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Résumé

La dynamique des systèmes d’argumentation consti-
tue un sujet de recherche très développé actuellement.
En particulier, le fait de modifier un système d’argumen-
tation de façon qu’un ensemble d’arguments E donné
devienne une extension (ou soit inclus dans une exten-
sion), appelé problème du forçage (enforcement) de E,
a reçu une certaine attention ces dernières années. Dans
cet article, nous définissons une nouvelle famille d’opé-
rateurs de forçage pour lesquels le forçage peut être réa-
lisé en ajoutant de nouveaux arguments et attaques au
système initial (comme c’est le cas dans les approches
existantes), mais aussi en remettant en question les at-
taques (et non-attaques) de ce système. Cette famille
d’opérateurs de forçage inclut les opérateurs existants,
mais aussi de nouveaux opérateurs, pour lesquels le suc-
cès de l’opération de forçage est garanti. Nous montrons
également comment le problème du forçage peut être
modélisé et résolu via une traduction en problème d’op-
timisation booléenne. Une étude expérimentale conclut
l’article et montre que notre approche se révèle efficace
en pratique.

1 Introduction

Dung’s seminal work on abstract argumentation [11]
is the origin of a simple yet powerful setting to re-
present and reason about arguments. In this setting ar-
guments are associated with the vertices of a directed
graph, called an abstract argumentation framework
(AF), and the corresponding arcs encode conflicts.
Several acceptability semantics have been defined in
the objective of discriminating those arguments which
should be accepted from the remaining ones.

AFs are useful for modeling and solving many pro-
blems, for instance to represent and reason about dia-
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logs in a multi-agent system. Whatever the problem
under consideration, the dynamics of AF, i.e., how to
make an AF evolve in light of new information, is an
important issue. As such it has been addressed in many
works in the recent years [8, 5, 7, 6, 9, 10].

In this paper the focus is laid on the enforcement
problem : the key question is to determine whether it
is possible to change an AF to ensure that a particular
set of arguments is an extension, or at least is inclu-
ded in an extension. This problem has been studied
in [3, 1, 2]. In these works, there is some constraints
on the allowed changes to the given AF : enforcing a
set of arguments is achieved via the addition of some
new arguments and some attacks between them and
the arguments of AF ; however no change amongst the
attacks of AF is permitted.

Such enforcement operators are useful in many sce-
narios, especially when we consider an argumentative
dialog between several agents since the incoming of
new arguments in the dialog typically questions the
existing extensions, and an agent can thus be inter-
ested in determining arguments to be added in order
to enforce the set of arguments she likes. However, in
many other scenarios, no new arguments are available
for explaining the change, and one thus has to question
the attacks between the arguments [9, 10].

In this paper, we define a new family of enforce-
ment operators, for which enforcement can be achie-
ved by adding new arguments (and attacks) to F
(as in previous approaches to enforcement), but also
by questioning some attacks (and non-attacks) of F .
This family includes previous enforcement operators
as special cases, but also new ones for which the suc-
cess of the enforcement operation is guaranteed. We
show how the enforcement problem for the operators
of the family can be modeled and achieved as a pseudo-



Boolean optimization problem. Intensive experiments
show that the method is practical and that it scales
up well.

The paper is organized as follows. Some background
on abstract argumentation is recalled in Section 2. Sec-
tion 3 presents the definitions of the main families
of enforcements defined in previous works from Bau-
mann and Brewka, points out some of their limits in
term of impossibility results and then defines a new fa-
mily of enforcement operators, called argument-fixed
enforcement, for which success is guaranteed. In Sec-
tion 4, we explain how to achieve enforcement ope-
rations by solving optimization problems. Before the
concluding section, Section 5 discusses the method
used to implement enforcement operators, and gives
experimental results. Proofs are available on-line at
http://goo.gl/gwgkH8.

2 Background

The following definitions come from [11].

