On Distances Between KD45n Kripke Models and Their Use for Belief Revision

Thomas Caridroit and Sébastien Konieczny and Tiago de Lima and Pierre Marquis

Abstract. In this paper, some distances between KD45n Kripke models are introduced and investigated. We define several distances between Kripke models, based on different criteria, inspired by various concepts such as bisimulation and propositional distances between valuations for different modal degrees. We study the properties of these distances. Such distances are useful for defining belief change operators in multi-agent scenarios. We show that they can be used to define belief revision operators based on the standard AGM framework and suited to KD45n Kripke models.

1 INTRODUCTION

Distance proves to be a key concept for a number of applications. Especially, in knowledge representation, distances between interpretations (or between formulas) is a central notion on which many belief change operators (belief revision operators, belief merging operators, etc.) are anchored. Such operators are governed by a principle of minimal change, which consists in selecting the most plausible models of a given constraint (the new piece of information in case of belief revision, or the integrity constraints in case of belief merging), given the current beliefs of the agent(s).

In some applications, a plausibility relation can be easily obtained from the input, so that it can be used to rule the change operator. However, in many cases, no such plausibility relation is directly available. In such cases, it makes sense to derive a plausibility relation from a preset distance. Thus, for instance, in (finite) classical propositional logic, the Hamming distance (also called Dalal distance [10, 17]), that is defined as the number of propositional variables two valuations differ on, is often considered. When one has no particular information on the application and on the logical dependencies of the propositional variables, it is a reasonable assumption to consider that the more variables in common in two interpretations, the closer they are. Accordingly, in the classical propositional setting, many revision operators [10, 17, 20, 21], update operators [12, 16], merging operators [19, 18] and other change operators are actually distance-based ones.

Belief change in classical propositional logic has received much attention so far. However, in numerous applications, agents have not only beliefs about the world, but also beliefs about the beliefs of other agents, which makes classical propositional logic inadequate. The typical semantics for multi-agent epistemic (actually, doxastic) frameworks relies on KD45n Kripke models. On the other hand, though several approaches in epistemic logic settings aim at modeling revision as a dynamic modality (see e.g., [22, 25, 6, 8, 24, 5]), there are quite few works which tackled the problem of defining belief change for epistemic logics in the standard AGM framework (see mainly [3, 9]).

As defining concrete revision operators for Kripke models is nowadays expected (see [14]), our aim in this work is to define such revision operators for finite KD45n Kripke models. To do so, we first investigate the notion of distance between such models. This turns out to be a key step towards the definition of belief change operators complying the standard AGM framework, and suited to multi-agent scenarios.

As far as we know, only one distance has been pointed out so far for measuring the extent to which Kripke models are different. This distance was reported in [2] and concerned the revision of subjective epistemic models. Subjective epistemic models represent the beliefs of one agent about the world and about the beliefs of the other agents, whereas KD45n Kripke models represent the beliefs of an external observer about the world and about the beliefs of the agents. To be more precise, Aucher [2] presents a similarity degree between subjective epistemic models, that can be straightforwardly translated into a distance between KD45n Kripke models.

In the following, we point out distances between KD45n Kripke models which are alternatives to this one. Such distances can also be easily adapted to Aucher's subjective models, and therefore be used to define new revision operators in this setting as well [3]. Five new distances between KD45n Kripke models are investigated. Three of them are based on a weakening of the standard bisimulation relation between Kripke models. The other two rely on an aggregation of the propositional distances between the set of valuations for different modal depths in the two models.

Beyond standard distance properties (indistinguishability, symmetry, subadditivity and nonnegativity), three additional properties, that are sensible for distances between KD45n Kripke models, are introduced. In a nutshell, the first one expresses the fact that the higher the modal depth of discordance (i.e., the higher the modal degree of the formulas that are not satisfied in both models), the lower the distance between the two models. The second property expresses that all discordances at a given modal depth should not be considered as equivalent. The third property refines the second one by asking the distance between Kripke models to be based on a non-drastic distance between the valuations of the worlds. When considering the application of these distances to belief revision, we introduce a last property, called boundedness property, that ensures that there are only finitely many models to consider for computing the revision.

For each distance introduced, the properties of interest it satisfies are identified. We show that three distances satisfy all the properties under consideration and can be used as such for characterizing belief revision operators based on the standard AGM framework, yet suited to KD45n Kripke models.

3 CRIL, CNRS – Université d’Artois, France, email:{caridroit, konieczny, delima, marquis}@cril.fr
2 PRELIMINARIES

We are interested here in modeling the beliefs of several agents, each of them having her own beliefs about the state of the world. Hence we use a multi-agent epistemic logic. Let \(P \) be a finite, non-empty set of propositional variables and \(A \) a finite, non-empty set of agents. We consider the language \(\mathcal{L} \) containing the classical propositional language augmented by a belief modal operator \(B_a \) for each agent \(a \in A \). Formally, \(\mathcal{L} \) is defined as follows:

\[
\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid B_a \varphi
\]

A formula of the form \(B_a \varphi \) is read "agent \(a \) believes that \(\varphi \) is true". The modal degree \(\text{deg}(\varphi) \) is defined as usual [7]:

\[
\text{deg}(p) = 0 \quad \text{deg}(\varphi \land \psi) = \max(\text{deg}(\varphi), \text{deg}(\psi)) \quad \text{deg}(B_a \varphi) = 1 + \text{deg}(\varphi)
\]

In order to give meaningful to our formulas, and especially to operators \(B_a \), we use the standard KD45 system for \(n \) agents [11]. Such a system consists of the set of formulas in \(\mathcal{L} \) that can be derived using the following axioms and inference rules:

(TAU) All instantiations of propositional tautologies

(K) \((B_a \varphi \land B_b \varphi) \rightarrow B_b \varphi \) (Belief Distribution)

(D) \(\neg B_a \bot \) (Belief Consistency)

(4) \(B_a \varphi \rightarrow B_a B_b \varphi \) (Positive Introspection)

(5) \(\neg B_a \varphi \rightarrow B_a \neg B_a \varphi \) (Negative Introspection)

(RM) From \(\models \varphi \rightarrow \psi \) and \(\models \varphi \) infer \(\models \psi \) (Modus Ponens)

(RN) From \(\models \varphi \) infer \(\models B_a \varphi \) (Belief Generalization)

The same set of validities can be captured using a semantic approach. The most common representation in this system is based on Kripke models, defined as follows:

Definition 1 (Finite Pointed Kripke Model). A finite pointed Kripke model is a tuple \(\langle W, R, V, w \rangle \) where \(W \) is a finite, non-empty set of possible worlds, \(R = \{R_a \mid a \in A\} \), where \(R_a \subseteq W \times W \) is the binary accessibility relation on \(W \) for agent \(a \), \(V = \{V_a \mid v \in W\} \), where \(V_a : P \rightarrow \{0, 1\} \) is a valuation function that defines the truth value of each propositional variable at the world \(v \), and \(w \in W \) is the pointed world of the model.

