI(C#
S ), SKI(C⊆S ) ⊆

SKI(C#ac
S )

Let ≺ be any preference criterion : SKI(C⊆S ) ⊆
SKI(C≺S ).

7 Computing one Preferred Consensus

We now present a generic computational framework
for the extraction of consensuses for S according to any
of the above preference paradigms and their possible
stepwise combinations. As we make use of a single-
type optimization process that maximizes the size of
consensuses, we do not mix the max⊆ with other pre-
ference criteria. Note that max# consensus is a max⊆
consensus ; one max⊆ consensus can thus be computed
by our technique, too.

We assume that every formula in S is a clause and
we opportunely take advantage of the best advances of
SAT-related technologies. This restriction is not an in-
vincible limitation on the scope of our approach since
every formula can be translated into a set of clauses
while preserving satisfiability : each such set of clauses
(vs. each clause) should then be treated as an elemen-
tary entity with respect to the various preference cri-
teria and the algorithms that compute one consensus
must be adapted à la group-CNF (see e.g., [2, 19] for
group-CNF techniques).

Although consensuses and satisfiable subsets are not
identical concepts, the extraction of max consensuses
can benefit from techniques to compute maxcons, at
least to some extent. But, first, let us stress that com-
puting one maxcons of a set of clauses is intractable
in the worst case and so is the extraction of one max
consensus. The extraction of one maxcons⊆ belongs
to the FPNP [wit, log] class, i.e., the set of function
problems that can be computed in polynomial time
by executing a logarithmic number of calls to an NP
oracle that returns a witness for the positive outcome
[16]. The extraction of one maxcons# belongs to the
Opt-P class of problems [20], i.e., the class of functions
computable by taking the maximum of the output va-
lues over all accepting paths of an NP machine. In
the worst case, the number of maxcons and of max
consensuses for a profile is exponential with respect to
the number of clauses in the profile. In this last res-
pect, we propose a technique that will deliver one pre-
ferred consensus, only. For applications involving a lot
of variables and formulas, extracting one such consen-
sus can be sufficient to agree on a common position.
A tentative enumeration of all preferred consensuses
would require a form of iteration of the process and
by augmenting the problem with a constraint stating
that previously extracted consensuses should not be
exhibited again (see for example [14] for this kind of



enumeration technique).
Interestingly, recent techniques to compute one

maxcons⊆ or one maxcons# prove actually efficient for
many problem instances : see for example [10, 15, 18].
This opens the way for computing one consensus even
for very large sources. Consensuses differ from max-
cons by an additional constraint that requires satisfia-
bility with each one of the n sources. Since the sources
can be mutually conflicting, this consistency constraint
cannot be replaced by one satisfiability check with
the conjunction (i.e., set-theoretical union) of these
sources. It is also crucial to note that starting with⋃n

i=1 Φi and pruning this set in a progressive and mi-
nimal manner so that it becomes satisfiable with more
and more sources until it becomes satisfiable with all
sources, does not necessarily deliver one max# (or
max⊆) satisfiable subset. As emphasized in [6], this
process would need to be repeated for all possible or-
derings of the sources, and all possible orderings of
the clauses within each source, in order to guarantee
maximality : such an iterated process leads to a com-
binatorial blow up since these numbers of orderings
are exponential. In [6], the authors have introduced
a so-called transformational approach to compute one
maximal set of clauses that does not contradict se-
veral given external contexts. Despite the increase of
the size of the problem representation, this approach
is currently the most efficient and scalable one for dif-
ficult and large instances.

max# First, we thus adapt this transformational ap-
proach in order to compute one max# consensus. In-
terestingly, we also generalize it so that it can ex-
tract one consensus under any stepwise combination
of the preference paradigms presented above. The ap-
proach relies on the transformation of the search for
one consensus into one instance of the Weighted Par-
tial MaxSAT problem. This optimization problem re-
quires the set of clauses to be partitioned into two sub-
sets : the set of hard clauses (which must be satisfied
in any solution) and the set of soft clauses (which are
not necessarily satisfied in solutions). It searches one
truth value assignment that satisfies all hard clauses
and a maximum number of soft clauses. Actually, the
soft clauses are given weights. Any solution must be
such that the sum of the weights of the falsified clauses
is minimal. [6] made use of Partial MaxSAT only, mis-
sing the possibility to handle preferences among va-
riables, clauses or sources, and the stepwise combina-
tions of those preferences. Actually, we use a version of
Weighted Partial Max-SAT that does not only deliver
the maximal number of soft clauses satisfiable toge-
ther with the hard clauses, but also the set of these
satisfied clauses itself.

The adaptation of [6] to the extraction of one max#

consensus for S is as follows. Algorithm Transform1
illustrates the construction of the soft and hard clauses
of the instance of the Weighted Partial MaxSAT pro-
blem.