Definition 1. An abstract argumentation framework
(AF) F is a directed graph 〈A,R〉 where A is a set of
atomic entities called arguments and R ⊆ A×A is the
attack relation.

The intuitive meaning of the attack relation is that
(ai, aj) ∈ R if when ai is accepted by the agent, then
aj has to be rejected. A set of arguments E ⊆ A is
said to attack an argument ai if and only if ∃aj ∈ E
such that (aj , ai) ∈ R. An argument ai (respectively a
set of arguments E) defends the argument aj against
ak such that (ak, aj) ∈ R if ai (respectively E) attacks
ak.

In order to characterize the arguments to be accep-
ted, Dung pointed out several acceptability semantics,
which aim at defining extensions : an extension is a
set of arguments which can be jointly accepted by the
agent. Whatever the semantics σ, Extσ(F ) denotes the
set of σ-extensions of the AF F . The various semantics
reflect some properties which ought to be satisfied by
the extensions. For instance, E ⊆ A is a conflict-free
set in F = 〈A,R〉 if and only if there is no ai, aj ∈ E
such that (ai, aj) ∈ R. Then, E ⊆ A is a complete
extension of F = 〈A,R〉 if and only if E is conflict-free
and E containts each ak ∈ A which is defended by E.
The grounded extension is the minimal (with respect
to ⊆) complete extension. E ⊆ A is a stable extension
of F = 〈A,R〉 if and only if E is conflict-free and E
attacks every argument ak ∈ A\E.

3 Extension Enforcement

Enforcing a set of arguments E is defined in [3] as a
change from an AF F to another one F ′ such that E
is an extension of F ′ or is included in an extension of
F ′. Several enforcement methods are presented, based
on the notion of expansion of an AF. An expansion is
the addition of new arguments and new attacks to an
AF, respecting some constraints. The enforcement of
E in F is then defined as an expansion of F such that
E is an extension of it. Three kinds of expansion are
considered :

— Normal expansion : some arguments are added,
with some new attacks s.t. at least one of the
new arguments is concerned by each new attack
(there is no change in the attacks between former
arguments).

— Weak expansion is a normal expansion s.t. no
new attack is directed from a new argument to
a former one.

— Strong expansion is a normal expansion s.t. no
new attack is directed from a former argument
to a new one.

Beyond the nature of the expansion, two additional
parameters must be made precise in order to define en-
forcement operators. First, enforcement can be a strict
when the expected set of arguments has to be exactly
an extension of the output AF or non-strict when the
set of arguments has to be included in an extension of
the output AF. Then, enforcement can be conserva-
tive when the semantics stays the same one or liberal
when the semantics may change. In the following, we
define enforcement operators which can be used for
both conservative and liberal enforcement, since the
semantics associated with the input AF is not speci-
fied in the definition of the operators. For the sake of
brevity, we focus only on the conservative enforcement
situation.

Definition 2. Let F = 〈A,R〉 be an AF, σ an accep-
tability semantics, and E ⊆ A a set of arguments. The
normal (respectively normal strict) enforcement ope-
rator +N

σ (resp. +N
σ,s) is defined as a mapping from F

and E to an AF F ′ = 〈A ∪ A′, R ∪ RA′〉, with RA′ a
set of attacks (ai, aj) such that ai ∈ A′ or aj ∈ A′,
and such that E is included in (resp. is exactly) an
extension of F ′. Moreover,

— if RA′∩(A′×A) = ∅, then +N,W
σ (resp. +N,W

σ,s ) is
a weak (resp. strict weak) enforcement operator ;

— if RA′ ∩ (A×A′) = ∅, then +N,S
σ (resp. +N,S

σ,s ) is
a strong (resp. strict strong) enforcement opera-
tor.

Let us illustrate the strong enforcement approach.