We sometimes use \(R_a(w) \) to denote the set of possible worlds which are accessible from \(w \) for agent \(a \), namely, \(R_a(w) = \{w' \mid (w, w') \in R_a\} \).

Let \(M \) be a finite pointed Kripke model. We denote by \(M \models \varphi \) the fact that the formula \(\varphi \) is satisfied in \(M \). This is defined as usual for the propositional connectives, and as follows for the operators \(B_a \):

\((W, R, V, w) \models B_a \varphi \) if and only if \(\forall w' \in W \) if \(w' \in R_a(w) \) then \((W, R, V, w') \models \varphi \).

Two finite pointed Kripke models are equivalent if and only if they are bisimilar, in the following sense:

Definition 2 (Bisimilarity). Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two finite pointed Kripke models. \(M \) and \(M' \) are bisimilar, noted \(M \equiv M' \), if and only if there is a bisimulation \(Z \subseteq W \times W' \).

Definition 3 (Bisimulation). Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two finite pointed Kripke models. Let \(Z \subseteq W \times W' \). \(Z \) is a bisimulation if and only if \((w, w') \in Z \) and for all \((v, v') \in Z \):

1. \(V_v = V_{v'} \) and

2. if \(\exists u \in W \) such that \((v, u) \in R_a \), then \(\exists u' \in W' \) such that \((v', u') \in R'_a \) and \((u, u') \in Z \), and

3. if \(\exists u' \in W' \) such that \((v', u') \in R'_a \), then \(\exists u \in W \) such that \((v, u) \in R_a \) and \((u, u') \in Z \).

Let \(\mathcal{K} \) be the set of KD45\(_n\) finite pointed Kripke models. In what follows, we refer to Kripke models as a short for models of \(\mathcal{K} \). A formula \(\varphi \in \mathcal{L} \) is valid (noted \(M \models \varphi \)) if and only if \(M \models \varphi \), for every finite pointed Kripke model \(M \in \mathcal{K} \).

Two bisimilar models may have different number of worlds. This means that, depending on how distances between two bisimilar models are computed, one may end up with a non-null distance. However, we need to look at the very information conveyed by each model, and not to be distracted by a particular representation. So we need to use some kind of normal form. We take the corresponding minimal models, defined in the sequel, as "normal forms".

With each KD45\(_n\) Kripke model, a minimal model which corresponds to its bisimulation contraction can be associated [7]:

Definition 4 (Minimal Finite Pointed Kripke Model). Let \(M = \langle W, R, V, w \rangle \) be a finite pointed Kripke model. \(M \) is a minimal finite pointed Kripke model if and only if there is no model \(M' = \langle W', R', V', w' \rangle \) such that \(M \equiv M' \) and \(|W| > |W'| \).

Finite pointed Kripke models are similar to nondeterministic automata. But the latter can be transformed into deterministic ones easily. The resulting model is sometimes exponentially larger, though. Given a finite pointed Kripke model \(M \), the problem of finding a minimal model associated with it is similar to the problem of minimizing the number of states in a deterministic finite automaton. An algorithm for it can be easily adapted from the one given in [15].

We note that, as in the deterministic finite automata case, the minimal model is unique. We denote by \(\mu(M) \) the minimal finite pointed Kripke model corresponding to \(M \). We clearly have \(M \equiv \mu(M) \).

The height of a possible world \(v \) in a finite pointed Kripke model \(M \), noted \(\text{height}_M(v) \), is the length of a shortest path between the pointed world of \(M \) and \(v \). The height of a model \(M \) (noted \(\text{height}(M) \)) is, as usual [7], the largest \(n \) such that there is a world of height \(n \) in \(M \).

3 DISTANCES BETWEEN FINITE KRIPKE MODELS

We start with the notion of distance between Kripke models:

Definition 5 (Distance). A distance between two Kripke models is a mapping \(d \) from \(K^2 \) to \(\mathbb{R} \) which satisfies the properties:

(D1) \(d(M, M') = 0 \iff M \equiv M' \) (indistinguishability)

(D2) \(d(M, M') = d(M', M) \) (symmetry)

(D3) \(d(M, M'') \leq d(M, M') + d(M', M'') \) (subadditivity)

(D4) \(d(M, M') \geq 0 \) (nonnegativity)

The following properties taken from [1] are consequences of properties (D1) – (D4):

Lemma 1. Let \(d \) be a mapping from \(K^2 \) to \(\mathbb{R} \). If \(d \) satisfies the properties (D1) – (D4), then \(d \) satisfies:

(DK1) If \(M = M' \) then \(d(M, M') = 0 \)

(DK2) If \(M \equiv M' \) then \(d(M, M') = 0 \)

(DK3) If \(M' \equiv M'' \) then \(d(M, M') = d(M, M'') \)

(DK4) If \(M' \equiv M'' \) then \(d(M', M) = d(M'', M) \)
Lemma 2. Let d be a mapping from K^2 to \mathbb{R}. If d satisfies (D1)-(D4), then d cannot satisfy:

(D5) $d(M, M') \geq d(M, M') + d(M', M'')$

(D6) $d(M, M'') = d(M, M') + d(M', M'')$

To define distances on KD$_{45n}$ Kripke models we consider some additional expected properties. First, we must introduce a modification function that is used to change the valuation of a world w' in a model M to match the valuation ϑ.

Definition 6 (Modification Function). Let $M = \langle W, R, V, w \rangle$, $w' \in W$, and ϑ a valuation. We denote by $M(\vartheta \to w')$ the model obtained by changing the valuation of w' by ϑ, defined as follows:

$$M(\vartheta \to w') = \langle W, V', R, w \rangle$$

where

$$V' = \{V_v | v \neq w'\} \cup \{V_{w'p} | p \in P, V_{wp}(p) = \vartheta(p)\}$$

We can now define the additional properties:

(D5) $\forall M = \langle W, R, V, w \rangle, \forall w', w'' \in W, \forall \vartheta, \vartheta'$, if $\text{height}_M(w') < \text{height}_M(w'')$ and $M' = M(\vartheta \to w')$ and $M'' = M(\vartheta' \to w'')$ with $V_{w'} \neq \vartheta \neq V_{w''}$, then $d(M', M'') > d(M, M'')$.

(D6) $\exists M = \langle W, R, V, w \rangle, \exists w' \in W, \exists \vartheta, \vartheta'$ such that $M' = M(\vartheta \to w')$ and $M'' = M(\vartheta' \to w'')$ with $\vartheta \neq V_{w'} \neq \vartheta'$, and $d(M', M'') \neq d(M, M'')$.

