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Abstract

We give in this paper new results on merging operators. Those operators aim to

define the goals (or beliefs) of an agents’ group after the individuals’ goals (be-

liefs). Using the logical framework of [17] we study the relationships between two
important sub-families of merging operators: majority operators and arbitration op-
erators. An open question was to know if those two families were disjoint or not.
We show that there are operators that belong simultaneously to the two families.
Furthermore, the new family introduced allows the user to choose the “consensual
level” he wants for his majority operator. We show at the end of this work some

relationships between logical belief merging operators and social choice rules.

Key words: Artificial intelligence, Group decisions and negotiations,
Knowledge-based systems, Belief merging
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Introduction

When several agents interact in order to achieve a common task, they have to
agree from time to time on what are the beliefs (or the goals) of the group.
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When some agents disagree on these common beliefs (goals), then one has to
enter in a negotiation process. The problem is that sometimes the negotiation
step does not rule out all the conflicts. Even in this case, the group has to
make a decision on what are its beliefs (goals) in order to carry on. So, in such
cases, an aggregation step is needed following the agents’ wishes.

So, formally, when a decision has to be made about beliefs (goals) of the
group, we can consider this as a two step process. First, a negotiation step
allows agents to try to convince undecided or opponents. Then, when all agents
have fixed opinions, an aggregation step states what are the common beliefs
(goals) of the group.

While the first step of this process has been extensively studied in multi-
agents works, the second one is usually only quickly quoted. Indeed, in most
of these works, when some conflict is not solved after the negotiation step, one
uses expeditious means to solve the conflicts. For example, by supposing the
existence of some oracle that decides what is the good solution, or by using
a preference relation among agents denoting the relative reliability of each
source. Even if these solutions often allow to rule out the conflicts, the basic
problem is not solved and there still are problems in some cases. For example,
it is not realistic to suppose that an oracle exists and always knows the good
answer. In the case of using a reliability ordering, there are cases where some
equally reliable agents disagree and we are back with our basic problem.

Let us illustrate the kind of problem addressed with an example :

Example 1 Consider three agents ¢, ¢y, and p; with the following beliefs
(this example is stated in terms of belief, but it can also be phrased in terms
of goals) :

¥ = {avb - C}, P = {0’7 b}, ¥ = {—|CL}.

What are the beliefs of the group A(@, g, U pg) ¢

We can see that taking the conjunction of all the belief bases is not adequate,
since it leads to an inconsistent belief base. Nevertheless, we can remark that
the inconsistency here is caused by a conflict on the truth of the variable a.
So it can prove sensible to listen to ¢, and to @, about b and c, and so to take
the formulas {b — ¢, b}, that have nothing to do with the contradiction, in the
result. We can then remark that the resulting belief base will know that c is
true, whereas none of the initial belief bases knows it. This kind of belief was
called implicit belief in [11].

A wvery cautious agent can stop here and keep those beliefs as the merged belief
base, since there is no agreement for the other formulas. But it can also prove
fully sensible to remark that two bases think that a is true and only one think
that a is false, and then to take a in the resulting belief base, giving {a,b — ¢, b}



as merged belief base.

The formal framework for performing this belief (goals) aggregation step, is
the use of belief merging operators [6,5,4,20,24,15]. In some related works,
different sets of logical properties which have to be satisfied by belief merging
operators, have been proposed [24,19,20,16,17]. Those logical characterizations
are used to define a taxonomy of merging operators, that allows to compare
different merging methods and to choose the method corresponding to the
behaviour desired in a particular application.

We will focus on the merging with integrity constraints characterization [17].
This characterization allows to make a distinction between two major sub-
classes of merging operators: majority operators and arbitration operators.
Majority operators solve conflicts using majority wishes, that is, they try
to satisfy the group as a whole. Whereas arbitration operators have a more
consensual behaviour, trying to satisfy each agent as far as possible.

So, these two sub-classes have very different conflict resolution policies. An
open question was to know if these two sub-classes were disjoint or not. Though
it seems natural to bet on a strict partition, we show in this paper that it is not
the case. That is, there exist operators that belong simultaneously to the two
sub-classes. We first give a trivial operator that straightforwardly satisfies this
condition. But the real question was to know if more complex operators can
satisfy it too. We show that, in the finite case, a whole family of (non-trivial)
operators are both arbitration and majority operators when the number of
sources is bounded (see Theorem 5). The new family of operators introduced,
generalization of a well known majority merging method [24,20,17], allows to
choose the “consensual level” that best fits the application needs.

The paper is organized as follows. After some preliminaries in section 2, we
give the definition of merging with integrity constraints operators in section 3,
arbitration and majority operators are also defined. Then, we give in section
4 some concrete operators in order to illustrate the differences of behaviour
between arbitration and majority operators. In section 5, we show that it is
possible for an operator to be both a majority and an arbitration operator.
In section 6 we show some links between logical merging operators and social
choice rules. We conclude in section 7 with some remarks and open questions.

2 Preliminaries

We consider a propositional language £ over a finite alphabet P of proposi-
tional atoms. An interpretation is a function from P to {0,1}. The set of all
the interpretations is denoted W. For example, if P = {a, b, ¢}, then we will



note {001} the interpretation (world) that maps both @ and b to 0 and ¢ to 1.
An interpretation [ is a model of a formula if and only if it makes it true in
the usual classical truth functional way.

Let ¢ be a formula, mod(y) denotes the set of models of ¢, ie. mod(y) =
{I e W | I o} Conversely, let M be a set of models, ¢y, denotes the
formula (up to logical equivalence) whose models are M.

A belief base ¢ is a finite set of propositional formulae, which are considered
conjunctively, i.e. ¢ = {aq,...,a,}, where all «; are propositional formulae,
is logically equivalent to ¢ = {a1 A ... A a,}. A belief base ¢, denotes the
beliefs of the agent 7. We will consider that all the belief bases are consistent,
i.e. that all agents have non-self-contradictory beliefs.

Let ¢y, ..., @, be n belief bases (not necessarily different), we call belief set
the multi-set ¥ consisting of those n belief bases: U = {¢,....¢,}. Let
U ={e,...,p,tand V' = {],..., ¢, } be two multi-sets, the union of the
two multi-sets is the set WLV = {p;, ..., ¢, ¢, ... ¢, We denote by A ¢ the
conjunction of formulae of ¢, i.e. if p = {ay,...,a,}, then Ap=a3 A ... A a.
As the belief bases are always considered conjunctively we will note ¢ for A ¢
in the following. We denote by A ¥ the conjunction of the belief bases of ¥,
ie. AU =@ A---Ap,. Note that, conversely to A ¢, A ¥ can be (and is often)
inconsistent. By abuse if ¢ is a belief base, ¢ will also denote the belief set
U = {p}. For a positive integer n we will denote ¥" the multi-set when W
appears n times.