Example 1. Let F be the AF given in Figure 1(a). Its



set of stable extensions is Extst(F ) = {{a1, a4}}. The
expected extension to be enforced is E = {{a2, a3}}.
A possible strong enforcement is presented in Fi-
gure 1(b) : the stable extensions of F ′ are Extst(F

′) =
{{a2, a3, b}}, which contains E.
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(a) Input AF
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b

(b) Enforced AF

Figure 1 – Strong enforcement process

Importantly, whatever the normal enforcement ope-
rator under consideration, it must be noted that en-
forcement may fail. As a simple example, let us consi-
der E = {a1, a2} in an AF F = 〈A,R〉 such that
(a1, a2) ∈ R. It is obviously impossible to enforce E
with any of the enforcement operators described pre-
viously. Theorem 2 and Theorem 3 from [3] give some
more elaborated impossibility results about strict en-
forcement. An interesting result from [3] states that
for each AF F , it is possible to enforce any set of ar-
guments E which is conflict-free in F with a non-strict
strong enforcement, and also guarantees that adding
a single new argument is enough. It means that non-
strict strong enforcement can be performed with any
singleton A′. This will be useful to define logical enco-
dings suited to enforcement (see Section 4).

Note that the presence of conflicts in the set E of ar-
guments to be enforced is a sufficient, yet unnecessary
condition for normal enforcement to fail. In order to
make it more formal, let us first introduce the notion
of non-trivial set of arguments with respect to a given
semantics :

Definition 3. Let F = 〈A,R〉 be an AF, and σ a
semantics. E ⊆ A is a σ non-trivial set of arguments
in F if and only if E is conflict-free in F and E /∈
Extσ(F ).

Assuming the set E of arguments to be enforced
to be σ non-trivial is a way to avoid the trivial cases
when enforcement is already satisfied because E is a
σ-extension of F or impossible because of conflicts.
However, it does not prove sufficient for preventing
from failure for every semantics :

Proposition 1. For every F = 〈A,R〉 and E ⊆ A a
stable non-trivial set in F , there is no strict enforce-
ment of E in F with respect to the stable semantics.

Proposition 2. For every F = 〈A,R〉, and E ⊆ A a
complete non-trivial set in F ,

1. if E does not defend itself against each attacker,
then there is no strict enforcement of E in F
with respect to the complete semantics.

2. else, if E defends some argument ai ∈ A\E, then

(a) there is no strict weak enforcement of E in
F with respect to complete semantics.

(b) if odd-length cycles are not allowed, then
there is no strict strong enforcement of E in
F with respect to complete semantics.

Proposition 3. For every F = 〈A,R〉 and E ⊆ A a
grounded non-trivial set in F , if Extgr(F ) = {∅}, then
there is no strict enforcement of E in F with respect
to the grounded semantics.

Argument-Fixed Enforcement. In the previous ap-
proaches for enforcing a set of arguments, it is suppo-
sed that new arguments can be added, and that inter-
actions between the existing arguments do not change.
This method is particularly sensible when enforcement
is supposed to be the result of a dialog : given an AF
representing the state of a dialog, an agent adds new
arguments if she wants to convince the other agent
to accept a given set of arguments as an extension.
Forbidding any change over the initial attacks of the
framework is the reason of the above impossibility re-
sults. Interestingly, the converse case, i.e., considering
situations where the set of arguments cannot change,
but the attack relation is subject to evolutions, also
makes sense. It is sensible, for instance, when a set of
arguments is observed to be an extension in the output
of an argumentation process, but does not correspond
to the output of the own AF of an agent. In such a
case, without the knowledge of some new arguments,
the agent has to change her beliefs about the attack
relation to be consistent with the observed set of ar-
guments.

Definition 4. Let F = 〈A,R〉 be an AF, σ an ac-
ceptability semantics, and E ⊆ A a set of arguments.
The argument-fixed (resp. strict argument-fixed) en-
forcement operator +A

σ (resp. +A
σ,s) is defined as a

mapping from F and E to an AF F ′ = 〈A,R′〉, with
R′ ⊆ A × A, and such that E is included in (resp. is
exactly) an extension of F ′.