(D7) There is a non-draastic propositional distance d_v such that $\forall M = \langle W, R, V, w \rangle, \forall w' \in W, \forall \vartheta, \vartheta'$, if $M' = M(\vartheta \to w')$ and $M'' = M(\vartheta' \to w')$ and $d_v(\vartheta, V_{w'}) < d_v(\vartheta', V_{w'})$, then $d(M', M'') < d(M, M'')$.

(D5) expresses the fact that the higher the modal depth of discordance (i.e., the higher the modal degree of the formulas that are not satisfied in both models), the lower the distance between the two models. Basically, this property has to be evaluated by considering the use of epistemic models for making strategic decisions. As a matter of illustration, consider a card game, or any imperfect information game (like Cluedo, for instance). Then it is more harmful for a player to make a mistake about the beliefs of another player B (since this piece of beliefs is used for making many strategic decisions), rather than to be mistaken with the beliefs of B about the beliefs of A about the beliefs of B.

(D6) expresses that not all discordances at modal degree k are equivalent, which means that one has to do better than the drastic dichotomous distance (same/different) between the (two evaluations of) two worlds.

(D7) stipulates that the distance between two models must be based on a non-draastic propositional distance between valuations. Clearly, (D7) is more demanding than (D6).

Proposition 3. Let d be a distance between Kripke models. If d satisfies (D7), then d satisfies (D6).

4 PREVIOUS DISTANCES BETWEEN KRIPKE MODELS

In [1], some measures between Kripke models have been pointed out. Those measures have not been primarily defined for KD$_{45n}$ models but can be adapted for this purpose, as follows.

\[A \text{ drastic propositional distance } d \text{ is a distance between valuations such that } \exists \alpha \in \mathbb{N}^* \text{ for which } d(\vartheta, \vartheta') = 0 \text{ if } \vartheta = \vartheta' \text{ and } d(\vartheta, \vartheta') = \alpha \text{ otherwise } (\text{the usual drastic distance } d_D \text{ is recovered for } \alpha = 1). \]

\[\text{Lemma 2. Let } d \text{ be a mapping from } K^2 \text{ to } \mathbb{R}. \text{ If } d \text{ satisfies (D1)-(D4), then } d \text{ cannot satisfy:} \]

\[\begin{align*}
& (D5) \quad d(M, M') \geq d(M, M') + d(M', M'') \\
& (D6) \quad d(M, M'') = d(M, M') + d(M', M'')
\end{align*} \]

\[\text{To define distances on KD}_{45n} \text{ Kripke models we consider some additional expected properties. First, we must introduce a modification function that is used to change the valuation of a world } w' \text{ in a model } M \text{ to match the valuation } \vartheta. \]

\[\text{Definition 6 (Modification Function). Let } M = \langle W, R, V, w \rangle, w' \in W, \text{ and } \vartheta \text{ a valuation. We denote by } M(\vartheta \to w') \text{ the model obtained by changing the valuation of } w' \text{ by } \vartheta, \text{ defined as follows:} \]

\[M(\vartheta \to w') = \langle W, V', R, w \rangle \]

\[V' = \{V_v | v \neq w'\} \cup \{V_{w'p} | p \in P, V_{wp}(p) = \vartheta(p)\} \]

\[\text{We can now define the additional properties:} \]

\[(D5) \quad \forall M = \langle W, R, V, w \rangle, \forall w', w'' \in W, \forall \vartheta, \vartheta', \text{ if } \text{height}_M(w') < \text{height}_M(w'') \text{ and } M' = M(\vartheta \to w') \text{ and } M'' = M(\vartheta' \to w'') \text{ with } V_{w'} \neq \vartheta \neq V_{w''}, \text{ then } d(M', M'') > d(M, M''). \]

\[(D6) \quad \exists M = \langle W, R, V, w \rangle, \exists w' \in W, \exists \vartheta, \vartheta' \text{ such that } M' = M(\vartheta \to w') \text{ and } M'' = M(\vartheta' \to w'') \text{ with } \vartheta \neq V_{w'} \neq \vartheta', \text{ and } d(M', M'') \neq d(M, M''). \]

\[(D7) \quad \text{There is a non-draastic propositional distance } d_v \text{ such that } \forall M = \langle W, R, V, w \rangle, \forall w' \in W, \forall \vartheta, \vartheta', \text{ if } M' = M(\vartheta \to w') \text{ and } M'' = M(\vartheta' \to w') \text{ and } d_v(\vartheta, V_{w'}) < d_v(\vartheta', V_{w'}), \text{ then } d(M', M'') < d(M, M''). \]

\[\text{(D5) expresses the fact that the higher the modal depth of discordance (i.e., the higher the modal degree of the formulas that are not satisfied in both models), the lower the distance between the two models. Basically, this property has to be evaluated by considering the use of epistemic models for making strategic decisions. As a matter of illustration, consider a card game, or any imperfect information game (like Cluedo, for instance). Then it is more harmful for a player A to make a mistake about the beliefs of another player B (since this piece of beliefs is used for making many strategic decisions), rather than to be mistaken with the beliefs of B about the beliefs of A about the beliefs of B.} \]

\[\text{(D6) expresses that not all discordances at modal degree } k \text{ are equivalent, which means that one has to do better than the drastic dichotomous distance (same/different) between the (two evaluations of) two worlds.} \]

\[\text{(D7) stipulates that the distance between two models must be based on a non-draastic propositional distance between valuations. Clearly, (D7) is more demanding than (D6).} \]

\[\text{Proposition 3. Let } d \text{ be a distance between Kripke models. If } d \text{ satisfies (D7), then } d \text{ satisfies (D6).} \]

\[\text{4 PREVIOUS DISTANCES BETWEEN KRIPKE MODELS} \]

\[\text{In [1], some measures between Kripke models have been pointed out. Those measures have not been primarily defined for KD}_{45n} \text{ models but can be adapted for this purpose, as follows.} \]

\[\text{A drastic propositional distance } d \text{ is a distance between valuations such that } \exists \alpha \in \mathbb{N}^* \text{ for which } d(\vartheta, \vartheta') = 0 \text{ if } \vartheta = \vartheta' \text{ and } d(\vartheta, \vartheta') = \alpha \text{ otherwise (the usual drastic distance } d_D \text{ is recovered for } \alpha = 1).} \]
\(\sigma(v, v') \) measures a degree of similarity between the worlds \(v \) and \(v' \). Likewise, \(\sigma(S, S') \) measures a degree of similarity between the sets of worlds \(S \) and \(S' \). To be more precise, \(\sigma(v, S') \) is the degree of similarity of a world \(v \) with \(S' \). The degree of similarity between \(S \) and \(S' \) is just the average of such degrees. \(s^k(M, M') \) is a tuple which represents how much two Kripke models are similar relatively to their respective modal depth. See [2] for more details and justifications about this similarity degree.