Transform1(S) for max#

input : S = [Φ1, . . . ,Φn] : a profile of n satisfiable sets of
Boolean clauses ;

Assume that the clauses of Φi are noted δ1
i , δ

2
i , . . . ;

output: ΓHard : a set of hard clauses, ΓSoft : a set of soft clauses

ΓHard ← ∅ ; ΓSoft ← ∅;1

Σ←
⋃

Φi∈S
{¬εji ∨ δ

j
i s.t. δji ∈2

Φi and where εji are new fresh variables};
ΓSoft ← {εji}i,j ;3
foreach Φi ∈ S do4

Φi ← Σ ∪ Φi;5

Rename all variables in Φi (except the εji ) with fresh new6
ones;
ΓHard ← ΓHard ∪ Φi;7

return (ΓHard, ΓSoft);8

We need to find some subset of
⋃n

i=1 Φi that is sa-
tisfiable with each Φj . Each restriction of this satisfia-
bility constraint to one Φj is considered as a subpro-
blem ; the subproblems will be linked together to form
one single optimization problem. Each clause δji from
any Φi is augmented with an additional disjunct ¬εji
using a new fresh variable (line 2) : this yields a set
Σ. These εji variables will be used to link the various
subproblems. Each subproblem is created by unioning
Σ with one Φi and by renaming all variables except
the εji (l. 4-7). All together, the subproblems form the
set of hard clauses ; these ones are all simultaneously
satisfiable (just assign all εji to true). The set of soft
clauses is made of all unit clauses εji (l. 3). If a same
weight is assigned to every soft clause, this instance
of Weighted Partial Max-SAT is actually an instance
of Partial Max-SAT, which searches one truth-value
assignment such that all hard clauses and one maxi-
mal number of clauses εji are satisfied. Accordingly, all
clauses δji corresponding to the satisfied εji form one
max# consensus for S.

Even more linking variables and the use of
weights The challenge is to keep one single opti-
mization process while coping with other preferences
and their combinations. To this end, we take advan-
tage of both the weights on soft clauses and more εji -
like variables to link sub-problems. The weight, no-
ted weight(α), given to a soft clause α can be used
to enforce a stepwise prioritization between clauses or
sources in the optimization process. In the previous
representation, the set of the soft clauses is {εji}i,j and
when one εji is satisfied in the Weighted Partial Max-
SAT solution, this means that the clause δji belongs to
the computed consensus. To enforce the higher priority
of εji over a set Θ of other εlk clauses in any solution,
weight(εji ) needs to be strictly greater than the total



sum of the weights given to the clauses of Θ.

max#100%Φi
We augment the sets of hard and

soft clauses delivered by Transform1 as follows. A
new fresh variable ϕi is associated to each Φi.
The set of soft clauses is augmented with each ϕi
unit clause, whose weight is such that weight(ϕi) >∑n

j=i+1 weight(ϕj) and weight(ϕi) >
∑

k,l weight(ε
l
k). The

set of hard clauses is augmented with {¬ϕi ∨ εji}i,j .
Hence, ϕi with the biggest weights will be tentatively
satisfied first. When ϕi is satisfied, εji is also satisfied
for all j and so are all clauses of Φi.

max#ac For each variable x occurring in S, a new soft
clause x′ is created where x′ is a new fresh variable.
Then, additional clauses are created and inserted wi-
thin the set of hard clauses for each x′ : they are the
clausal form of x′ → (εml ∧ · · · ∧ ε

q
p) where the εji are the

variables corresponding to all the clauses in S that
contain an occurrence of a literal containing x. Accor-
dingly, Weighted Partial Max-SAT will maximize the
number of satisfied clauses x′ : corresponding to each
satisfied x′, all the occurrences of clauses containing x
or ¬x will be satisfied in the solution since εji is itself
satisfied. Again, weights need to be assigned to rank-
order the priorities between the soft clauses to ensure
the intended order between the selected criteria.

max [Φ1<···<Φn] The sets of soft and hard clauses are
given by the Transform procedures above, with the fol-
lowing constraints on εji (which weight must be bigger
than any other types of soft clauses) : ∀i∀j weight(εji ) >∑

(weight(εml ) ∀δml ∈ Φl s.t. l > i).

max≺ Weights are assigned to soft clauses in a similar
way to reflect a pre-ordering among clauses.

max#(max [Φ1<···<Φn]) and max≺(max#) As other
examples of implementing sequential combinations of
preferences, the ¬εji ∨ δ

j
i hard clauses are replaced by

¬εji ∨ ¬c
j
i ∨ δ

j
i where cji are fresh variables. The set of

soft clauses is augmented with the set {cji}i,j . Weights
are assigned according to the order between the cri-
teria. Transform2 describes this process (weights are
not represented).