The argument-fixed operators guarantee the success
of enforcement, even in the strict case :

Proposition 4. Let F = 〈A,R〉 be an AF, σ and
acceptability semantics and E ⊆ A a set of arguments.
There is a a strict enforcement F ′ of E.

Of course, both ideas (adding arguments, and chan-
ging the attacks) can be combined :



Definition 5. Let F = 〈A,R〉 be an AF, σ an ac-
ceptability semantics, and E ⊆ A a set of arguments.
The general (strict) enforcement operator +σ (resp.
+σ,s) is defined as a mapping from F and E to an AF
F ′ = 〈A ∪A′, R′〉, with R′ ⊆ A×A′, and such that E
is included in (resp. is exactly) an extension of F ′.

Example 2. Let us consider again the AF F descri-
bed in Figure 1(a). We gave an example of non-strict
strong enforcement, but as shown by Proposition 1,
it is impossible to perform a strict enforcement un-
der the stable semantics using Baumann’s approaches
(normal, strong and weak). Let us use the argument-
fixed enforcement operator to obtain a strict enforce-
ment of the set of argument E = {{a2, a3}}. A possible
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(a) The AF F ′′
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(b) The AF F ′′′

Figure 2 – Two possible results of the argument-fixed
enforcement

result is the AF F ′′ described in Figure 2(a), whose
stable extensions are Extst(F

′′) = {{a1, a4}, {a2, a3}},
and so E is enforced as a stable extension of the re-
sult. Another one is F ′′′ given in Figure 2(b), whose
set of extensions is the same one : Extst(F

′′′) =
{{a1, a4}, {a2, a3}}.

Minimal Change. As explained in Proposition 4, the
possibility to enforce a set of argument is ensured when
changes on the attack relation are allowed. From a
practical point of view, it offers a success guarantee,
which is a valuable property for an enforcement ope-
rator. Another expected property is minimal change,
borrowed from belief revision. Enforcement processes
can lead to several different results, and the enforce-
ment operators defined previously have to select one
of the possible AFs as the result. Considering minimal
change during the enforcement means that the cho-
sen AF has to be as close as possible to the initial
AF. [1] already studies such a notion of closeness for
the normal enforcement approaches. He defines mini-
mal change as minimization of the number of attacks
which are added to the AF during the enforcement
process. We generalize this notion of minimal change,
using the well-known Hamming distance to measure
how much two AFs are different.

Definition 6. The Hamming distance dh between two
AFs F = 〈A,R〉 and F ′ = 〈A′, R′〉 is defined by :

dh(F, F ′) = |(R\R′) ∪ (R′\R)|

For every enforcement operator +, the minimal change
version +

min
is such that the selected output AF F ′ mi-

nimizes the Hamming distance from the input AF F .

It is worth noticing that some other kinds of change
operations are particular extension enforcements. For
instance, credulous explanation in [6] is the enfor-
cement of a singleton. Similarly, some goal-oriented
changes from [15] and some particular revision opera-
tors from [9, 10] are enforcement operators. Our enfor-
cement approach thus prove also useful for achieving
such kinds of changes in AFs.

4 Enforcement as Satisfaction and Opti-
mization

A first observation is that enforcing a set of argu-
ments while limiting the number of allowed changes in
the attack relation is computationally demanding in
the general case :

Proposition 5. Let F = 〈A,R〉 be an AF, E ⊆ A,
and an integer k. Determining whether it is possible to
enforce E in F under the stable semantics with at most
k changes (addition or removal) of attacks is NP-hard.