Based on this similarity degree, we can define a distance between Kripke models. We add the distances between \(\mu(M) \) and \(\mu(M') \) relative to their modal depth, by recovering the element of the tuple \(s^k(\mu(M), \mu(M')) \) corresponding to each depth. The distance between these two models at a depth \(p \leq k \) is given by the difference between 1 (the maximal degree) and the \((p+1) \)th element of \(s^k(\mu(M), \mu(M')) \).

Definition 11 (Similarity Distance). Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two Kripke models. Let \(n = |W| \cdot |W'| + 1 \).

\[
\delta_{\text{sim}}(M, M') = \sum_{i=0}^{n} (1 - s_i(\mu(M), \mu(M'))) \]

where \(s_i(\mu(M), \mu(M')) \) is the \((i+1) \)th element of the tuple \(s^k(\mu(M), \mu(M')) \).

The problem with those distances is that none of them satisfies the expected properties introduced in the previous section:

Proposition 5. \(\delta_{\text{min}} \) and \(\delta_{\text{A}} \) do not satisfy any of (D5), (D6) or (D7).

In the next section we introduce new distances that will be proved to satisfy the expected properties.

5 FAMILIES OF DISTANCES BETWEEN KRIEMPE MODELS

In the following, we define several families of distances \(D^m_n \). Each distance of a family \(D^m_n \) is defined for finite Kripke models containing at most \(m \) worlds. Whatever the finite set of models under consideration, the existence of an \(m \) suited to it is ensured by the fact that all the models it contains are finite. For each family of distances we point out, all distances will be considered between the minimal models associated with the two Kripke models considered at start (note the use of the \(\mu \) minimisation function in the definitions). This is necessary to ensure that bisimilar models are at null distance, as expected.

5.1 Bisimulation Distances

Here we exploit the ideas behind bisimulation in order to define distances between Kripke models. First, we introduce a useful result, namely that there is a rank \(k \) from which a \(k \)-bisimulation implies a \((k+1)\)-bisimulation since we consider a finite set \(\mathcal{P} \) of propositional variables. In a first place, we prove a lemma which states that for two Kripke models \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \), if there is a \(n \)-bisimulation \((n > 1) \) Z and \((w, w') \in Z \), then the existence of a sequence of \(n-1 \) worlds \(w_i \) such that \(w R w_1 R w_2 \cdots R w_{n-1} \) implies the existence of a sequence of \(n-1 \) worlds \(w_i' \) such that \(w' R' w'_1 R' w'_2 \cdots R' w'_{n-1} \), such that \(Z \) is a 1-bisimulation and \((w_{n-1}, w'_{n-1}) \in Z \), and conversely.

Lemma 6. Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two finite pointed Kripke models. Let \(Z \subseteq W \times W' \), if \(Z \) is a \(n \)-bisimulation \((n > 1) \) and \((w, w') \in Z \) then:

1. if \(\exists v \in W \) such that \(w R \epsilon_1 \cdots R \epsilon_{n-1} v \), then \(\exists v' \in W' \) such that \(w' R' \epsilon_1 \cdots R' \epsilon_{n-1} v' \) and there exists a 1-bisimulation \(Z' \) and \((v, v') \in Z' \).
2. if \(\exists v' \in W' \) such that \(w' R' \epsilon_1 \cdots R' \epsilon_{n-1} v' \), then \(\exists v \in W \) such that \(w R \epsilon_1 \cdots R \epsilon_{n-1} v \) and there exists a 1-bisimulation \(Z' \) and \((v, v') \in Z' \).

The following proposition, based on Lemma 6, shows that for a given rank \(k \), if two models are \(k \)-bisimilar, then they are \((k+1)\)-bisimilar. \(k \) is taken here as the size of the largest set of worlds of the two models, plus one. This result reinforces a similar result due to Balbiani [2].

Proposition 7. Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two Kripke models containing at most \(m \) worlds. If \(M \equiv_{m+1} M' \), then \(M \equiv M' \).

We now use the notion of \(n \)-bisimulation to define a family of distances \(D^{nB}_m \). To do so, we look at how deep the two Kripke models under consideration are bisimilar, then we subtract that value to the maximal possible value.

Definition 12 (n-Bisimulation-based Distance). Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two Kripke models containing at most \(m \) worlds. We denote by \(d^{nB}(M, M') \) the distance between \(M \) and \(M' \), defined as follows:

\[
d^{nB}(M, M') = (m+1) - \max (i | \mu(M) \equiv_i \mu(M'), i \in [0; m+1])
\]

An illustration of this distance (and the other distances introduced in the paper) can be found in the forthcoming Example 1.

It is easy to check that \(d^{nB} \) satisfies (D5). Indeed, the purpose of this distance is to look at how deep the two models are bisimilar. Thus, when the modal depth of difference increases, the distance between the models decreases. But since we do not consider the valuations of the worlds, \(d^{nB} \) satisfy neither (D6) nor (D7).

Proposition 8.

1. \(d^{nB} \) satisfies (D1)-(D4).
2. \(d^{nB} \) satisfies (D5).
3. \(d^{nB} \) satisfies neither (D6) nor (D7).

The next distance is based on an approximation of the notion of bisimulation in which the valuations of the worlds may differ. Thus, two models quite close to each other are considered as \(\varepsilon \)-bisimilar. In this case, we first use a propositional distance \(d \) between valuations from \(2^P \times 2^P \) to \(\mathbb{N} \), supposed to satisfy the usual distance properties (indistinguishability, symmetry, subadditivity and nonnegativity) [23].

Definition 13 (\(\varepsilon \)-Bisimilarity). Let \(d \) be a propositional distance. Let \(e \in \mathbb{N} \). Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two Kripke models containing at most \(m \) worlds. \(M \) and \(M' \) are \(\varepsilon \)-bisimilar, noted \(M \equiv^{\varepsilon,e} M' \), if and only if there is a \(d \)-bisimulation \(Z \subseteq W \times W' \).