Transform2(S) for max#(max [Φ1<···<Φn]) and max≺(max#)

ΓHard ← ∅ ; ΓSoft ← ∅;1

Σ←
⋃

Φi∈S
{¬εji ∨ ¬c

j
i ∨ δ

j
i s.t. δji ∈2

Φi (εji and cji are new variables)};
ΓSoft ← {εji}i,j ∪ {c

j
i}i,j ;3

foreach Φi ∈ S do4
Φi ← Σ ∪ Φi;5

Rename all variables in Φi (except the εji and the cji )6
with fresh new ones;
ΓHard ← ΓHard ∪ Φi;7

return (ΓHard, ΓSoft);8

Interestingly, all these transformations can be com-
bined. We have implemented a platform, called

Consensus, which allows the computation of sequen-
tial combinations of preferences and criteria from this
study. One practical limit is the maximal possible va-
lue for weight. Indeed, when the soft clauses are for
example ranked in l different levels with m clauses per
level and when strictly positive integers are considered,
the maximum weight assigned to a clause is O(ml−1),
which must not exceed the 264 maximum weight per-
mitted by current best performing Weighted Partial
MaxSAT solvers.

8 Experimental Study

All experimentations have been conducted on Intel
Xeon E5-2643 (3.30GHz) processors with 8Gb RAM
on Linux CentOS. We made used of MaxHS, the Weigh-
ted Partial Max-SAT solver from www.maxhs.org. We
have implemented all the other algorithms in C++ on
top of Glucose (www.labri.fr/perso/lsimon/glucose). Our
software, as well as the data and results of these experi-
mentations are available at www.cril.fr/consensus. The
profiles S were based on the 291 different unsatisfiable
(mostly real-world) instances from the 2011 MUS com-
petition www.satcompetition.org/2011, which focused on
the extraction of (set-inclusion) minimal unsatisfiable
subsets, in short MUSes. The search for MUSes and
maxcons are naturally related. Indeed, MUSes can be
computed from maxcons and conversely (see e.g. [13]).
Let us stress that these instances are really challen-
ging : they are formed of up to more than 15983000
clauses and 4426000 variables (457459 clauses using
139139 different variables, on average) : their max-
cons# are often made of a few clauses, only. Consen-
suses are thus necessarily not bigger than that. Each
instance was randomly split into n ∈ [3, 5, 7, 10] same-
size (modulo n) Φi to yield all the S. When preferences
that rank-order clauses were considered, 5 levels of pre-
ference were used : clauses were assigned randomly in-
side these levels so that each level contains a same
number of clauses. When n ≥ 5 sources had to be
rank-ordered, each source was assigned to one of the 5
levels, randomly. For n < 5 sources, we used n levels
of preference between sources.

Consensus was run to transform each ins-
tance and extract one preferred consensus
following max#, max#ac, max#100%Φi

, max≺,
max [Φ1<···<Φn], max#(max#ac), max [Φ1<···<Φn](max#)

and max#(max#ac(max#100%Φi
)), as a significant panel

of criteria and of their combinations. Time-out was
set to 900 seconds per consensus extraction.

Table 1 summarizes the average results for the ex-
traction of one preferred consensus per criterion and
value of n. It summarizes the 500+ Gb of detailed data
results. For each criterion or combination of criteria, it



gives the number of successful extractions, the average
time in seconds to extract one preferred consensus, the
average numbers of clauses and variables in the trans-
formed instance and the average number of clauses in
the extracted consensuses. When max#100%Φi

was in-
volved, it then gives the number of totally satisfied
sources in the consensus. max#100%Φi

was successful
almost all the times (e.g., for n = 3, a consensus was
found for each of the 291 instances, except one ; for
n = 10, 266 instances were solved). The drop of per-
formance when n increases is clearly due to the in-
creasing number of satisfiability constraints with each
source in the transformed problem. Actually, increa-
sing n entails both an increase of size of the repre-
sentation of the transformed instance and additional
satisfiability tests : as our experimentations illustrate,
this affects all the considered criteria. A similar drop of
performance was noticed for the max# criterion, which
solved between 207 and 235 instances, depending on
n. Interestingly, the approach proved somewhat less
efficient for this latter criterion. One explanation for
this phenomenon is as follows : under max#100%Φi

,
when some of the clauses of Φi have been shown al-
ready unsatisfied by the current truth assignment, the
other clauses of Φi need not be examined under this
assignment. This does not apply under max#. Not sur-
prisingly, max [Φ1<···<Φn] and max≺ gave quite similar
results in terms of successful extractions : except for
n = 3 where the difference is more significant. More
precisely, max [Φ1<···<Φn] has extracted a consensus for
232 (n = 3) and 135 (n = 10) instances whereas max≺
solved 137 and 133 instances for these values for n.
On the one hand, the better result obtained under
max [Φ1<···<Φn] for n = 3 can be explained by the fact
that the number of clauses in S is then divided inside
3 strata whereas max≺ always classifies clauses inside
5 strata. Accordingly, since the number of clauses per
stratum is often huge, the maximum possible value
264 for the weights permitted by the Weighted Partial
MaxSAT solver is more quickly reached under max≺,
leading to a memory fault. On the one hand, the de-
crease of performance with respect to the previously
examined criteria is also explained by the fact that ad-
ditional constraints of preference must be represented
and taken into account for each clause or source in S.

