Some Operators for Iterated Revision
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Abstract. We propose a construction that allows to define operators for
iterated revision from “classical” AGM revision operators. We call those
operators revision with memory operators. We show that the operators
obtained have nice logical properties. We illustrate this construction with
the well-known Dalal revision operator. We also give two new particular
revision operators based on the revision operators on OTP proposed by
Ryan [20]. His operator do not satisfy a lot of logical properties. The two
operators we give based on OTP satisfy all wanted revision properties.

1 Introduction

One of the predominant approaches to model belief change was proposed by
Alchourrén, Gardenfors and Makinson and is known as the AGM framework
[1,10]. The core of this framework is a set of logical properties that a revision
operator has to satisfy to guarantee a nice behaviour.

A drawback of AGM definition of revision is that it is a static one, that
means that, with this definition of revision operators, one can have a rational
one step revision but the conditions for the iteration of the process are very
weak. The problem is that AGM postulates state conditions only between the
initial knowledge base, the new evidence and the resulting knowledge base. But
the way to perform further revisions on the new knowledge base does not depend
on the way the old knowledge base was revised.

Numerous proposals have tried to state a logical characterization that ade-
quatly models iterated belief change behaviour [8,7,5,13,17,16,12]. The more
famous one seems to be [8]. The main idea that is common to all of those works
is that the belief base framework is not sufficient to encompass iterated revision,
since one needs some additional information for coding the revision policy of the
agent. So the need of epistemic states to encode the agent “state of mind” is
widely accepted. An epistemic state allows to code agent’s beliefs but also to
code its relative confidence in alternative possible states of the world. Epistemic
states can be represented by several means: pre-orders on interpretations [8,13],



conditionals [5, 8], epistemic entrenchments [21,16], prioritized belief bases [2,
3], etc. In this paper we will focus on the representation of epistemic states in
terms of pre-orders on interpretations.

What we propose in this paper is not yet an other logical characterization,
but the definition of a family of operators, that we call revision with memory
operators, that aims to have good iteration properties.

Dalal-like revision operators are sometimes decry for their a priori, extra-
logical information which represents the distance that they use to order inter-
pretations. We give two operators derived from Ryan’s OTP revision operator
[20]. We will see that Ryan’s operator does not satisfy the wanted logical proper-
ties and give two modifications of Ryan OTP revision operator that will. These
three operators are interesting since, conversely to Dalal-like operators, there is
no a priori distance. This information is provided by the formulae themselves in
a very natural (syntactical) way.

In section 2 we recall the logical characterization of Darwiche and Pearl. In
section 3 we give the definition of revision with memory operators and state the
general logical results. Then, in section 4 we provide five examples of operators.
Apart from Ryan operator (section 4.3), that is not a revision with memory
operator, the four other operators have nice logical properties. Three of them
are, as far as we know, new operators. We conclude in section 5 by some general
remarks.

2 Iterated Revision Postulates

We give here a formulation of AGM postulates for belief revision ¢ la Katsuno
and Mendelzon [11]. More exactly we give a formulation of these postulates in
terms of epistemic states [8]. The epistemic states framework is an extension of
the belief bases one. Intuitively an epistemic state can be seen as a composed
information: the beliefs of the agent, plus all information that agent needs about
how to perform revision (preference ordering, conditionals, etc.). Then we give
the additional iteration postulates proposed by Darwiche and Pearl [8].

2.1 Formal Preliminaries

We will work in the finite propositional case. A belief base ¢ is a set of formulae,
which can be considered as the formula that is the conjunction of its formulae.

The set of all interpretations is denoted W. Let ¢ be a formula, Mod(y)
denotes the set of models of ¢, i.e. Mod(yp) ={I e W: I |= p}.

A pre-order < is a reflexive and transitive relation, and < is its strict coun-
terpart, i.e I < Jif and only if T < J and J £ I. As usual, ~ is defined by I ~ J
iff I<Jand J<I.