Whereas the notion of logical equivalence for belief bases is obvious, there is
not one straightforward definition of equivalence of belief sets (multi-sets of
belief bases). We will consider the following one (see [23,24] for another one):

Definition 1 Let ¥, Wy be two belief sets. Wy and V4 are equivalent, noted
U, « Wy, iff there exists a bijection f from U, = {pl,..., 0.} to ¥, =
{2, ..., @} such that & f(p) < ¢.

A pre-order < on a set A is a reflexive and transitive relation on A. A pre-
order is total if VI,J € A, I < Jor J < I. Let < be a pre-order, we define
the corresponding strict order < as follows: I < J iff [ < J and J £ I, and
the corresponding equivalence relation ~ is defined as I ~ J iff I < J and
J <I. Wewrite [ e min(A,<)iff e AandVJ e A, [ < J.



3 DMerging with Integrity Constraints

Once these definitions are stated, we can define merging operators. A belief
base ¢ will denote the beliefs 1 of an agent. A belief set ¥ will denote a group
of agents.

The aim of merging operators is to define what are the beliefs of the group after
the individuals” beliefs and the constraints imposed by the system (physical
constraints, laws, etc.). Those constraints will be encoded in a belief base p.

So, a merging operator A is a function that maps a belief set ¥ and a be-
lief base p that denotes the integrity constraints of the system, to a belief
base A, (¥). Intuitively, A,(¥) denotes the beliefs of the group ¥ under the
integrity constraints of the system.

The logical properties that one could expect from a belief merging operator
are [17):

Definition 2 A is a merging with integrity constraints operator (IC merging
operator in short) if and only if it satisfies the following properties:

(IC0) A,(0) F
(IC1) If pis consistent, then A, (V) is consistent

(IC2) If AV is consistent with p, then A,(¥) =AY A p

(IC3) If Wy <« Uy and py < s, then AM(\Ifl) — Am(\lfg)

(IC4) If o pand ¢ =, then A (U )Nl L= A (Ud)ANPF L
(IC5) Ap(T) AAL(To) F AL (T LDy

(IC6) If A (U1) ANAL(Tg) F L, then A, (W LU,) B AL () AAL(TD2)
(107) AM(LIJ) N 2 - Aul/\u2(qj)

(IC8) If A (W) A po L, then A ypu (W) AL (F)

The intuitive meaning of the properties is the following: (IC0) assures that
the result of the merging satisfies the integrity constraints. (IC1) states that,
provided that the integrity constraints are consistent, the result of the merging
is always consistent. (IC2) states that if possible, the result of the merging is
simply the conjunction of the belief bases with the integrity constraints. (IC3)
is the principle of irrelevance of syntax, expressing the fact that the result of
the merging has to depend only on the expressed opinions and not on their
syntactical presentation. (IC4) is the fairness postulate; the point is that when
we merge two belief bases, merging operators must not give preference to one
of them. (IC5) expresses the following idea: if a group ¥; compromises on a
set of alternatives to which A belongs, and another group ¥, compromises on
another set of alternatives which contains A too, than A has to be in the chosen

L in the following, we will call “beliefs” the beliefs or the goals of an agent



alternatives if we join the two groups. (IC5) and (IC6) together state that if
you could find two subgroups which agree on at least one alternative, then the
result of the global merging will be exactly those alternatives the two groups
agree on. (IC7) and (IC8) state that the notion of closeness is well-behaved,
i.e. that an alternative that is preferred among the possible alternatives (p1),
will remain preferred if we restrict the possible choices (u1 A p2).

We will now define the two major sub-classes of merging operators: majority
and arbitration operators. An IC merging operator is a majority operator if
it satisfies the following property:

(Maj) 3n A, (U, UUE) F AL (D)

This postulate expresses the fact that if an opinion has a large audience, it will
be the opinion of the group. So, majority operators try to satisfy the group as
a whole. On the other hand, arbitration operators try to satisfy each agent as
far as possible. An IC merging operator is an arbitration operator if it satisfies
the following property:

Aul (901) « A,U«Q (902)

Dy (01 U pp) = (1 = =)
(AI‘b) 8 : = A,U«l\/NQ (901 L 902) = Aul (901)

1 ¥ pio

pa ¥

This postulate ensures that this is the median possible choices that are pre-
ferred. It is much more intuitive when it is expressed in terms of syncretic
assignment (cf condition 8 below). We will illustrate this on the following
scenario:

Example 2 Tom and David missed the soccer match yesterday between reds
and yellows. So they dont know the result of the match. Tom listened in the
morning that reds made a very good match. So he thinks that a win of reds
is more plausible than a draw and that a draw is more reliable than a win of
yellows. David was told that after that match yellows have now a lot of chances
of winning the championship. From this information he infers that yellows won
the match, or otherwise at least took a draw. Confronting their points of view,
Tom and David agree on the fact that the two teams are of the same strength,
and that they had the same chances of winning the match. What arbitration
demand is that, with those informations, Tom and David have to agree that a
draw between the two teams is the more plausible result.

Now we will give a representation theorem for these operators in terms of pre-
orders on interpretations. It provides a more constructive definition for these
operators.



Definition 3 A syncretic assignment is a function mapping each belief set
¥ to a total pre-order <y over interpretations such that for any belief sets
U, Uy, Uy and for any belief bases p;, oy

IfIT =Y and J =V, then [ ~y J
If I =V and J =V, then I <g J

If Oy = Uy, then <g¢,=<y,

ViE@ 3T Ew J <ot

IfI1 <y, J and I <y, J, then I <y, 1w, J
IfI <y, J and I <y, J, then I <y, v, J

S G Lo =~

A majority syncretic assignment is a syncretic assignment which satisfies the
following:

7. 1f I <g, J, then In I <y, p,» J

A fair syncretic assignment is a syncretic assignment which satisfies the fol-
lowing:

<, J
8 I<y J =1 <¢up, J

’
J =1 Upy J

One can note that, conversely to most domains, where people try to maximize
something (something is often a utility), here, and in all the belief revision
area (see e.g. [1,9,10,12]) people try to minimize the differences, so I < J will
mean that [ is at least as good as J. Let us see what is the meaning of the
previous conditions:

The two first conditions ensure that the models of the belief set (if any) are
the more plausible interpretations for the pre-order associated to the belief
set. The third condition states that two equivalent belief sets have the same
associated pre-orders. Those three conditions are very close to the ones existing
in belief revision for faithful assignments [12]. The fourth condition states that,
when merging two belief bases, for each model of the first one, there is a model
of the second one that is at least as good as the first one. It ensures that the
two belief bases are given the same consideration. The fifth condition says that
if an interpretation [ is at least as plausible as an interpretation J for a belief
set Uy and if I is at least as plausible as J for a belief set W5, then if one joins
the two belief sets, I will still be at least as plausible as J. The sixth condition
strengthens the previous condition by saying that if an interpretation I is at
least as plausible as an interpretation J for a belief set ¥, and if I is strictly
more plausible than J for a belief set Wy, then if one joins the two belief sets,
then I will be strictly more plausible than J. These two previous conditions are



closely related to Pareto conditions in Social Choice Theory [2,14] (see section
6). Condition 7 says that if an interpretation [/ is strictly more plausible than
an interpretation J for a belief set Wy, then there is a quorum n of repetitions
of the belief set from which [ will be more plausible than J for the larger
belief set ¥, LIW,". This condition seems to be the weakest form of “majority”
condition one could state. Condition 8 states that if an interpretation I is more
plausible than an interpretation J for a belief base ¢,, if I is more plausible
than J' for another base ¢,, and if J and J’ are equally plausible for the belief
set ¢, L ¢y, then I has to be more plausible than J and J’ for ¢, U ¢, (see
Example 2 for an intuitive explanation).