Definition 14 (\(\varepsilon \)-Bisimulation). Let \(d \) be a propositional distance. Let \(e \in \mathbb{N} \). Let \(M = \langle W, R, V, w \rangle \) and \(M' = \langle W', R', V', w' \rangle \) be two Kripke models containing at most \(m \) worlds. Let \(Z \subseteq W \times W' \). \(Z \) is a \(d \)-bisimulation if and only if \((w, w') \in Z \) and for all \((v, v') \in Z \):

\[w R_{\varepsilon_1} w_1 R_{\varepsilon_2} w_2 \cdots R_{\varepsilon_{n-1}} w_{n-1} \]
1. Given any propositional distance \(d\epsilon\), use the notion of \(\varepsilon\) of the worlds causing the discordance, if a non-drastic propositional distance between \(M\) and \(M'\), defined as follows:

\[
d_\varepsilon(M, M') = \min\{\varepsilon | \mu(M) \equiv_{\varepsilon} \mu(M')\}.
\]

It is clear that the distance \(d_\varepsilon\) does not satisfy (D5). Indeed, here, we seek for an epsilon regardless of the depth of the discordance between the models. But, as we somehow check the evaluations of the worlds causing the discordance, if a non-drastic propositional distance \(d\epsilon\) is used, \(d_\varepsilon\) satisfies (D7) and thereby (D6).

Proposition 9.

1. Given any propositional distance \(d\epsilon\) (from \(2^\varepsilon \times 2^\varepsilon\) to \(\mathbb{N}\)), \(d_\varepsilon\) satisfies (D1)-(D4).
2. \(d_\varepsilon\) does not satisfy (D5) in general.
3. For any non-drastic propositional distance \(d\epsilon\) (from \(2^\varepsilon \times 2^\varepsilon\) to \(\mathbb{N}\)), \(d_\varepsilon\) satisfies (D6) and (D7).

The ideas of the two previous “weak” bisimilarities can be taken together:

Definition 16 (de-n-Bisimilarity). Let \(d\epsilon\) be a propositional distance. Let \(\varepsilon\in\mathbb{N}\). Let \(M = \langle W, R, V, w_0 \rangle\) and \(M' = \langle W', R', V', w_0' \rangle\) be two Kripke models containing at most \(m\) worlds. \(M\) and \(M'\) are de-\(n\)-bisimilar, noted \(M \equiv_{\varepsilon}^{de} M'\), if and only if there is a de-\(n\)-bisimulation \(Z \subseteq W \times W'\).

Definition 17 (de-\(n\)-Bisimilation). Let \(d\epsilon\) be a propositional distance. Let \(\varepsilon\in\mathbb{N}\). Let \(M = \langle W, R, V, w_0 \rangle\) and \(M' = \langle W', R', V', w_0' \rangle\) be two Kripke models containing at most \(m\) worlds. Let \(Z \subseteq W \times W'\):

- \(Z\) is a de-0-bisimulation.
- \(Z\) is a de-1-bisimulation if and only if \((w, w') \in Z\) and \(d(V_w, V_{w'}) \leq \varepsilon\).
- \(Z\) is a de-\((n+1)\)-bisimulation (\(n > 1\)) if and only if \((w, w') \in Z\) and for all \((v, v') \in Z:\n
1. \(d(V_v, V_{v'}) \leq \varepsilon\), and
2. if \(\exists u \in W\) such that \((v, u) \in R_a\), then \(u' \in W'\) such that \((v', u') \in R_a'\) and \(Z'\) such that \((u, u') \in Z'\), and
3. if \(\exists u' \in W'\) such that \((v', u') \in R_a'\), then \(\exists u \in W\) such that \((v, u) \in R_a\) and \(Z'\) such that \((u, u') \in Z'\), and
4. \(Z'\) is a \(n\)-bisimulation.

Clearly, we can also take advantage of the notion of de-\(n\)-bisimulation to establish another family of distances \(D_{\varepsilon\gamma}\). Here, for each depth \(p\), we look for the smallest \(\varepsilon\) such that both models are de-\(p\)-bisimilar. We also apply a discounting factor \(\gamma \in \{0; 1\}\) to each of these distances. Thus, the deeper a difference between two models, the less important for the distance between them.

Definition 18 (de-\(n\)-Bisimilation-based Distance). Let \(d\epsilon\) be a propositional distance. Let \(\varepsilon\in\mathbb{N}\). Let \(M = \langle W, R, V, w_0 \rangle\) and \(M' = \langle W', R', V', w_0' \rangle\) be two Kripke models containing at most \(m\) worlds. Let \(\gamma \in \{0; 1\}\). We denote by \(d_\varepsilon\gamma(M, M')\) the distance between \(M\) and \(M'\), defined as follows:

\[
d_\varepsilon\gamma(M, M') = \sum_{i=1}^{m} (\min(\varepsilon | \mu(M) \equiv_{\varepsilon} \mu(M') \times (\gamma^{i-1}))
\]

It is easy to show that, for a small enough discounting factor, \(d_\varepsilon\gamma\) satisfies (D5). Like we did with \(d_\varepsilon\), we check the evaluations of the worlds causing the discordance. Hence, again, if a non-drastic propositional distance \(d\epsilon\) is used, \(d_\varepsilon\gamma\) satisfies (D7) and (D6).

Proposition 10.

1. Given any propositional distance \(d\epsilon\) (from \(2^\varepsilon \times 2^\varepsilon\) to \(\mathbb{N}\)), and any discounting factor \(\gamma\), \(d_\varepsilon\gamma\) satisfies (D1)-(D4).
2. Given any propositional distance \(d\epsilon\) (from \(2^\varepsilon \times 2^\varepsilon\) to \(\mathbb{N}\)), there is a \(\lambda \in \{0; 1\}\) such that, for all \(\gamma < \lambda\), \(d_\varepsilon\gamma\) satisfies (D5).
3. For any non-drastic propositional distance \(d\epsilon\) (from \(2^\varepsilon \times 2^\varepsilon\) to \(\mathbb{N}\)), \(d_\varepsilon\gamma\) satisfies (D6) and (D7).

5.2 Tree-based Distance

We now define a family of distances between Kripke models based on the tree models that correspond to them. The idea is to unveil the Kripke models into trees and to compare how much these trees can be matched, by looking at the best matching.

Definition 19 (Tree Model). Let \(M = \langle W, R, V, w_0 \rangle\) be a finite pointed Kripke model. The tree model corresponding to \(M\) is a tuple \(\langle W', R', V', w_0' \rangle\) where:

- \(W' = \{w_0\} \cup \{v_0 \mid v_0 = w_{01} \ast v_1 \ast \cdots \ast w_n \ast v_n \mid (w_0, w_1) \in R_{a_1}, \ldots, (w_{n-1}, w_n) \in R_{a_n}\}
- \(R' = \{R_a' | a \in A\}
- \(R'_a = \{\sigma, \sigma w | \sigma, \sigma w \in W'\}
- \(V_w'(p) = V_{w_0}(p)
- \(V_{aw}'(p) = V_{w_0}(p)

Definition 20 (Tree Function). Let \(M = \langle W, R, V, w_0 \rangle\) be a minimal finite pointed Kripke model. We denote by \(\tau(M)\) the tree model corresponding to \(M\).

Proposition 11. Let \(M = \langle W, R, V, w_0 \rangle\) be a minimal finite pointed Kripke model. \(\tau(M)\) is bisimilar to \(M\).