To each epistemic state ¥ is associated a belief base Bel(¥) which is a
propositional formula and which represents the objective (logical) part of ¥.
The models of ¥ are the models of its associated belief base, thus Mod(¥) =
Mod(Bel(¥)). Let ¥ be an epistemic state and u be a sentence denoting the
new information. ¥ o i denotes the epistemic state resulting of the revision of ¥
by p. For reading convenience we will write respectively ¥ -y, PApand I E &
instead of Bel(¥) F p, Bel(¥) A p and I |= Bel(P).



Two epistemic states are equivalent, noted ¥ = ¥, if and only if their ob-
jective parts are equivalent formulae, i.e. Bel(¥) < Bel(¥'). Two epistemic
states are equal, noted ¥ = ¥, if and only if they are identical. Thus equality is
stronger than equivalence. In fact equivalence denotes a static equivalence, since
after a belief change, the two epistemic states can lead to very different ones,
whereas equality denotes a dynamic equivalence between epistemic states, since
all sequences of belief change perform on these two epistemic states will lead to
two equal epistemic states!.

2.2 AGM Postulates for Epistemic States

Let ¥ be an epistemic state and p and ¢ be formulae. An operator o that maps
an epistemic state ¥ and a formula u to an epistemic state ¥ o p is said to be a
revision operator on epistemic states if it satisfies the following postulates [8]:

(R*1) Poputp

(R*2) U Ap¥ L thenPopucPApu

(R*3) If p¥ L, thenPopk L

(R*4) If &3 =95 and py <> po, then ¥y o g = Ws o gy
(R*5) (Top)ApE¥o(uAey)

(R*6) If Wou)Ap¥ L, thenWo(uAp)F (Topu)Ap

This is nearly the Katsuno and Mendelzon formulation of AGM postulates
[11], the only differences are that we work with epistemic states instead of belief
bases and that postulate (R*4) is weaker than its AGM counterpart. See [8] for
a full motivation of this definition.

A representation theorem, stating how revisions can be characterized in terms
of pre-orders on interpretations, holds. In order to give such semantical repre-
sentation, the concept of faithful assignment on epistemic states is defined.

Definition 1. A function that maps each epistemic state ¥ to a pre-order <g
on interpretations is called a faithful assignment over epistemic states if and
only if:

L IfIEY and J =9, then I ~g J
2 IfIEY and JEY, then I <g J
3. If Wl = sz, then th:SWQ

Now the reformulation of Katsuno and Mendelzon [11] representation theo-
rem in terms of epistemic states is:

Theorem 1 A revision operator o satisfies postulates (R*1-R*6) if and only if
there exists a faithful assignment that maps each epistemic state ¥ to a total
pre-order <g such that:

Mod(¥ o 1) = min(Mod(u), <u)

Notice that this theorem gives information only on the objective part of the

resulting epistemic state.
! note that ¥ = ¥’ implies ¥ = ¥'.



2.3 Darwiche and Pearl Postulates

A strong limitation of AGM revision postulates is that they impose very weak
constraints on the iteration of the revision process. Darwiche and Pearl [7, 8]
proposed postulates for iterated revision. The aim of these postulates is to keep
as much as possible of conditional beliefs? of the old belief base. So, besides
postulates (R*1-R*6), a revision operator has to satisfy:

(C1) If o p, then (Wop)op=Top
(C2) If pF -, then (Wop)op=Poyp
(C3) If Woypt p,then (Wop)ophkp
(C4) If Woyp k¥ —pu,then (Wopu)op¥ pu

These postulates can be explained as follows: (C1) states that if two pieces of
information arrive and if the second implies the first, the second alone would give
the same belief base. (C2) says that when two contradictory pieces of information
arrive, the second alone would give the same belief base. (C3) states that an
information should be retained after revising by a second information such that,
when revising the current belief base by it, the first one holds. (C4) says that no
piece of information can contribute to its own denial.

3 Building memory operators from “classical” AGM ones

A “classical” AGM revision operator is equivalent to a faithful assignment over
belief bases as stated in the following theorem [11].