Proposition 5 ensures that (unless P = NP) there
is no polynomial-time algorithm to perform minimal
change enforcement in the general case. For this rea-
son, it makes sense to tackle the enforcement (resp.
minimal change enforcement) issue using algorithms
developed for solving (resp. optimizing) NP-hard pro-
blems. This is what we do in the following : we reduce
enforcement to a propositional satisfiability problem,
and minimal change enforcement to a pseudo-Boolean
optimization problem.

Enforcement as Boolean Satisfaction. Our
translation-based approach is based on the possibility
to associate an AF F and a semantics σ with a
propositional formula such that the models of the
formula correspond exactly to σ-extensions of F .

Definition 7. Given F an AF and σ a semantics, ΦFσ
is a propositional formula built upon the set of Boolean
variables {xa|a ∈ A}, such that {xa1 , . . . , xak} is a
model of ΦFσ if and only if {a1, . . . , ak} is a σ-extension
of F .

In the following, for a matter of simplification and
since no ambiguity is possible, we write the formulae
using ai symbols instead of xai . We focus on the enco-
ding Φst of the stable extension, as given in [4]. Given
F = 〈A,R〉, Φst is defined by

Φst =
∧
ai∈A

[ai ⇔ (
∧

aj :(aj ,ai)∈R

¬aj)]



Then, checking if a set of arguments E is a stable ex-
tension of F is equivalent to checking the satisfiability
of the formula ΦEst,s = Φst∧ (

∧
ak∈E ak)∧ (

∧
al /∈E ¬al).

To perform non-strict enforcement, a way to deter-
mine whether E is included in an extension is required.
Dropping the conjunct (

∧
al /∈E ¬al) from the formula

ΦEst,s gives precisely the formula ΦEst we need.
In order to link the semantics with the structure

of the graph in the models of the formula, we intro-
duce Boolean variables attai,aj meaning that there is
an attack from ai to aj . The previous formulae are
generalized into :

ΦA,Est =
∧
ai∈A[ai ⇔ (

∧
aj∈A(attaj ,ai ⇒ ¬aj)]

∧(
∧
ak∈E ak)

and

ΦA,Est,s =
∧
ai∈A[ai ⇔ (

∧
aj∈A(attaj ,ai ⇒ ¬aj)]

∧(
∧
ak∈E ak) ∧ (

∧
al /∈E ¬al)

Clearly, propagating the truth values of the variables
attai,aj is enough to obtain the previous formula ΦEst,s
and the non-strict counterpart. This formula is the ba-
sis of our propositional encoding of extension enforce-
ment operators. It remains to introduce two functions
allowing to “decode” such a formula and get AFs :

— ProjAatt(Φ) = {m ∩ {attai,aj | ai, aj ∈ A}|m |=
Φ} is the sets of models of the formula Φ projec-
ted onto the attai,aj variables.

— argA(m) = 〈A,R〉 such that (ai, aj) ∈ R if and
only if attai,aj ∈ m, with m a model projec-
ted onto the attai,aj variables, is the AF cor-
responding to the assignment of the attai,aj va-
riables. Then, with M a set of such models,
argA(M) = {argA(m)|m ∈M}.

We also need an encoding for the structure of an AF
F = 〈A,R〉 :

structA′(F ) = (
∧

(ai,aj)∈R

attai,aj ) ∧ (
∧

(ai,aj)/∈R

¬attai,aj )

where ai, aj ∈ A ∪ A′. struct(F ) is a notation for
struct∅(F ).

Finally, δ : {F1, . . . , Fk} → Fj such that Fj ∈
{F1, . . . , Fk} is a tie-break rule which selects a single
AF from a set of AFs.

Now, every enforcement operator defined in the pre-
vious section can be encoded as a satisfaction problem
on a propositional formula. Indeed, by construction,
every model of the formula ΦA∪A

′,E
σ , when projected

onto the attai,aj variables, gives an AF which is a nor-
mal enforcement of E. We only need to state the right
constraints for ensuring that strong (resp. weak) en-
forcement operators are reached. In order to avoid the

introduction of new arguments and get argument-fixed
operators, considering the formula ΦA,Eσ as the enco-
ding proves enough. Similarly, the formulae ΦA∪A

′,E
σ,s

and ΦA,Eσ,s can be used to define the strict counterparts
of the enforcement operators.