Now the following representation theorem shows that defining a merging oper-
ator satisfying all the wanted properties is the same as considering some kind
of preference relation over interpretations induced by the group (belief set).

Theorem 1 An operator is an IC merging operator (respectively IC majority
merging operator or 1C arbitration operator) if and only if there exists a syn-
cretic assignment (respectively magjority syncretic assignment or fair syncretic
assignment) that maps each belief set U to a total pre-order <y such that

mod(A,(¥)) = min(mod(u), <g).
The proof is in the Appendix.

This theorem shows that a merging operator corresponds to a family of pre-
orders. In fact, a lot of operators are defined directly from those pre-orders,
using a function that maps each belief set to a pre-order. It is the case with
all distance based operators. We give some of them in the following section.

4 Some IC merging operators

We give in this section the definitions of three families of operators. All these
operators are based on a distance between interpretations that induces the pre-
order associated to each belief set. We define also a new family of operators,
that generalizes the A%* family.

Let d be a distance? between interpretations, that is, a function d : W x W
IN such that:

e d(I,J)=d(J,I), and
o d(I,J)=0iff I =J.

2 Remark that the triangular inequality d(I, J) < d(I,J’)+d(J', J) is not required,
hence, strictly speaking, d is only a pseudo-distance.



For example, one can use the Dalal distance [7], noted dy, that is the Hamming
distance between two interpretations (the number of propositional letters on
which the two interpretations differ). We will use this distance in the examples
because it is a well known, easy to define, distance, but one has to keep in
mind that it is not the sole possible choice and that the logical properties do
not depend on the chosen distance.

This distance between interpretations induces naturally a distance between
an interpretation and a belief base as follows:
d(I, ) = min,,d(/1,J)

The difference between the four families of operators we define next lie in the
way that this distance between an interpretation and a belief base is used in
order to define the distance between an interpretation and the belief set. So,
it is this aggregation step of the individual preferences (distances) in a global
one that makes behaviour differences between the families.

The three families stated next are well known, the first one, the A% family
has been defined in [23,24,18]:

Definition 4 Let W be a belief set, I be an interpretation and d be a distance
between interpretations. The max distance is defined by:

dd,]\lam<la \Ij) = max d<Iu ()0)

eV

This distance induces a pre-order on interpretations:

T Sémax J Zﬁ dd,maa:(lv lIJ) S dd,max(J, \If)

And the corresponding merging operator is defined by:

mod( M (W) = min(mod(y), <4™)

The A%* family has been defined in [24,20,17]:

Definition 5 Let ¥ be a belief set, I be an interpretation and d be a distance
between interpretations. The ¥ distance is defined by:

dd,E(Iv \11) = Z d([7 90)
pew

This distance induces a pre-order on interpretations:

I<8 Jiffdgs(I,9) < dgs(J,¥)



And the corresponding merging operator is defined by:

mod(AZ’E(\P)) — min(mod(p), <&*)

The A®EMar family has been defined in [16,17]:

Definition 6 Let U be a belief set, I be an interpretation and d be a distance
between interpretations. The GMax distance is defined by:

Suppose W = {¢p, ..., }. For each interpretation I we build the list (df...dL)
of distances between this interpretation and the n belief bases in ¥, i.e. d]I- =
d(1,¢;). Let dggrias(I, W) be the list obtained from (df ...d}) by sorting it in
descending order 3 .

This distance induces a pre-order on interpretations:

I SflI/’GMaz J Zﬁ. dd,Gl\l(m(Iy \I{) < dd,GMax(J, \If)

And the corresponding merging operator is defined by:

mod( A1 (W) = min(mod(u), <)

We will give an example showing the behaviour of these families of operators
at the end of this section. For the moment, let us see what are the logical
properties of those operators.

Theorem 2 A4Ma operators satisfy (IC1-1C5), (1C7), (IC8) and (Arb).
NAYEMaz operators are arbitration operators. A% operators are majority op-
erators.

See [18] for the proofs. Tt is possible to generalize the A®* family in the
following A%*" operators:

Definition 7 dgsn(I,¥) = {/X g d(I,@)". Then the corresponding pre-
order 1s:

1< T iff dgsn(I, ) < dgsn(J, W)
And the A%=" operator is defined by:

mod(A%™ (W) = min(mod(y), <5*")

3 The dgares distance do not strictly obey to the requirements of a distance, since
it does not give numbers. In fact there is a natural mapping: choose a sufficiently
big number N (where sufficiently means strictly bigger than all possible distances
d(1,y;), it is always possible since we work in the finite case), and then define
dqg,GMaz = ijl_.n(d{j * N"’jH), where i; denotes the jth element in the sorted
list.

10



It is easy to show then that:
Theorem 3 AY™" operators are majority operators.
Now we illustrate the behaviour of these families on an example:

Example 3 At a meeting of a block of flats co-owners, the chairman proposes
for the coming year the construction of a swimming-pool, a tennis-court and a
private-car-park. But if two of these three items are build, the rent will increase
significantly. We will denote by S, T, P respectively the construction of the
swimming-pool, the tennis-court and the private-car-park. We will denote [
the rent increase. The chairman outlines that building two items or more will
have an important impact on the rent: p = (SAT)V (SAP)V(TAP)) — 1

There are four co-owners ¥ = {¢, LI, Llps Ll }. Two of the co-owners want
to build the three items and dont care about the rent increase: p, = @, =
SANT NP. The third one thinks that building any item will cause at some time
an increase of the rent and wants to pay the lowest rent so he is opposed to
any construction: @ = S N =T AN—=P N —I. The last one thinks that the flat
really needs a tennis-court and a private-car-park but doesn’t want a high rent
increase: @, =T NP AN—l.

The propositional letters S, T, P, I will be considered in that order for the val-
uations: mod(p) = W\ {(0,1,1,0),(1,0,1,0),(1,1,0,0), (1,1,1,0)}

mod(p;) = {(1,1,1,1),(1,1,1,0)} mod(p,) = {(1,1,1,1),(1,1,1,0)}
mOd(SOI%) - {(0* Oa 07 0)} mOd((pll) - {(1* 1v 1: 0)7 (07 17 17 0)}
We sum up the calculations in table 1. The lines shadowed correspond to the
interpretations rejected by the integrity constraints. Thus the result has to be
found among the interpretations that are not shadowed.