Assume that we want to measure the distance between \(M\) and \(M'\). First, we generate the corresponding tree models \(A\) and \(A'\). We take advantage of the Hamming distance \(d_h\) to compare valuations. We measure the distance between the roots of two trees and make the sum with the distance between the sub-trees of \(A\) and \(A'\) as follows:

- for each sub-tree \(\alpha\) of \(A\), we recursively seek for the sub-tree \(\alpha'\) of \(A'\) whose distance with \(\alpha\) is the smallest. Once all pairs \((\alpha, \alpha')\) are found, we make the sum of the distances and apply a discounting factor \(\gamma \in \{0; 1\}\). Note that an \(\alpha\) can only match one \(\alpha'\). In the event that a sub-tree \(\alpha\) does not have a corresponding sub-tree, we make it correspond to a fictitious sub-tree \(\pi\) which, at a distance \(d_{max}\) of \(\alpha\), where \(d_{max}\) is the maximum Hamming distance between two valuations.

Let \(D_{\varepsilon\gamma}^m\) be a family of distances defined on a finite set \(M\) of finite tree models containing at most \(m\) worlds.
Definition 21 (Tree-based Distance). Let \(M = (W, R, V, w) \) and \(M' = (W', R', V', w') \) be two tree models containing at most \(m \) worlds. Let \(\gamma \in (0; 1] \).

\[
d T \pi^\gamma (M, M') = h(w, w') \cdot \gamma^{\text{height}_M(w)} + \sum_{a \in A} d T \pi^\gamma_a (\tau(M), \tau(M'))
\]

where

\[
h(w, w') = \begin{cases}
 d_{\max}^a & \text{if } w = \pi \text{ or } w' = \pi \\
 d_b(V_w, V'_w) & \text{otherwise}
\end{cases}
\]

\[
d T \pi^\gamma_a (\tau(M), \tau(M')) = \min_{b \in R_a} \left(\sum_{i=0}^a d T \pi^\gamma (W_i, R_i(w), V_i) \right)
\]

\[
B_a(w, w') = \{ b | b \in P(\{ R_a(w) \cup \{ \pi \} \times \{ R_a(w') \} \cup \{ \pi \}) \text{ and } R_a(w) \subseteq \text{dom}(b) \text{ and } R_a(w') \subseteq \text{img}(b) \}
\]

For a small enough discounting factor, \(d T \pi^\gamma \) satisfies \(\text{(D5)} \). And, as we compare the valuations of the worlds causing the difference between the models, \(d T \pi^\gamma \) satisfies \(\text{(D7)} \) and \(\text{(D6)} \).

Proposition 12.

1. Given any discounting factor \(\gamma \), \(d T \pi^\gamma \) satisfies \(\text{(D1)}-\text{(D4)} \).
2. \(\exists \lambda \in (0; 1] \) such that \(\forall \gamma < \lambda \), \(d T \pi^\gamma \) satisfies \(\text{(D5)} \).
3. Given any discounting factor \(\gamma \), \(d T \pi^\gamma \) satisfies \(\text{(D6)} \) and \(\text{(D7)} \).

5.3 Worlds Sets Distance

Finally, we define a family of distances \(D_m^{d WS^n} \). Each distance of this family is based on a distance \(d \) between sets of worlds\(^5\), which is itself based on a propositional distance (also noted \(d \)) between the valuations associated with the worlds. Here we calculate, for each height \(p \), the distance between the two sets of valuations at a height \(p \). We also apply a discounting factor \(\gamma \in (0; 1] \) to each of the intermediate distances.

Definition 22 (Worlds Sets Distance). Let \(M = (W, R, V, w) \) and \(M' = (W', R', V', w') \) be two Kripke models containing at most \(m \) worlds and \(d \) be a distance between world sets. Let \(\gamma \in (0; 1] \). We denote by \(d WS^n_\gamma (M, M') \) the distance between \(M \) and \(M' \), defined as follows:

\[
d WS^n_\gamma (M, M') = F(\sigma_0(\mu(M), \mu(M'))), \ldots, \sigma_n(\mu(M), \mu(M'))
\]

where

\[
\sigma_0(M, M') = d(\{ \{ w \} \})
\]

\[
\sigma_1(M, M') = d(\{ R_a(w), R'_a(w') \} | a \in A)
\]

\[
\vdots
\]

\[
\sigma_n(M, M') = d(\{ R_{a_1} \circ \cdots \circ R_{a_{n+1}}(w), R'_{a_1} \circ \cdots \circ R'_{a_{n+1}}(w') \} | a_{i+1} \neq a_{i+1} \in A)
\]

\[
F(\sigma_0, \ldots, \sigma_n) = \sum_{i=0}^n (\sigma_i \cdot \gamma^i)
\]

For example, we can take advantage of the Hausdorff distance [13] that we adapt to KD45\(n \) models.

Definition 23 (Hausdorff Distance). Let \(W \) and \(W' \) be two sets of worlds. We define the Hausdorff distance between \(W \) and \(W' \) by:

\[
H(W, W') = \max \left(\frac{\max(\min(d_1(w, w') | w' \in W') | w \in W)}{\max(\min(d_1(w, w') | w \in W) | w' \in W')} \right)
\]

\(d \) is supposed to satisfy the usual distance properties (indistinguishability, symmetry, subadditivity and nonnegativity).

We denote by \(d WS^n_\gamma \) the distance defined by Definition 22 using the Hausdorff distance between worlds sets.

For any propositional distance \(d \) and a small enough discounting factor, \(d WS^n_\gamma \) satisfies \(\text{(D5)} \). As we check the valuations of the worlds using a non-drastic distance \(d \), \(d WS^n_\gamma \) also satisfies \(\text{(D7)} \) and so \(\text{(D6)} \). Contrastingly, if a drastic propositional distance \(D \) is used, \(d WS^n_\gamma \) satisfies neither \(\text{(D7)} \) nor \(\text{(D6)} \). Indeed, in this case, we do not look at the discordance between the valuations of the worlds.

Proposition 13.

1. Given any propositional distance \(d \) and any discounting factor \(\gamma \), \(d WS^n_\gamma \) satisfies \(\text{(D1)}-\text{(D4)} \).
2. Given any propositional distance \(d \), \(\exists \lambda \in (0; 1] \) such that \(\forall \gamma < \lambda \), \(d WS^n_\gamma \) satisfies \(\text{(D5)} \).
3. And, for any non-drastic distance \(d \), \(d WS^n_\gamma \) satisfies \(\text{(D6)} \) and \(\text{(D7)} \).