Definition 8. For any AF F = 〈A,R〉, any set of
arguments E ⊆ A, any semantics σ, and X = σ or
X = σ, s,

F+N
XE = δ(argA∪A

′
(ProjA∪A

′

att (ΦA∪A
′,E

X ∧struct(F )))

F +N,W
X E = δ(argA∪A

′
(ProjA∪A

′

att (ΦA∪A
′,E

X

∧struct(F ) ∧ (
∧

(ai,aj)∈A′×A ¬attai,aj ))))

F+N,S
X E = δ(argA∪A

′
(ProjA∪A

′

att (ΦA∪A
′,E

X ∧struct(F )
∧(

∧
(ai,aj)∈A×A′ ¬attai,aj ))))

F +A
X E = δ(argA(ProjAatt(Φ

A,E
X )))

F +X E = δ(argA∪A
′
(ProjA∪A

′

att (ΦA∪A
′,E

X ))).

For any of these enforcement operators +, any AF
F and any set of arguments E, Enc(F + E) denotes
the corresponding propositional encoding. Using any
sat solver to find a model of Enc(F + E) and then
decoding the truth values of the attai,aj variables is a
way to determine an enforcement of E in F .

Minimal Change Enforcement as Pseudo-Boolean
Optimization. As explained previously, [1] considers
a notion of minimal change enforcement. In his work,
minimality refers to the minimality of the number of
attacks to be added to the AF when performing the
normal expansion. A possible way to ensure minimal
change is to define a particular tie-break rule δ for
selecting one of the resulting AFs which is minimal.
In order to take advantage of some available optimi-
zation software, an alternative approach is to encode
the minimality criterion via a pseudo-Boolean objec-
tive function :

newAtt(A∪A′) =
∑

(ai,aj)∈((A∪A′)×(A∪A′))\(A×A)

attai,aj

Of course, for strong and weak enforcement operators,
this representation of the objective function can be
simplified since the attai,aj variables corresponding to
the forbidden attacks are known to be false.

Minimal change for argument-fixed and general en-
forcement is not easy to be encoded directly using the
available Boolean variables. In order to get the expec-
ted encoding, we consider additional variables repre-
senting the state of the AF before the enforcement ;
one then minimizes the number of differences between
the truth values of these variables and the correspon-
ding ones in the new AF. Formally, for every pair of
arguments (ai, aj) ∈ (A ∪A′)× (A ∪A′), the Boolean
variable prevai,aj is true if and only if (ai, aj) ∈ R. So,



prevai,aj ⊕ attai,aj , where ⊕ is the usual exclusive-or
connective, gives the information about the change on
the attack (ai, aj) : if there was previously an attack
from ai to aj , and this attack is not present any longer
after the enforcement, prevai,aj ⊕ attai,aj is true. It is
also true if there was no attack before the enforcement,
and there is one after the enforcement. The encoding
of the structure of the AF F must thus be updated to
take account for the prevai,aj variables :

structprevA = (structA(F )|attai,aj
←prevai,aj

)

Once this is done, minimizing the differences on the
attack relation is equivalent to minimizing the objec-
tive function

attChange(A∪A′) =
∑

a∈(A∪A′),b∈(A∪A′)

prevai,aj⊕attai,aj

Clearly, this sum counts 1 for every attack (ai, aj) in
the output AF concerning an argument of A′, because
prevai,aj is always false if ai ∈ A′ or aj ∈ A′. So the
approach can be used in the case of general enforce-
ment.