With the A\%MeT operator, the minimum distance is 2 and the chosen inter-
pretations are mod(AZH’Maw( U)) = {(0,0,1,0), (0,0,1,1), (0,1,0,0), (0, 1,0,
1), (1,0,0,0)}. So, the decision that best fits the group wishes is then not to
increase the rent and to build one of the three items, or to increase the rent
and build either the tennis court or the private car-park.

We can see on that example why A operators are not IC merging oper-
ators. For example, the two interpretations (0,0,1,0) and (0,0,1,1) are cho-
sen by AdmMar although (0,0,1,0) is better for ps and @4 than (0,0, 1,1),
whereas these two interpretations are equally preferred by w1 and py. It seems
then natural to globally prefer (0,0, 1,0) to (0,0,1,1).

The A%GMaz family has been built with that idea of being more selective than
the AYMa family by taking this kind of requirements into account. With the
ATEMaT operator the result is mod(Adm Mo (W) = {(0,0,1,0), (0,1,0,0)},

so the decision in this case will be to build either the tennis court or the car-

11



W w2 g @4 distpax disty  distgmax  distse
(0,0,0,0) 3 3 0 2 3 8 (3,3,2,0) 22
(0,0,0,1) 3 3 1 3 3 10 (3,3,3,1) 28
(0,0,1,0)0 2 2 1 1 2 6 (2,2,1,1) 10
(0,0,1,1) 2 2 2 2 2 8 (2,2,2,2) 16
(0,1,0,00 2 2 1 1 2 6 (2,2,1,1) 10
(0,1,0,1) 2 2 2 2 2 8 (2,2,2,2) 16
(0,1,1,0) 1 1 2 0 2 4 (2,1,1,0) 6
(0,1,1,1) 1 1 3 1 3 6 (3,1,1,1) 12
(1,0,0,0) 2 2 1 2 2 7 (2,2,2,1) 13
(1,0,0,1) 2 2 2 3 3 9 (3,2,2,2) 21
(1,0,1,0) 1 1 2 1 2 5 (2,1,1,1) 7
(1,0,1,1) 1 1 3 2 3 7 (3,2,1,1) 15
(1,1,0,00 1 1 2 1 2 5 (2,1,1,1) 7
(1,1,0,1) 1 1 3 2 3 7 (3,2,1,1) 15
(1,1,1,0)0 0 0 3 0 3 3 (3,0,0,0) 9
(1,1,1,1) o0 0 4 1 4 5 (4,1,0,0) 17
Table 1

Distances
park but without increasing the rent.

But if one chooses A= for solving the conflict according to majority wishes,
the result is then mod(AM=(W)) = {(1,1,1,1)}, and the decision will be to
build the three items and to increase the rent.

Majority voting, a la A%*, often seems more democratic than the other meth-
ods but, for example in this case, this only works if ¢, accepts to obey to this
decision that is strictly opposed to his opinion. If ¢, decides not to pay the
rent increase, the works will perhaps not carry on because of a lack of money.
So if a decision requires the approval of all the members a more consensual,
arbitration like, method seems more adequate. These kinds of issues are highly
related with social choice theory [2,14,21].

On this example, one can illustrate the use of the A*" family, since with the
operator A%E? we can see that the result is the same as with the AdmGMaz
operator. The reason is that the power used in the definition of the operator
allows to be more consensual while keeping the majority behaviour.

12



5 Arbitration versus Majority

We show in this section that some operators are both majority and arbitration
operators. We first show this with an (over)simple operator. Then, we show
that a whole family of full sense operators (the A%*" operators) satisfies also
this condition when the cardinality of the belief set is bounded.

5.1  Drastic Distance

The simplest distance between interpretations one can define is the following
one:

0if I =J
dp(l,J) =

1 otherwise

The induced distance between an interpretation and a belief base is then also
0 or 1 if the interpretation respectively satisfies or not the belief base.

It is then easy to show that the operators given with this distance by the two
families A%EMa and A%* are the same. And we have the following result:

Theorem 4 The operator N\P:* = Adp.GMaz sqtisfies (1C0)-(1C8), (Maj)
and (Arb).

Once stated that A* = Adp.GMaz the yesult is a direct consequence of
theorem 2.

This easy to state result is not very surprising. But the real question was to
know if more elaborate distances can lead to such “collision” between majority
and arbitration classes. We answer this question in the next section.

5.2 Graphical study

We show in this section that some A%*" operators are simultaneously majority
and arbitration operators. For an easy explanation, we will use a graphical
construction showing the behaviour of the operators “at work”. In order to
have a 2D representation we will restrict ourselves to two belief bases (All the
results of this section do not depend on the chosen distance d).

The graphical construction is simple. We put the interpretations in the plane
with their distance to the ¢, base as abscissa and with their distance to ¢,
as ordinate. Then, the aim of the merging is to find the set of interpretations

13



that are the closest to the (0,0) point. The differences between the operators
lie in the chosen distance and in this definition of “closeness”.

3‘ /A d,Mazx
2
¥1
1
0 1 2 %

P2
Fig. 1. Merging of two belief bases

On figure 1, the curves represent the interpretations that are at a distance
3 from the belief set {¢;,p,} according to the operators A®Maer  AdE and
ABE? AdMaz ig represented by a square of size a, AT by the line z = a — v,
and A%T? by a circle arc of radius a, where a denotes the distance from the
belief set. The A“GMaz gherator is hardly representable in this way, but one
can figure out a curve that follows the one of A%M hut prefers the inter-
pretations that are closest to the axes. We will see soon how to approximate
graphically the A%GMaz gperator. Then the result of the merging, using these
three operators, is the set of interpretations which the respective curves meet
first when a varies from 0 to oco.

In particular, on this example, the result for A%Ma® and A%®? is the interpre-
tation placed in (2,2). And for A%® the result is the interpretations placed in
(3,0) and (0,3). In the same way, one can rebuild the pre-orders < bMax - 2

and §5’22 when one considers the order in which the interpretations are met
by the curves (when a varies from 0 to o).

On the figure, we can see the problem of A®M: it does not make any dis-
tinction between the (3,0) and (3,3) points for example. It is why A%Maz g
not an IC merging operator.

On the other side, A%* does not make any distinction on the sources of dis-
agreements. Indeed, the distance from an interpretation to the belief set can
be viewed as a measure of the disagreement induced by this interpretation on
the belief set. Hence A%* is absolutely not consensual, since it allows to choose
interpretations that satisfy completely one of the two bases and that dissatisfy
completely the other one (the one placed in (0,3) for example), whereas there
are more consensual choices (an interpretation placed in (2,1) or in (2,2) for
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example). This behaviour may seem normal for a majority operator. But it is
not systematic. Indeed, the operators A%*" with n > 1 prefer more consensual
choices, that is the ones closest to the line x = y. So, an interpretation placed
in (2,2) would be preferred to one placed in (3,0).