5.4 Comparing Distances

Our distances capture different intuitions about how close two Kripke models are. A key question when dealing with distances \(d \) is to determine how fine-grained they are. Stating it formally calls for the following notion of refinement:

Definition 24 (Refinement). Let \(d_1 \) and \(d_2 \) be two distances. \(d_1 \) is at least as fine as \(d_2 \) if \(d_2 \) (denoted \(d_2 \geq_f \)) if and only if \(\forall (a, b, c) \), if \(d_1(a, b) < d_1(a, c) \) then \(d_2(a, b) < d_2(a, c) \) and if \(d_1(a, b) = d_1(a, c) \) then \(d_2(a, b) = d_2(a, c) \).

Basically, a distance refines another one if it allows to obtain a finer distinction between models. So, if a distance can be refined by another (sensible) one, this can be seen as a flaw of the first, that does not do the full discrimination work.

We can show that no such refinement relation holds between the distances we have introduced:

Proposition 14. \(d \text{NBS}, d \text{EB}_0, d \text{ENB}_\gamma, d T \pi^\gamma, d WS^n_\gamma \) and \(d WS^n_\gamma \) are pairwise incomparable with respect to \(\geq_f \).

This result shows that we have obtained six truly different types of distances.

Let us now illustrate the differences between these distances on a small example.

Example 1. Consider the four models in Figure 1. The differences between \(M_1 \) and \(M_2 \) are in \(w'_1 \) and \(w'_2 \) (height = 1). In the first model agent 1 believes both 0001 and agent 2 believes both 1000, and in the second model agent 1 believes 0011 and agent 2 believes 1100. The difference between \(M_3 \) and \(M_4 \) is in \(w'_3 \) (height = 2). The differences between \(M_1 \) and \(M_4 \) are in \(w'_3 \) and \(w'_4 \) (height = 2).

Table 1 reports the distances between those models. One can check that \(d \text{NBS}, d \text{EB}_0, d \text{ENB}_\gamma, d T \pi^\gamma, d WS^n_\gamma \) and \(d WS^n_\gamma \) do not order these four models in the same way. Note also that the discounting factor \(\gamma = 1/2 \) is not small enough to ensure that \(\text{(D5)} \) is satisfied by each distance.

Another way to compare the distances under consideration is to focus on the satisfaction of expected properties \(\text{(D5)}-\text{(D7)} \). Table 2 summarizes the obtained results.

6 USE OF DISTANCES FOR BELIEF REVISION

We show now how the families of distances considered in the previous sections can be exploited to revise Kripke models, or more generally finite sets of Kripke models. Indeed, since, revising a Kripke...
model by a formula could lead to several (but a finite number of) models, being able to take account for such sets is indeed essential in order to possibly iterate the revision.

Let \(\alpha \) be a formula such that \(\deg(\alpha) = p \) and \(\mathcal{M}' \) be a finite set of (finite, pointed KD45_n) Kripke models containing at most \(m' \) worlds. In this case, each distance \(d \) of a family \(\mathcal{D}_m^\alpha \) is defined on a finite set \(\mathcal{M} \) of finite minimal Kripke models containing at most \(m \) worlds such that \(m = \max(m', |A|^p \cdot |P|^{p+1}) \). Doing so, we ensure that we can compare using \(d \) the models of \(\mathcal{M}' \) with the models of \(\alpha \).

We denote by \(\text{Mod}(\alpha) \) the set of minimal Kripke models \(M \) that satisfy \(\alpha \). The revision of \(\mathcal{M} \) by \(\alpha \) is a set of minimal Kripke models, noted \(\mathcal{M} \circ \alpha \). We expect from the revision operator \(\circ \) that it satisfies a set of rationality conditions, reminiscent to those proposed by Katsuno and Mendelzon in the case of classical propositional logic [17]:

\[
\begin{align*}
\text{(R1)} & \quad \mathcal{M} \circ \alpha \subseteq \text{Mod}(\alpha) \\
\text{(R2)} & \quad \text{if } \mathcal{M} \cap \text{Mod}(\alpha) \neq \emptyset, \text{ then } \mathcal{M} \circ \alpha = \mathcal{M} \cap \text{Mod}(\alpha) \\
\text{(R3)} & \quad \text{if } \text{Mod}(\alpha) \neq \emptyset, \text{ then } \mathcal{M} \circ \alpha \neq \emptyset \\
\text{(R4)} & \quad \text{if } \text{Mod}(\alpha) = \text{Mod}(\beta), \text{ then } \mathcal{M} \circ \alpha = \mathcal{M} \circ \beta \\
\text{(R5)} & \quad (\mathcal{M} \circ \alpha) \cap \text{Mod}(\beta) \subseteq \mathcal{M} \circ (\alpha \land \beta) \\
\text{(R6)} & \quad \text{if } (\mathcal{M} \circ \alpha) \cap \text{Mod}(\beta) \neq \emptyset, \text{ then } \mathcal{M} \circ (\alpha \land \beta) \subseteq (\mathcal{M} \circ \alpha) \cap \text{Mod}(\beta)
\end{align*}
\]

In the case of classical propositional logic, Katsuno and Mendelzon gave a representation theorem for characterizing all revision operators satisfying the expected conditions. This theorem is based on the concept of faithful assignment. It is interesting to adapt this concept to our framework to obtain conditions which are sufficient to ensure the rationality of a revision operator.

Definition 25 (Faithful assignment). A faithful assignment is a mapping that associates with any finite set \(\mathcal{M} \) of minimal Kripke models a pre-order \(\preceq_M \) on the set of Kripke models, such as:

- if \(M_1 \in \mathcal{M} \) and \(M_2 \in \mathcal{M} \), then \(M_1 \simeq_M M_2 \);
- if \(M_1 \in \mathcal{M} \) and \(M_2 \notin \mathcal{M} \), then \(M_1 \prec_M M_2 \);
- if \(M_1 = M_2 \), then \(\preceq_M = \simeq_M \).

We have the following result:

Proposition 15. Let \(\circ \) be a revision operator that associates with any finite set \(\mathcal{M} \) of minimal Kripke models and any formula \(\alpha \) of \(\mathcal{L} \) a set of minimal Kripke models. If there exists a faithful assignment that associates with each finite set of Kripke models \(\mathcal{M} \) a netherian\(^6\) total pre-order \(\preceq_M \) such that \(\mathcal{M} \circ \alpha = \min(\text{Mod}(\alpha), \preceq_M) \), then \(\circ \) satisfies (R1)-(R6).