Definition 2. A function that maps each belief base ¢ to a pre-order <, on
interpretations is called a faithful assignment over belief bases if and only if:

1. IfIEpand J =y, then [ ~, J
2. IfI= ¢ and J |E ¢, then I <, J
3. If P1 < P2, then S<p1:§<p2

Theorem 2 A revision operator o satisfies “classical” AGM postulates (R1-
R6)® if and only if there erists a faithful assignment (over belief bases) that
maps each belief base ¢ to a total pre-order <, such that:

Mod(¢ o p) = min(Mod(p), <)

So one can define a revision operator directly by defining the correspond-
ing faithful assignment over belief bases. It is the case for most distance-based
revision operators such as Dalal operator for example [6,11].

More precisely we say that a revision operator o is defined from a distance d
iff the following conditions hold:

— d is a distance, that is d is a function d : W x W +— R* that satisfies:
d(I,J)=d(J,I) and d(I,J) =0iff I = J.

% a conditional belief can be expressed as “if u would be the case, then ¢ must be
true”

3 it is the same set of postulates than (R*1-R*6) but expressed for belief bases instead
of belief states (cf [11]).



— Then the distance between an interpretation I and a belief base ¢ is defined
as: d(I,¢) = min{d(I,J) : J E ¢}

— This distance induces a faithful assignment: I <, J iff d(I,¢) < d(J,¢)

— And the revision operator is defined by Mod(yp o p) = min(Mod(p), <,)

One can check that the assignment obtained like this is a faithful assignment
and thus that all operators defined in this way satisfy AGM postulates. It can
also be easily checked that operators defined in this way do not satisfy a lot of
iterated revision postulates.

Now we will give a construction that allows, from a given faithful assignment
(i.e. from a given “classical” revision operator), to define an other revision oper-
ator that satisfy AGM postulates but also most of iterated revision postulates.

First, let us notice that an epistemic state can be represented by a total pre-
order on interpretations as suggested by theorem 1 and by several related works
(cf e.g [8,3]). So, with this particular representation, that is if we identify the
epistemic state ¥ with a pre-order <g, the belief base Bel(¥) is simply the for-
mula whose models are minimal for the pre-order, that is Bel(¥) = min(W, <g).
And the other interpretations are ordered according to their relative plausibility
for the agent. For example I <y J means that the agent that is in the epistemic
state ¥ consider I as more plausible than J. It is this preferential information
that can be used to encompass the iterated revision behaviour, by considering
revision operators as functions that maps a pre-order (epistemic state) and a
formula (new information) into a new pre-order (epistemic state). This idea is
the mainstay in most of iterated revision works [21, 8, 16].

So using this representation by means of pre-orders on interpretations and
theorem 1 we will define a familly of revision operators as follows:

Definition 3. Suppose that we dispose of a function that maps each belief base
¢ to a pre-order <,. Then we define the epistemic state (the pre-order) ¥ o ¢
result of the revision of ¥ by the new information ¢ as:
I<wop Jiff I <y, J or
I~,JandI<gJ

Then one can check that:

Theorem 3 If the function that maps each belief base ¢ to a total pre-order <,
is o faithful assignment over belief bases, then the revision operator on epistemic
states defined in definition 3 satisfies postulates (R*1-R*6). We will call revision
operators with memory those operators.

So with definition 3, one can start from any epistemic state (total pre-order
over interpretations) and carry on iterated revisions. A particular epistemic state
we can mention is the “empty” epistemic state, where the agent has no belief
and no preferential information, that is such that VI,J I ~ J. We will note =
this epistemic state. So the objective part of this epistemic state is Bel(Z) = T.
It can be considered as the epistemic state generalisation of T for the belief base
framework, since they are both neutral elements for the corresponding operators:
VoZ =V (as po T = ¢ in the belief base framework). One can consider that
all agents start with this epistemic sate (we will consider this in the examples).



In fact the family defined is more specific than that, since there are more
properties that are satisfied by those operators:

(H4) If ¥; =¥ and py < p2, then ¥ 0o pg =P 0 py
(C) If p A is satisfiable, then W o popu =¥ o (p A )

(H4) is a strenghten of (R*4). (C) states that when one revises successively by
two consistent pieces of information, it amounts to revise by their conjunction.
It is close to a postulate proposed by Nayak and al. [17] called Conjunction,
but (C) is weaker than Conjunction, since it requires only the equivalence of
the two resulting epistemic states, not the equality. See [12] for a full logical
characterization of revision with memory operators.