¥1

0 1 2 3
2
Fig. 2. The A%*" family

We should stress that the operator A4S is a particular operator of the A%="
class, since it uses the Euclidean distance as distance between an interpretation
and the belief set. This gives a spherical distance, that is very natural and
obeys to majority wishes but without the excesses of A%,

Furthermore, one can see on figure 2 that, when one increases the value of n,
the curve of A%*" comes near to the one of A%M This fact is the point
leading, in a heuristic way, to think that one can take the curve of A%*" as an
approximation of the one of A%“Ma for 4 sufficiently big n. More formally,
we have the following result (see the proof in Appendix):

Theorem 5 Let k be a given positive integer. Then for any belief set W such
that the number of belief bases in W is less than k , there exists ng such that
for any n > ng

Az,E” (\I') — AZ,GJ\J(L:E(\IJ)

A corollary of the previous theorem’s proof is that one can prove that for any
integer n > 1 the operators A%*" and A»EMaz are different. More precisely
we have the following result:

Theorem 6 For all integers n > 1 there exists a belief set ¥ such that

AZ’En(\I!) 7& AZ,GM(H(\IJ)

These results are a partial answer to the partition between majority and arbi-
tration operators. Since, if we restrict the domain of A%®*" operators to belief
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sets of a fixed size, the A%*" operators (for all n greater than a given ng)
have the same behavior as A“Maz therefore they are both arbitration and
majority operators. So, the intersection between these two classes is, in the
bounded case, non empty.

However, the theorems 5 and 6 together say that the identification between
AT and ABEMaz cannot be done when the size of the belief set is not
bounded. Thus, the problem of finding a non-trivial operator having the be-
havior of majority and arbitration operators at the same time remains un-
solved.

6 Logic-Based Merging and Social Choice Theory

In economy, the problem of the aggregation of individual preferences into
a collective preference is prominent. The comparative study of the different
voting systems has been dealt with for a long time [8,22]. It is easy to show
that the result of an election depends on the voting system as much as on
individual preferences, that is to say that with the same individual preferences
the winner of the election can be chosen (or at least changed) by changing the
voting system. Therefore it is important to be able to answer a certain number
of questions. How can the different voting systems be characterized? What is
a good voting system? How can we say that a system is better than another
one? These are (some of) the goals of Social Choice Theory [2,14,3].

Thanks to the representation theorem (theorem 1) we can highlight tight links
between logic-based merging and preferences aggregation methods. Thus, it
will be interesting to see the similarities and the differences between them.

6.1 Arrow’s Impossibility Theorem

A very important result in Social Choice Theory is Arrow’s Impossibility the-
orem [2,13|. This theorem states that it is not possible to define a “good”
aggregation method. More exactly, Arrow gives a set of five very intuitive
properties which all seem necessary for an aggregation method, and then he
shows that it is not possible to satisfy all of these properties.

To state Arrow’s theorem we first need to give some definitions :

Let X be a non-empty set. Elements of X are called alternatives. These al-
ternatives have to be exclusive and we will suppose that they are a complete
description of the world.
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Usually, when one has to make a choice, all the possible alternatives are not
available. Some constraints come and limit the number of those alternatives
to a subset v of X. Such a set is called an agenda.

An (individual) preference relation is a total pre-order <; over X that denotes
the preferences of the individual ¢ over the set of alternatives X.

We will call profile a (multi-)set of individual preference relations.

A choice function C' is a function that chooses among the alternatives of an
agenda v a set of (best) alternatives C'(v) such that C'(v) # ) and C'(v) C v.

A social choice rule is a function f such that for each profile u, f(u) = C,
where C'is a choice function (cf figure 3). In other words, a social choice rule
is a function that associates to each set of individual preferences (a profile),
the corresponding choice function.

agenda
v
social choice choice
profile rule _ function

chosen alternatives

Cyu(v)
Fig. 3. Social Choice Rule

The aim of Social Choice Theory is to study these social choice rules. An
easy combinatorial calculus shows that it is not possible to study social choice
rules individually, as shown in example 4 [14]. It is why people rather study
classes of rules that satisfy some given properties. The same idea justifies the
axiomatic approach for non-monotonic inference relations, belief revision, and
knowledge base merging.

Example 4 Consider a small example with only five individuals and four
alternatives. So, there are 75 preference relations on those four alternatives.
That gives 75° > 10° possible profiles. On the other hand, four alternatives give
15 % 74 % 35 = 26 254935 possible choice functions. So the number of possible
social choice rules is :

(15 % 7* % 39)™ > 101"

One can argue that such a number denotes only the number of social choice
rules mathematically conceivable but that the number of “reasonable” ones is
much smaller. For example the social choice rule that chooses systematically
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the alternative preferred for <;, without taking the rest of the profile into
account (that is the rule that listens only to the first individual), is one of
these rules. But it is rarely used in real applications !

So, it is possible to reduce significantly the number of desirable social choice
rules by considering only those that fit a set of “intuitive” rationality criteria.
We will now enumerate some of these criteria.

The standard domain constraint :

There are at least three alternatives in X

There are at least three individuals

A social choice rule has as domain the set of all profiles definable from the
preference relations over X.

Any choice function result of the social choice rule has as domain all possible
agendas.

This constraint is very natural. The two first points aim only to drop the
simplest cases. So the constraint states simply that the social choice rule has
to give a result for all given profile and agenda.

The strong Pareto condition :

Let u be a profile, and let C, = f(u) be the choice function associated to u
by the social choice rule f. If all the individuals of u consider an alternative
x at least as good as an alternative y, and if at least one individual prefers
strictly = to y, then if z is an available alternative (x € v), then y will not

be chosen (y ¢ C,(v)).

This condition allows to drop away an alternative y from the final choice if
there exists another alternative that no one considers less preferable than y
and that at least one individual finds strictly preferable to y.

The independence of irrelevant alternatives :

If the restrictions of two profiles u and v’ to an agenda v are identical, then
the choices made from this agenda will be the same : C,(v) = Cy/(v)

This property ensures that when one has to make a choice among a set of
available alternatives v, this choice will be made only from the preferences on
those alternatives, and not from non-available (irrelevant) ones. For example,
suppose that at an election we have the choice between three candidates :
Garry, Anatoly and Bobby. Just before the election Bobby says that he resigns,
then it seems reasonable to make the decision by considering only the relative
preferences between Garry and Anatoly.
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The property of having transitive explanations :

A choice function C has transitive explanations if there is a pre-order <&
such that C(v) = {x € v: 2z <¢c y for all y € v}.

A social choice rule has transitive explanations if all the choice functions
that it gives have transitive explanations.

This property asks for some kind of rationality for collective preferences. For
example, if when the two available alternatives are v = {z,y}, then C(v) =
{z}, and if when the two alternatives are v' = {y, z}, then C(v") = {y}, then
if we can choose among the whole set of alternatives v” = {z,y, z}, then z
will be chosen, that is, C'(v") = {z}. This seems reasonable since the profile
(i.e. the individual preferences) do not change.

The property of absence of dictator :

A social choice rule has no dictator if there is no individual 7 such that
Va,y € vif x <; y then y & C,(v).

This property says that there is no one that has full power. This rule is hardly
debatable for a social choice rule.