For max#ac, as the number of constraints is si-
gnificantly increased in the transformed instance, it
does not come as a surprise that, globally, the num-
ber of solved instances is lower than all the above cri-
teria (it ranges from 117 to 102, depending on n).
Interestingly, the combination of max#(max#ac) al-
lowed to solve almost the same number of instances
than max#ac alone (a difference of at most 4 ins-
tances, only). This does neither come as a surprise

since the max# criterion does not require coping
with additional clauses when it is considered toge-
ther with max#ac. max#(max#ac(max#100%Φi

)) allo-
wed to solve between 60 and 35 instances, only. The
combination max [Φ1<···<Φn](max#) allowed us to ex-
tract one consensus for a somewhat smaller number of
instances, only (except for n = 3 for a reason already
explained). These numbers might appear low, but re-
member that we are addressing here huge hard bench-
marks allowing for very small -hard to find- consen-
suses, only. These results show the viability of the ap-
proach and its scalability, at least provided that the
number of strata or preference levels that must be
obeyed remains small.

9 Conclusion and Perspectives

The contribution of this paper is twofold. On the
one hand, we have proposed a logic-based concept of
consensus that does not merely amount to computing
some shared information. On the other hand, we have
shown how this consensus concept augmented with va-
rious preference paradigms can be computed in prac-
tice. Noticeably, the approach circumvents -at least to
some extent- the computational blow-up due to the
investigation of all orders between formulas that is
necessary to guarantee maximality, and to the neces-
sity to check satisfiability with each source separately.
Mainly, the whole task is rewritten into one single op-
timization problem. Interestingly, we have shown how
to allow various preference criteria to be combined and
computed in this framework, too.

We envision various promising paths for further re-
search. First, group-CNF algorithms could be explored
to extend the computational approach from clauses
to all formulas. The practical handling of preferences
that define a large number of levels or strata for large
sources remains an open problem. Adapting the ap-
proach into an efficient multi-steps optimization pro-
cess to address this issue is a promising path worth ex-
ploring. From an application perspective, consensuses
can play a role in various AI fields.

For instance, our approach could be exported to
argumentation frameworks. [7] considers a notion of
consensus between the positions of agents expressed
by a labeling, given a common abstract argumenta-
tion. Since abstract argumentation can be encoded in
propositional logic [5], it would be interesting to check
whether our specific approach to consensus and its
computational counterpart could open new perspec-
tives for such investigations about abstract argumen-
tation.
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n = 3 n = 5 n = 7 n = 10

1

#solved 235 223 210 207
time 96 109 119 150
#var 303643 329599 380110 460194
#cl 1325632 1855884 2386137 3181517
#clsol 7 2 2 2

2

#solved 117 116 107 102
time 255 229 238 235
#var 153553 139909 122367 158878
#cl 2069215 2599468 3129721 3925100
#clsol 20 40 16 26

3

#solved 290 285 279 266
time 24 49 77 124
#var 465177 534802 622374 707358
#cl 1590761 2121016 2651271 3446653
#clsol 167384 92083 65039 46159
#srcsol 2 2 2 2

4

#solved 137 135 134 133
time 57 68 67 71
#var 30731 37129 43290 52929
#cl 76711 98629 120547 153423
#clsol 3 2 2 2

5

#solved 232 134 140 135
time 100 67 71 64
#var 412784 36274 45688 53290
#cl 1855884 98629 128933 153423
#clsol 7 2 2 2

6

#solved 121 116 104 100
time 272 227 239 234
#var 159659 134720 130672 172960
#cl 2069215 2599468 3129721 3925100
#clsol 19 39 17 39

7

#solved 211 20 23 20
time 138 51 83 86
#var 254986 8706 12264 12752
#cl 1855884 23560 33337 36649
#clsol 8 2 2 2

8

#solved 60 43 38 35
time 246 166 176 152
#var 35809 23867 28892 41552
#cl 2334344 2864599 3394854 4190236
#clsol 2 2 2 2
#srcsol 2 2 2 2

Table 1 – Experimental Results for 1 : max# 2 : max#ac 3 : max#100%Φi
4 : max≺, 5 : max [Φ1<···<Φn] 6 : max#(max#ac)

7 : max [Φ1<···<Φn](max#) and 8. max#(max#ac(max#100%Φi
)).