Concerning iteration postulates stated by Darwiche and Pearl [8]:

Theorem 4 Revision operators with memory satisfy postulates (C1),(C3) and
(C4).

It can be also easily checked that (C2) is satisfied by a unique operator with
memory, since it demands (in the presence of the other revision postulates), that
the pre-order associated to a belief base by the faithful assignment on belief base
used in definition 3 is a two-level pre-order with the models of the belief base at
the lowest level and the counter-models at the higher one. This operator will be
presented in the next section.

So most of our revision with memory operators do not satisfy (C2). But we
do not consider this as a drawback. We rather think that it is (C2) that is not
fully satisfactory.

In fact, in [7] the set of postulates (C1-C4) has first been given as a com-
plement to usual “classical” AGM postulates. Freund and Lehmann [9] have
shown that (C2) is inconsistent with those postulates. Furthermore Lehmann
[13] has shown that (C1) plus AGM postulates imply (C3) and (C4). In [§]
Darwiche and Pearl have rephrased their postulates (and AGM ones) in terms
of epistemic states instead of belief bases, and thus have removed these logical
contradictions.

But we do not think that it is enough to requalify (C2) and we think that
satisfy (C2) can lead to counterintuitive results. Consider the following example:

Example 1 Consider a circuit containing an adder and a multiplier. In this
example we have two atomic propositions, adder_ok and multiplier_ok, denoting
respectively the fact that the adder and the multiplier are working. We have
initially no information about this circuit (¥ = =) and we learn that the adder
and the multiplier are working (u = adder_ok A multiplier_ok). Then someone
tells us that the adder is not working (¢ = — adder_ok). There is, then, no reason
to “forget” that the multiplier is working, which is imposed by (C2): ¢ = - so
by (C2) we have Wopop = (Top) = .

This example is a slight modification of an example given in [8]. So, in some
cases, postulates (C2) induces exactly the same kind of bad behaviour it tries to
prevent.



4 Some revision with memory operators

4.1 Basic memory operator

Let us define the assignment that maps each belief base to a pre-order in the
following way:

Definition 4. I 52, Jif and only if I = ¢ or
ITEpand JE

So we have what we shall call a basic order, which is a two-level order (at
most), with the models of ¢ at the lower level and the other worlds at the higher
level.

Definition 5. The basic memory operator is the memory operator obtained
from this assignment (i.e. the operator obtained by definitions 4 and 3).

Even with this basic order on belief bases, one can build very complex epis-
temic states. This is due to revision memory. We illustrate the behaviour of this
operator through some simple examples.

Example 2 Consider a language £ with only two propositional letters a and b.
We will denote interpretations simply by the truth assignment, i.e 10 denotes
the interpretation mapping a to true and b to false. Two interpretations are
equivalent, with respect to the pre-order, if they appear at the same level. An
interpretation I is better than another interpretation J (I < J) if it appears at
a lower level. Let us see some examples of epistemic states:

00 01
, 10 _, 000110 _, _0t 1
—Eoacdb™ ()1 San/\b_ 11 SEo(a/\b)oa_ SEo(a/\b)oaoﬁb_ 00
11 1 10
01 (1)(1) 11
SbE'o(a/\b)o—|b: 11 Sonu,obo—|(a/\b): 10 SI::oao(a/\b)o—u(a/\b): 00 01
00 10 01 10

The assignment defined is a faithful assignment on belief bases, with theorems
3 and 4, it is easy to show that:

Theorem 5 The only revision operator with memory that satisfies (R*1-R*6)
and (C1-C4) is the basic memory revision operator.

This operator has been already studied in the litterature under different par-
ticular representations: in [16] with epistemic entrenchments, in [2] with polyno-
mials and syntactic belief bases. Finally, we can note that Liberatore has shown
[15] that several problems are computationally simpler for the basic memory op-
erator than for the other iterated belief revision proposals (including Boutilier’s
natural revision [4], Lehmann’s ranking revision [13] and Williams’ transmuta-
tions [21]).