We have enumerated a set of properties that characterized “sensible” social
choice rules. Then, one could expect that the number of social choice rules has
significantly decreased. The “surprising” result stated in the Arrow’s impos-
sibility theorem is that there is no social choice rule that satisfies those five
properties [2] :

Theorem 7 There is no social choice rule that satisfies all of the following
properties :

the standard domain constraint

the strong Pareto condition

the independence of irrelevant alternatives
the property of having transitive explanations
the absence of dictator

This result is interesting since, taken individually, all these conditions seem
acceptable, and even necessary, for a social choice rule.

This theorem is one of the most important results in social choice theory. Since
then, other impossibility theorems have been proved (cf e.g. [25]).
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6.2 Is merging impossible ?

We see in this section which of the previous properties are satisfied by merging
operators, and why some of them are not.

First we explain the correspondence between merging operators and social
choice theory. This correspondence is based on the representation theorem of
merging operators in terms of family of pre-orders on interpretations.

An alternative is an interpretation (complete and exclusive description of the
world).

The individuals ¢ for merging operators are represented by their knowledge
base ;. Given a merging operator (i.e. a social choice rule), the knowledge
base ¢; corresponds to a pre-order (via the representation theorem) <. So
this pre-order will take place of individual preference relation.

A profile is a set of individual preference relations, so it corresponds to a
knowledge set.

An agenda is a subset of alternatives, that is, a base p that represents the
integrity constraints for the merging.

The social choice rules we are going to consider are merging operators. They
aggregate individual preference relations in a collective one. The chosen alter-
natives by the choice function are the minimum alternatives for this collective
preference relation. More exactly, the corresponding choice functions are the
functions f(u) = min(v, <,) where the pre-order <, is given by the social
choice rule (the merging operator).

The correspondence between social choice theory and logic-based merging op-
erators is summarized in the figure 4.

Belief Merging Social Choice Theory

individual Vi 1
individual preferences <o <

profile U ={<,,. ... <u.} u={<,...,<,}
agenda 14 v

choice function <y Ch
chosen alternatives AL (¥) = min(p, <y) Cu(v)

Fig. 4. Merging operators vs Social Choice Theory
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We can now investigate the different properties of social choice rules :

The standard domain constraint is not satisfied. Merging operators give a
result for any given knowledge set and for any integrity constraints knowledge
base. So it seems to fit the requirements. But one has to recall that the pre-
order (individual preferences) <, associated to a belief base (individual) 7 is
not chosen by the individual 7, but extrapolated from the belief base ; by
the merging operator. Even if any pre-order can be obtained as input by using
an adequate merging operator, some profiles are forbidden by requirements
given by the syncretic assignments. For example, whatever merging operator is
used, one can’t have two pre-orders in the same profile with the same minimal

interpretations, and with differences for the non-minimal ones.

The strong Pareto condition is satisfied. This is mainly ensured by postulates
(IC5) and (IC6) of merging operators.

The property of having transitive explanation is trivially satisfied since the
“social choice rule” defined by a merging operator gives as result a pre-order
representing the collective preferences. This pre-order is a transitive explana-
tion relation for the choice function.

The property of absence of dictator is satisfied. It is mainly ensured by the
fairness postulate (1C4).

The independence of irrelevant alternatives is not satisfied. It is easy to see,
for example, that the A%* family operators do not satisfy this property since
the “score” of each interpretation is computed by taking into account all the
interpretations (including “irrelevant” ones). We will illustrate this point on
the example 5.

Example 5 Suppose that we work with four interpretations Iy = {00}, I, =
{01}, I, = {10} and I3 = {11}, and consider three knowledge bases 1, po and
w3 such that mod(p1) = {Ip}, mod(yps) = {I1, I3}, and mod(p3) = {1y, I2}.
With the AY* operator using the Dalal distance we get the pre-orders of figure
5 (An interpretation I is in a lower level than the interpretation J iff I < J).

A
01 10 00 10 11 01
e00 01 11 00 10

(a) ¥1 (b) ¢2 (c) @3

Fig. 5. Pre-orders

. 4,3 4,5
If we compute the twq mergings Ay py (91lps) = Pt} qnd Ay 1y (P3Lp2) =
Dr10,153 We get two different results whereas the restriction of the two profiles
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01 U o and @3 U s to the agenda {1y, I3} are identical since 1y <,, I,
Iy < 1, and Iy <2 1.

We get two different results for the two mergings because in o, the preference
for Iy over Iy is stronger than in 3.

This independence of irrelevant alternatives is mainly motivated by the fact
that in economy, one generally can not compare individual utilities. Utility
can be roughly seen as the “score” that an individual gives to an alternative,
so it denotes the attractiveness of an alternative. But it is very difficult to
work with such a subjective notion. So it seems reasonable to limit oneself
to an ordinal scale (a pre-order). Arrow illustrates this idea in [2] by quoting
Bentham :

“’Tis in vain to talk of adding quantities which after the addition will
continue distinct as they were before, one man’s happiness will never be
another man’s happiness : a gain to one man is no gain to another : you
might as well pretend to add 20 apples to 20 pears...”

But, in the case of merging operators, this individual utility is not given a
priori, but (objectively) computed by the operator. So, since we have a same
scale for all individuals, there is no more a point in forbidding to compare these
utilities. So merging operators escape to Arrow’s impossibility theorem since
they compare individual utilities. This is due to the fact that these “utilities”
are computed uniformly by the operator when it associates a pre-order to
each belief base (which implies, by the way, that all profiles are not possible
as input). So merging operators do not satisfy the condition of independence of
irrelevant alternatives and the standard domain constraint since the pre-orders
(individual preferences) of each source (individual) is “objectively” given by
the merging operator (and not “subjectively” chosen by the individual), which
allows to compare the obtained “utilities”.

7 Conclusion

We have explored in this paper the frontier between two important subclasses
of merging operators: arbitration and majority operators. The former aiming
to prefer consensual choices, whereas the later referring to majority wishes.

An open question until now was to now if there was an intersection between
these two classes or not. We have shown that it is the case for some trivial
operator, and that it is possible for a non trivial operator to be both an
arbitration and a majority operator if we bound the size of the belief sets.
Those operators seem to be a good compromise between democratic ideas
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lying in majority operators and consensual behaviour of arbitration operators.

We have introduced, in particular, a new family of operators (the A%*" fam-
ily), that allows to choose the “consensual level” of the majority operator
according to the particular application needs.

An open question that remains is to know if there are non trivial operators
belonging simultaneously to the two classes and in case of positive answer if it
is possible to characterize exactly when the operators are in the two classes.

Finally it might be interesting to exploit the links given in section 6 between
logical merging and social choice rules to give compact logical representations
for social choice rules.
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Appendix : Proofs

Proof of Theorem 1  We first give the proof for IC merging operators,
and then the ones for majority and arbitration operators.