We now sum up the definitions of the minimal
change versions of the enforcement operators :

Definition 9. For any AF F = 〈A,R〉, any set of
arguments E ⊆ A,

— if + is any enforcement operator among the nor-
mal, strong and weak enforcement operators (and
their strict counterparts), then enforcing the set
of arguments E in F is equivalent to satisfying
Enc(F + E) while minimizing newAtt(A ∪A′) ;

— if + is any enforcement operator among the
argument-fixed and general enforcement opera-
tors (and their strict counterparts), then enfor-
cing the set of arguments E in F is equivalent
to satisfying Enc(F + E) ∧ structprevA (F ) while
minimizing attChange(A ∪A′).

The formal setting suited to our optimization pro-
blem is pseudo-Boolean (PB) optimization, which is
an extension of Boolean satisfiability.

Definition 10. Given a set of Boolean variables V =
{x1, . . . , xn} and a mapping O : {0, 1}n 7→ R, a PB-
Opt problem P = (C = {c1, . . . , cm},O) on V is the
search for an assignment of every variable in V such
that the contraints

c1 : w1
1x1 + · · ·+ w1

nxn ≥ k1
...

...
cm : wm1 x1 + · · ·+ wmn xn ≥ km

are satisfied and the objective function O reaches its
optimal value.

In our case, the optimal value of the objective func-
tion is its minimal value. It is well-known that any
propositional formula can be turned into an equiva-
lent conjunctive normal form formula (CNF), and any
clause of a CNF formula can be rewritten as a PB
constraint : the clause x1 ∨ x2 ∨ · · · ∨ xn is satisfied if
and only if the PB constraint x1 + x2 + · · · + xn ≥ 1
is satisfied. Thus the optimization problem described
previously can be rewritten easily in the PB setting.

5 Experimental Results

In our experimental study, we focused on the mi-
nimal change enforcement problem. We implemented
the family of enforcement operators described in this
paper, using the well-known tool CPlex [14] as the un-
derlying optimization engine. For space reasons, we
present only the obtained results for three approaches :
the non-strict strong operator from [3], and both the
strict and non-strict versions of our argument-fixed en-
forcement operator. In each case, the semantics used
is the stable one.

The empirical protocol we considered is as follows.
We focused on some random AFs [12, 13]. Given a set
of n arguments, each attack between two arguments
is generated using a fixed probability p. In our expe-
riments n varies up to 500 arguments. For each n, the
graphs are divided into four families, corresponding
to four values of p. We used families of AFs from [12],
where p ∈ {0.4, 0.65, 0.9}. We also generated AFs with
a probability p = 0.1. It appears that this choice of p
does not change significantly the performances of the
translation-based enforcement algorithm, so the repor-
ted results are for p = 0.1 only.

We have computed the minimal change enforcement
of sets E of arguments in AFs F containing n argu-
ments with n ∈ {200, 300, 400, 500}. For each AF F
with n arguments, we considered sets E of arguments
to be enforced of cardinality m, m varying between
1 and 35

100n. For each pair of values (n,m), we gene-
rated 10 enforcement requests. 1 On Figure 3, the y-
coordinate of each point of the curves corresponds to
the average computation time over all the pairs (F,E)
which have been considered, where the number n of
arguments of F is reported on the x-axis.

The first interesting result stemming from our ex-
perimentations is that the enforcement is feasible in
practice ; as illustrated by Figure 3, it increases reaso-
nably with the number n of arguments, up to a mean
value of 13.76 seconds (std = 0.48) obtained for AFs
with 500 arguments, when strict argument-fixed enfor-
cement is considered (+-curve), and up to a mean of

1. We call ”enforcement request” the set E of arguments ex-
pected to be an extension.



16.61 seconds (std = 5.31) when strong enforcement is
considered (×-curve).