4.2 Dalal memory operator

We use in this section the Hamming distance between interpretations* and then
the Dalal distance between an interpretation I and a belief base ¢ is defined as
d(I, ) = min j_(dist(I, J)).

Let’s define the assignment that maps each belief base to a pre-order in the
following way:

Definition 6. I <2 .J if and only if d(I,¢) < d(J,¢).

So we have a pre-order with the models of ¢ at the lowest level and the other
worlds in the higher levels.

Definition 7. The Dalal memory operator is the memory operator obtained
from this assignment (i.e. the operator obtained by definitions 6 and 3).

We can show on a toy example that this operator differs from classical Dalal
revision operator [6,11]. Let a and b be two propositional letters and consider for
example the sequence ¥ = Z oaobo—(aAb). The classical Dalal operator gives
Bel(¥) = (a A —b) V (—a A b). Whereas Dalal memory operator gives Bel(¥) =
(—a A b). This behaviour seems more natural since at the penultimate step we
learnt that b was true, and it is normal to keep some credit for this evidence in
the following step. It is in this way, that our operators use revision “memory”.

4.3 Ryan OTP operator

Mark Ryan has proposed to apply his Ordered Presentations of Theories (or
OTP) to belief revision [20]. Very roughly, an OTP is a multi-set of formulae
equipped with a partial pre-order. This pre-order represents the relative relia-
bility of the sources of each formula. So, using a linear order, one can express
the fact that the new information is more reliable than older ones and thus can
simulate iterated revisions. To give the definition of OTP is not a subject of this
work, the interested reader can see e.g [19]. We will simply introduce the notions
needed to define the OTP revision operator.
First we have to define what the monotonicities of a formula are.

Definition 8. Let I be an interpretation and p be a propositional letter, then
Il7] (respectively I ) ) denotes the interpretation that is identical to I on each
propositional letter except (maybe) on the propositional letter p that is assigned
to true (resp. false).

Definition 9. Let ¢ be a consistent formula and p be a propositional letter.

1. @ is monotonic in p if I |= ¢ implies that I |= .
2. ¢ is anti-monotonic in p if I |= ¢ implies that ITP) |= .

4 the Hamming distance between two interpretations is the number of propositional
letters on which the two interpretations differ



The set of symbols in which ¢ is monotonic (resp. anti-monotonic) is noted
@t (resp. ). If o <> L, then o™ =~ =10.

After this definition, Ryan defines an inference relation that he named natural
entailment.

Definition 10. ¢ naturally entails p, written ¢ | p, if o b p, ot C p* and
- Cp.

This relation has some nice properties, in particular it does not allow to add
irrelevant disjuncts in the conclusions (for example p £, pVq). See [19] for more
details.

Finally, the preference relation associated with a formula ¢ is given by the
set of natural consequences that the interpretations satisfy, that is:

Definition 11. Let ¢ be a formula, and I,J two interpretations, the relation
=<, 1is defined as: I <, J if for each p such that ¢ |~ pu, (J = p=1F p)
holds.

So an interpretation is better than another if it satisfies more natural conse-
quences. Note that the relation <, is a partial pre-order.

Definition 12. The Ryan operator is the operator obtained from this assign-
ment (i.e. the operator obtained by definitions 11 and 3).

Because the starting assignment takes partial pre-orders as values, Ryan
operator does not satisfy all the postulates. More precisely, one has the following
result [20]:

Theorem 6 The Ryan revision operator satisfies postulates (R*1), (R*3), (R*4),
and (R*5), but does not satisfy (R*2) and (R*6).

A counter-example to (R*2) and (R*6), given in [20], is the following:

Let o7 = pVqgVr, oo = pA-gA-r and o3 = (p < ¢) A —r. Then
for (R*2), take ¥ = 5 o 1 0 2 and ¢ = ¢3. Then Mod(¥) = {011,101,110}
and Mod(y) = {000,001,010,100,110,111}, so Mod(¥ A ¢) = {110} whereas
Mod(¥ o @) = {110,001}. The same counter-example holds for (R*6) also by
putting ¥ = Z' o 1, ¢ = 3 and u = 3.