(Only if part) Let A be an operator satisfying postulates (IC0-IC8). Let us
define a syncretic assignment as follows: for each belief set ¥ we define a total
pre-order <y by putting VI, J € W [ <y J if and only if [ = A ).
First we show that <g is a total pre-order:

Totality: V1, J € W, from (IC1) Ay, (V) # 0 and from (IC0) A
©g1.ys SO I <y JorJ <yl

Reflexivity: From (IC0) and (IC1) we have that A, (V) = ¢;. So I <y 1.
Transitivity: Assume that I <y J and J <y L and suppose towards a contra-
diction that I £y L. So by definition and from (IC0) and (IC1), A, | (¥) «
¢ry- By (IC7) we find that A, (V) A gy B Dg,, (P). We consider
two cases:

Case 1: Dy, (V) A gy py is consistent then Ay (W) Ay < @y
Thus we have that I [~ A, (9). But by (IC1) Ay, (V) # 0, s0 by (IC0)
we have mod(A,,, (V) = {J, L} or mod(Dy,, , ,(¥)) = {L}. In the first
case by (IC7) and (IC8) we conclude that Ay (V) A gy < Dy, (P)
and so I = Ay (V). Contradiction. In the second case by (IC7) and (IC8)
A (U)Apprry < A (V) but J £ A (W) so J £ A (0).

LP{I,J}(

P{1,J} (KIJ) -

${I1,J,L} P{J,L} ${I1,J,L} P{J,L}
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Contradiction.

Case 2: Dy, (W) A @grpy is not consistent, so Ay
Aw{uL}(KD) Ny = ey By (IC7) and (ICS) it follows that A
¢¢sy that is by definition J <y I. Contradiction.

(V) = ¢¢sy- Then
SO{I,J}(\IJ) -
Now we show that mod(A,(V)) = min(mod(p), <w). For the first inclusion
mod(A,(¥)) € min(mod(u), <y¢) assume that I = A,(¥) and suppose to-
wards a contradiction that [ is not in min(mod(p), <g). So we can find a
JEpst.J <g I thenl (= A, (V). Since A, (V) Agy, 4y is consistent from
(IC7) and (IC8) we have A, (¥ )/\90{1- 5y Dgy (W) But I [E A, () so
I = A, (¥). Contradiction.
For the other inclusion mod(A,(¥)) 2 min(mod(u), <v), suppose that I €
min(mod( ), <w). We want to show that I = A,(¥). Since I € min(mod(u),
<y), then V.J F pl <y Jandso I Dy, (V). Since AL(Y) A gy gy is
consistent from (IC7) and (IC8) we have A,(T) A o e Aw{u}(\lf). But
I'E Dy, ,(U)so ] = AL (0).
It remains to verify the conditions of the syncretic assignment:

(1) It I = V¥ and J |= ¥, then by (IC2) we have Ay (V) = ¢ 5, 80
1 <y J and J <y I by definition and then [ ~y J.

(2) If I =V and J W~ W, then by (IC2) A V) = ¢, 50 I <g J and
J f\p ], re. I <g J.

(3) Straightforward from (1C3)

(4) We want to show that VI |= ¢ 3J = ¢ J <,y I. First we show that
1] E Apvgy(eU ) A It not we have Ay (pU ) Ay F L, from
(ICO) and (IC1) we have that Ay (U ¢) F ¢ now by (IC4) we get
that Ay (U ) A ¢ ¥ L. Contradiction.

Let I be a model of ¢ and take J such that J = Agy(eU¢) Ay, We
get from (IC7) and (IC8) that J |= Ay, (U ¢). So J <puy 1.

(5) U I <g, Jand I <y, J then I |= Ay (V1) ALy, (V2). So from
(105) I ': Aw{u}(q’l L \112) and by definition [ S\ylquQ J.

(6) Suppose that I <y, J and [ <y, J. We want to show that I <y, v, J.
By the hypothesis I = A, (V1) A A (U2) and J & Dy, (P1) A
JAN @(1,7} (\1/1 L \IIQ) = ©r. Then [ }—
A U, LUWy) and by definition I <y, w, J.

J}

P{I1,J} (

P{1,J}

2). So from (IC5) and (1C6) A
\1/1|_|\I/2) and J I}A A

<P{1,J}(

<P{1,J}( W{I,J}<
(If part) Let’s consider a syncretic assignment that maps each belief set U
to a total pre-order <y and define an operator A by putting mod(A,(¥)) =
min(mod(p), <g). We want to show that A satisfies (IC0-IC8).

(ICO) By definition mod(A,,(¥)) C mod(p).

(IC1) If p is consistent, then mod(u) # (). As there is a finite number of in-
terpretations, there is no infinite descending chains of inequalities, so
min(mod(p), <g) # 0. Then A, (V) is consistent.

(IC2) Assume that AW A p is consistent. We show that min(mod(p), <g) =
mod(AW¥ A p). First note that if I = ¥ then from conditions 1 and
2, I € min(W,<yg). Soif I = ¥ A p then I € min(mod(p), <g). So
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min(mod(p), <g) 2 mod(AW¥ A p). For the other inclusion consider I €
min(mod(p), <y ). Suppose towards a contradiction that I = W A pu. Since
I ¥ ¥, by condition 2 we have that VJ = ¥ J <y [I. In particular
VJEY AR J <y I. Sol ¢ min(mod(n),<y). Contradiction.

(IC3) Direct from condition 3 and the definition of A.

(IC4) Assume that o p, ¢ F p, and A, (pUy) Ap ¥ L, we want to show that
A (U )N ¥ L. Consider I = A, (U@ )Ap. Then VI' = p I <00 I
But from condition 4 we have that 3J |= ¢/ such that J <,y I. Then
VI'=pJ <gup I'.Then J = A, (¢ly) and therefore A, (U )AY ¥ L.

(IC5) If I = AL (W1)AA L (Wy) then I € min(mod(p), <w,) andsoVJ = p 1 <y,
J. We have in the same way VJ = pu I <y, J. So by condition 5 we have
that VJ = p I <g,u9, J. So I € min(mod(u), <g,uw,). So by definition
I'= A, (0 U W,).

(IC6) Assume that A,(¥;) A A,(Ps) is consistent. We want to show that
AWy U W,) b+ AL (F) A AL (W) holds. Take I = AL (W L y), so
VJ = p I <g,uw, J. Suppose towards a contradiction that I = A, (¥1)A
Ay (Ps). So I = AL(¥q) or I = A,(Vsy). Suppose that I = A, ()
(the other case is symmetrical). As A, (W) A A, (W) is consistent 3J |=
ANy(U) AN L(P). So J <y, I and J <y, I so by condition 6 J <g,yw, {
and then I = A, (¥, U W,). Contradiction.

(IC7) Let’s take I = A, (V) A po. We have VJ = py I <y J. So VJ |=
pr A pg T <g J, 50 T = Dpyyp, (V).

(IC8) Assume that A, (V) A po is consistent, so 3J = A, (V) A . Consider
I'l= Ayau, (V) and suppose that I = A, (¥). So J <y I. But J = g A
o then I ¢ min(mod(p Apa), <w). Thus I = A au, (V). Contradiction.

Concerning majority operators the proof goes as follows :

(Only if part) Let /A be an operator satisfying postulates (IC0-IC8) and (Maj).
Define an assignment as in the proof of theorem 1.