Figure 3 – Average time for strong (×-curve) and
strict argument-fixed (+-curve) enforcement, n va-
rying from 200 to 500

Then, we compared the three different approaches
on families of AFs with 200 arguments, letting the car-
dinality m of E to vary from 1 to 70. The aim of this
comparison is to study the impact of the cardinality of
E on the enforcement operators behaviors. Unsurpri-
singly, strong enforcement has a high failure rate, since
it is impossible as soon as the enforcement request is
not conflict-free in the input AF. With a probability
p for an attack to occur between two arguments, the
probability for a set of arguments E of cardinality m
to be conflict-free is (1−p)m. So, the greater the cardi-
nality of the enforcement request, the lower the proba-
bility for enforcement to be possible. In particular, in
our experiments strong enforcement always fails when
m > 20 ; clearly, the failure rate of strong enforcement
grows exponentially with m.

We compared the enforcement computing times for
the three approaches (see Figure 4). 2 For strong (×-
curve) and strict argument-fixed (+-curve) enforce-
ment, it appears that the time needed for computing
the result is almost always the same whatever the car-
dinality of the enforcement request and the probabi-
lity of attacks in the graph : between 2 and 3 seconds.
The cardinality has more influence on the non strict
argument-fixed enforcement operator, the smallest en-
forcement requests being harder to compute. When the
cardinality grows, the computing time decreases to a
few seconds.

Lastly, we have been interested in measuring the ef-
fort required in term of change (i.e., the number of
attacks to be added or deleted) for enforcing E in the
AF (see Figure 5). Clearly, the effort needed grows
up with the cardinality of the enforcement request for
strong (×-curve) and non strict argument-fixed enfor-
cement (4-curve). The curve for strong enforcement

2. When the enforcement is impossible, it corresponds to the
time needed by the algorithm to report the failure.

(a) Strong (×-curve) and strict argument-fixed (+-
curve) enforcement

(b) Non strict argument-fixed enforcement

Figure 4 – Average time, n = 200, m varying from 1
to 70

Figure 5 – Average change for strong (×-curve), strict
argument-fixed (+-curve) and non-strict argument-
fixed (4-curve) enforcement

stops much before the other ones (at 14 arguments) be-
cause of the high failure rate we mentioned. Until this
point, as one can observe, this curve is almost identi-
cal to the 4-curve. Strict argument-fixed enforcement
(+-curve) requires much more change on the attack
relation. As the enforced set is expected to be exactly
a stable extension, even a small set of arguments needs
the addition of many attacks to be enforced. For ins-
tance, with E = {ai}, it is required that ai attacks
each other argument to ensure that E is a stable ex-
tension. When the cardinality m of E grows up, the
efforts required by the strict and by the non strict ver-
sions of the argument-fixed operator come closer.



6 Conclusion

In this work, we have investigated the problem of
enforcing a set of arguments as an extension of an AF.
Our contribution is manyfold. First, we have shown
that existing approaches to enforcement may fail, even
when the set of arguments to be enforced is conflict-
free. To overcome this weakness, some new enforce-
ment methods for which the success of the process can
be guaranteed have been defined. For each of these
methods, we designed some Boolean encodings which
allow to take advantage of satisfaction and optimiza-
tion solvers for the enforcement purpose. We used a
well-known optimization tool to implement a library
of enforcement operators, and we experimented some
of them on a large class of benchmarks. The experi-
mentations showed the approach to be practical and
to scale up well.

This work opens several perspectives for further re-
search. As far as we know, none of the existing works
about change in argumentation frameworks has led
to the implementation of some (quite efficient) piece
of software. However, implementing practical argu-
mentation systems is currently a hot topic for the
community (in the same vein, see the organization
of a competition of argumentation solvers : http:

//argumentationcompetition.org/2015/). Indeed,
the design of our enforcement software comes from the
same will to make available argumentation reasoning
tools, which is nowadays a necessary step to push for-
ward the domain. So, we want to encode and imple-
ment enforcement operators for other semantics. Some
further extensions of the setting will be also envisio-
ned, like minimal change on arguments statuses or the
addition of integrity constraints.
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