These two violations of the rationality postulates seem to be very awkward.
Especially (R*2) seems hardly debatable. The question is: how can we modify
Ryan’s definition in order to satisfy these properties ? In fact, the easiest way
to modify this operator in order to obtain revision with memory operators is to
“complete” the <, partial pre-orders in order to obtain total pre-orders. This
can be achieved by two means that give the two following operators.

4.4 Closure of the pre-order

First, following the construction of the rational closure of a conditional belief
base [14] (see also Pearl’s System Z [18]), we can figure out a lazy deformation
of the pre-order, that is, the deformation that transforms the partial pre-order
in a total pre-order with a minimal effort.



Definition 13. Let p,(I) be the “distance from I to ¢” in the following sense:

1. If I € min(W, <,,) then p,(I) =0,
2. Otherwise p,(I) = a, where a is the length of the longest chain of strict
inequalities Iy <, ... <y I with Iy € min(W, <)) and I, = 1I.

This “distance” gives a total pre-order on interpretations:
Definition 14. T ggTPl J if and only if po(I) < pu(J).

We illustrate this principle of “minimal effort” with an example: Let ¢ =
(ma V —b) A ¢ be a belief base.

111 111
011 101 110 011 101
\60{ 001 110
000 010 100 000 010 100

Fig. 1. Closure of the pre-order

The left hand side presents the partial pre-order <. Arrows I < J denote
I <, J (for reading convenience we do not represent transitivity, reflexivity and
the equivalence between minimal interpretations). The right hand side presents
the SSTPl corresponding pre-order. It is clear that if I <, J then I <8TP1 J.
Thus the only interpretation that is not straightforwardly placed is 110. The
“minimal effort” is being illustrated here as follows: the first place where can
be placed 001 is at the second level, so it is the chosen level. Conversely, for
the interpretation 011 for example, the first “acceptable” level is the third one
because there is an interpretation (001) that is strictly better than 011 which is
occupying the second level.

It is easy to show that the function that maps each belief base ¢ to a total
pre-order SSTPl is a faithful assignement. Then we build our memory operator
as usual:

Definition 15. The OTP; memory operator is the memory operator obtained
from this assignment (i.e. the operator obtained by definitions 14 and 3).

4.5 Using cardinalities

A second way to define a total pre-order from Ryan revision operator is to
interpret it differently. The idea of the <, order, defining Ryan operator, is that
an interpretation I is better than another .J for a belief base ¢ if I satisfies all
the natural consequences that J satisfies. In other terms I is better than J if
I satisfies more natural consequences than J. Following this idea we can then
focus uniquely on the number of natural consequences satisfied.



111

001 011 101 110 111 001 011 101 110

000 010 100 000 010 100

(a) Basic memory operator (b) Dalal memory operator
111

111 011 101

011 101 110
001 110 001

000 010 100 000 010 100

(c) OTP: memory operator (d) OTP2 memory operator

Fig. 2. Behaviour differences between revision with memory operators

Definition 16. I SgTPQ J if and only if card({p | ¢ b~y wand J E ¢}) <
card({p | ¢ by psand I = ¢}).

This definition is also a “completion” of the <, pre-order since if I <, J,
then I <OTPz J.
Then, as usual:

Definition 17. The OTP; memory operator is the memory operator obtained
from this assignment (i.e. the operator obtained by definitions 14 and 3).

5 Conclusion

We will end by showing that the four revision with memory operators defined
are differents. To show that, it is enough to show that the corresponding faithful
assignments are differents. We will show that on the formula ¢ = (—a V —b) A c.
In figure 2 one can check that the four pre-orders obtained are different.

We have proposed in this paper a method to build revision operators that
have interesting properties for iterated revision from any classical AGM operator.

This family of operators exhibits the fact that Darwiche and Pearl’s (C2)
postulate is certainly too demanding.

We have also introduced two new operators based on Ryan revision operator
[20]. An open question is to know if those operators can be recovered from the
definition of a classical distance-based revision operator.

We have mainly deal in this paper with the generic construction of iterated
revision operators from classical AGM operators, but a full logical characteriza-
tion of revision with memory operators can be found in [12].
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