By theorem 1 this is a syncretic assignment representing /. It remains to prove
condition 7. Assume that I <g, J. Then A, (Vs) = ;. From (Maj) we get
that In such that A U LW E A U,), so InA U LW = ¢,
ie.In 1 <\1;1|_|\1,2n J

SO{I,J}( W{I,J}( SO{I,J}(

(If part) Let’s consider a majority syncretic assignment that maps each belief
set U to a total pre-order <y and define the operator A by mod(A,(V)) =
min(mod(p), <y ). By theorem 1 we know that A satisfies (IC0-IC8). It re-
mains to prove (Maj). From conditions 6 and 7 we get easily the following
condition:

I <w, J = dngVn>ng I < LUw," J

Since for each ¥, <y is total this condition is equivalent to
VYng dn > ng 1 <, LT,n J = 1 <, J (*)

Now, suppose towards a contradiction that Vn A, (¥ LUW¥,") ¥ A, (¥s). From
this hypothesis we get that Vn 3] = p VJ = p I <g,uw,» J and 3J =
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i J' <y, I. Since the number of possible worlds is finite, by a combinatorial
argument (pigeon hole principle) there exists [ such that [ <y, jy,» J for any
J = p and an infinity of integers n and such that 3J" = p J' <y, I. This
obviously entails the premises of condition (x), so we have I <y, J for any
J |= p which is obviously in contradiction with the fact that 3J" = p J' <y, 1.
Finally, for arbitration operators the proof is :

(Only if part) Let A be an operator satisfying postulates (IC0-1C8) and (Arb).
Define an assignment as in the proof of theorem 1.

By theorem 1 this assignment is a syncretic assignment, so it remains to show
that condition 8 holds. Assume that both J <, I, J <, J" and I ~, ., J'
hold. First if I = J’ then J <, I follows from condition 6. Now suppose
I'# J'. By hypothesis Ay, |, (@1) < Dy, (@) < @y and Dy, (0 Lgy) =
@1, By the assumption I # J', we have that both of ¢ ;3 A =y 5y and
@101 N\ Tpyr, gy are consistent. Then by (Arb) we get that Ay, | (o1 Ug,) =
¢;- And by (IC7) and (IC8) we conclude that Ay, (¢ Ugy) = ¢, that is
J <gup, -

(If part) Let’s consider a fair majority syncretic assignment that maps each
belief set ¥ to a total pre-order <y and define A by putting mod(A,(¥)) =
min(mod(p), <y). We know by theorem 1 that A satisfies (IC0O-IC8), then it
is enough to prove (Arb).

Assume that A, (p1) < D, (02), Dy (G1UE) < (p1 — 2p2), prA—pe ¥
1 and po A =gy ¥ L hold. We want to show that A, v, (0 Ley) < A, (@)
First we prove that A, (o) B Ayvu (@ U gy). Consider I = A, (¢;) and
suppose towards a contradiction that I & A, v, (¢ Ug,). Then 3J = py Vv
Mo J <Ly I.

We consider three cases: J |= py A po, J |= g A —pg or J = =g A ps.

case 1: J |= pi1 A pig. Since I = A, (@), I <, J. By hypothesis A, (¢;) <
ANps(py). So I = A, (g,) and then I <, J. Then by condition 5 we have that
I <, 1, J. Contradiction.

case 2: J = py A—ps (the case 3, J = —py A pe, is symmetrical). Since J p~& o
and A, (@) < Ay, () we have J = Ay, (), so I <, J. By hypothesis we
can find a J' = pp A =g and with an analogous argument I <, J'. We also
know that A, o, (¢ U ¢y) < (1 < —pg), this implies J o~y 1, J'. And
then by condition 8 we get that I <, ., J. Contradiction.

Now we prove A, v, (@1 U @s) F Ay (). Assume that I = A v, (e U es)
and suppose towards a contradiction that I [~ A, (¢;). There are three cases:
case 1: I = py A po then 3J = A, (@), so J <, 1. And, as A, () <
ANy (p), J <4 I. So by condition 8 we have that J <, e 1, so I
A v (@1 U y). Contradiction.

case 2: I f= py A =g (the case 3, where I = =y A po, is symmetrical). By
hypothesis we know that 31" = —py A po. Since A, (@) < A, () 3T E
Ay, (¢) such that J <, I and J <, I'. We obtain also from A, -, (¢ U
©y) < (1 < —pg) that T >~ 1, I', so by condition 8 we get that J <, 1, 1.
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So I = A, (o1 U gy). Contradiction.
O

Proof of Theorem 5 We will show that, given a belief set ¥ consisting
of m belief bases with m < k, there exists ng such that Vn > ngy the two
pre-orders gflp’z and §$GM‘” coincide. And we conclude by theorem 1.

As the language is finite, it is easy to see (by a combinatorial argument) that
there exists N such that d(I,J) < N for any interpretations I, J. Put nyg =
min{n : k-N" < (N+1)"} (note that ng exists because lim,,_(52)" = 00).
It will be useful to stress that for all integers =,y such that 1 <z <y < N

we have N]Q,L L < Y and therefore

k.am™ <y (%)

We will show that Yn > ngVI V.J I <g™ Jiff [ <g=" J.
(only if part) Let I and J be two interpretations such that I <g® J. We
show that [ §iil,’2n J. Consider the two following cases:

o [ ~2%V*= J hence the two sorted lists (dEays ooy Ahmy) and (d gy, -5 A )
are the same. Therefore for all n,

m

dgsn(I,¥) =7 z; o (i) " =dyzn(J, V)
Hence if I ~%* J then for all n I ~%>" J.

o I <(* J. This means that for the two sorted lists (drys - dhmy)
and (d .y, ..., d7,,) there exists p < m such that Vi < p d}; = dJ,
and d(lf(p < do(p Consider the worst case, where p = 1 and such that
(diys s dhm) = (2, x) and (d ;- -+, dY ) = (4,0,...,0) with z <
y. The other cases will be directly retrieved by sum properties. Then note
that if 2 = 0 we have trivially 0 = =/>>7", (dg_(i))no < i 1 (@ )" and
therefore I <dZ °J.

Now suppose that = > 1. By the observation (x) we have

ng Z; (dg(i))no = m-amo < Vk-amo < "g/yno = no Z G(l

that is [ <dZ °J.

(If part) Assume that I <3~ J, we show then that I <3 J. Simply
observe that the contraposition is : if J <% I, then J <%>" I, which has
been proved in the only if part.

O

Proof of Theorem 6 By the representation theorem 1 it is enough to see
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that the two pre-orders gﬁ;” and gé’cM‘“ are different. But this is implicit in
d,GMaz

the previous proof. Let n be a positive integer. Take W such that [ <y J
Wlth (d£(1)7 ce ey di(m)) - (I, e ,x) and (di(l).. ey di(m)) - (y, 0, ey 0), 1 S

x < y and m satisfying m - 2" > y”. Then

\ i=1 =1

that is [ >5~ " J.
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