Given a distance \(d \) between Kripke models and a finite set of Kripke models \(\mathcal{M} \), we note for any Kripke model \(M \), \(d(M, \mathcal{M}) = \min_{M' \in \mathcal{M}} (d(M, M')) \) and \(\text{height}(\mathcal{M}) = \max_{M' \in \mathcal{M}} (\text{height}(M')) \). As \(\mathcal{M} \) is finite, we can ensure that \(d(M, \mathcal{M}) \) and \(\text{height}(\mathcal{M}) \) are defined. On this basis, one can easily associate with \(d \) and \(\mathcal{M} \) a total pre-order \(\preceq_M \) by stating that \(M_1 \preceq_M M_2 \) if and only if \(d(M_1, \mathcal{M}) \leq d(M_2, \mathcal{M}) \).

To ensure that \(\preceq_M \) is netherian, we consider two additional conditions on \(d \):

Definition 26 (Bounded distance). A distance \(d \) is said to be bounded if and only if for any finite set of finite pointed Kripke models \(\mathcal{M} \), for any formula \(\alpha \) of \(\mathcal{L} \) such that \(\deg(\alpha) = k \), for any Kripke model \(M_2 \) such that

- \(M_2 \) satisfies \(\alpha \);
- \(\text{height}(M_2) > \max(k + 1, \text{height}(\mathcal{M})) \),

there is a Kripke model \(M_1 \) such that

- \(M_1 \) satisfies \(\alpha \);
- \(\text{height}(M_1) \leq \max(k + 1, \text{height}(\mathcal{M})) \);
- \(d(M_1, \mathcal{M}) \leq d(M_2, \mathcal{M}) \).

Definition 27 (Minimal model condition). A distance \(d \) between Kripke models satisfies the minimal model condition if and only if for all models \(M_1 \) and \(M_2 \), \(d(M_1, M_2) = d(\mu(M_1), \mu(M_2)) \).

When \(d \) is bounded, for any model \(M_2 \in \text{Mod}(\alpha) \), we know that there is a model \(M_1 \in \text{Mod}(\alpha) \) such that \(\text{height}(M_1) \leq \max(\deg(\alpha) + 1, \text{height}(\mathcal{M})) \) and \(d(M_1, \mathcal{M}) \leq d(M_2, \mathcal{M}) \). Yet, there is a finite number of models \(M_1 \) of \(\text{Mod}(\alpha) \) (up to bisimulation) verifying \(\text{height}(M_1) \leq \max(\deg(\alpha) + 1, \text{height}(\mathcal{M})) \), this ensure that \(\preceq_M \) is netherian.

\(^6\) A pre-order on a set \(E \) is netherian if there is no sequence of element of \(E \) that is infinite and strictly decreasing for the pre-order.
Definition 28 (Revision Operator). Let \(d\) be a bounded distance verifying the minimal model condition. Let \(M\) be a finite set of KD45\(_n\) finite minimal pointed Kripke models and let \(\alpha\) be a formula. We assign to \(M\) a netherian total pre-order \(\leq_M^\alpha\) on KD45\(_n\) finite Kripke models, defined as follows: \(M_1 \leq_M^\alpha M_2\) if and only if \(d(M_1, M) \leq d(M_2, M)\).

The revision operation \(\od\) associated with this pre-order \(\leq_M^\alpha\) is defined semantically:

\[
M \od \alpha = \min(\text{Mod}(\alpha), \leq_M^\alpha).
\]

So \(M\) is closer to \(M\) than \(M'\) when its distance with the models of \(M\) is lower than the distance of \(M'\) to the models of \(M\).

Proposition 16. Let \(d\) be any bounded distance verifying the minimal model condition. The revision operator \(\od\) satisfies the relevant conditions. Fortunately, this is the case:

Proposition 17. \(d\text{NB}, d\text{EB}_d, d\text{ENB}_d, d\text{TS}_d, d\text{WS}_d\) are bounded and satisfy the minimal model condition.

Consequently, we can define AGM revision operators on the sets of KD45\(_n\) models based on the five distances \(d\text{NB}, d\text{EB}_d, d\text{ENB}_d, d\text{TS}_d, d\text{WS}_d\). The distances \(d\text{ENB}_d, d\text{TS}_d, d\text{WS}_d\) appear as the most interesting ones (among those considered here), because they also satisfy all the expected properties (D1)-(D7).

We now illustrate the five revision operators corresponding to these distances.

Example 2. Let us consider the Kripke model \(M_0\) in Figure 2. In this situation, agent 1 believes \(x \land y\) and agent 2 believes \(x \land \neg y\) for our five revision operators \(\od\text{NB}, \od\text{EB}_d, \od\text{ENB}_d, \od\text{TS}_d, \od\text{WS}_d\). We are revising the model \(M_0\) by changing the real world and beliefs about the real world of the three agents.

Figure 3 shows two Kripke models \(M_1\) and \(M_2\). Although both models \(M_1\) and \(M_2\) are selected as models resulting from the revision \(\od\text{NB}\) using the operators \(\od\text{NB}_d, \od\text{EB}_d\) and \(\od\text{ENB}_d\), \(M_2\) is the only model resulting from the revision of \(M_0\) by \(\od\text{TS}\) using the operators \(\od\text{WS}_d\) and \(\od\text{TS}_d\).

Let us consider \(\od\text{NB}_d\). Since the valuation of the pointed world must change to satisfy \(\alpha\), all the models of \(\alpha\) are equidistant from \(M_0\). Let us now consider \(\od\text{EB}_d\) and \(\od\text{ENB}_d\). Since the valuation of the world accessible for agent 3 must completely change (from \(xy\)) to satisfy \(\alpha\), this time again, all models of \(\alpha\) are equidistant from \(M_0\). Finally, for \(\od\text{TS}_d\) and \(\od\text{WS}_d\), as the associated distances consider the valuation of each world at each height of the model, a closest model is one which coincides with \(M_0\) but for the valuations. Thus, \(\od\text{TS}_d\) and \(\od\text{WS}_d\) appear as the most appropriate distances for defining distance-based revision operators.

In [2] the modeled revision is a subjective revision, which means that the new information is received by one of the agents of the system (thus, after the revision, subjective models of this agent will be modified). Here, the revision which is defined is that of the observer of the multi-agent system, which describes the real world and the beliefs of the agents.

7 Conclusion

In this paper we have investigated distances between KD45\(_n\) Kripke models. The aim was to characterize revision operators based on these distances. We have identified properties that expected distances should satisfy, introduced new distances verifying those properties, and showed that these distances are incomparable with respect to refinement. Then, we have shown that the representation theorem in terms of faithful assignment defined by Katsuno and Mendelzon [16] can be adapted to define the revision of a KD45\(_n\) Kripke model by a formula. Finally, we have shown that all the distances we defined can be used to define distance-based revision operators.

Clearly enough, the distances defined here make sense for other classes of Kripke models than KD45\(_n\) ones. However it is not clear that the set of expected properties should remain the same. Identifying reasonable conditions to be satisfied by distances when revising preferences, programs, etc. is a perspective for further research.

REFERENCES

