Propositional Merging and Judgment Aggregation:
Two Compatible Approaches?

Patricia Everaere1 and Sébastien Konieczny2 and Pierre Marquis3

Abstract. There are two theories of aggregation of logical formulæ: merging and judgment aggregation. In this work we investigate the relationships between these theories; one of our objectives is to point out some correspondences/discrepancies between the associated rationality properties.

1 INTRODUCTION

Merging [6, 5] is a way to aggregate contradictory belief bases (or goal bases) coming from a group of agents, in order to obtain a collective belief (or goal) base. Merging operators have been defined and studied as an extension of AGM belief revision theory [4, 2].

Judgment aggregation (JA) has been introduced in political philosophy and social choice theory [9, 8]. The aim of judgment aggregation is to make collective yes/no judgments on several (possibly logically related) issues, from the judgments given on each issue by the members of a group.

Clearly enough, merging and JA do not coincide, since they do not have the same inputs and outputs, as illustrated in the following figure. Thus, merging takes as input a profile of \(n \) propositional bases \(K_i \), a formula \(\mu \) representing some integrity constraints on the result of the merging process,\footnote{Integrity constraints are omitted in the figure (i.e., \(\mu = \top \)).} and outputs an (aggregated/collective) base \(\Delta(K_1, \ldots, K_n) \). JA takes as input a profile \(P \) of \(n \) individual judgments \(\gamma_i \) on an agenda \(X \), i.e., a set of \(m \) propositional formulæ \(\varphi_k \) (considered as binary questions); a judgment \(\gamma_i \) is a vector of \(m \) binary values, so that \(\gamma_i(\varphi_k) = 1 \) precisely when agent \(i \) answer to \(\varphi_k \) is yes. A judgment aggregation correspondence \(\gamma(P) \) outputs a set of (aggregated/collective) judgments \(\gamma(P) \) on the same agenda.

\[
\begin{array}{ccc}
K_1, \ldots, K_n & \xrightarrow{\Delta} & \Delta(K_1, \ldots, K_n) \\
\gamma_1, \ldots, \gamma_n & \xrightarrow{\gamma} & \gamma(\gamma_1, \ldots, \gamma_n) \\
pC & & pC
\end{array}
\]

Accordingly, JA can be seen as an aggregation issue based on partial information, i.e., only the agents’ judgments on the questions \(\varphi_k \) are available, while in a merging process, the whole bases are considered. Thus, in order to compare both methods on a fair basis with respect to the informational contents, one needs to provide all the information merging use to the judgment aggregation method. This can be done easily by choosing the set of all interpretations (i.e. all complete formulæ) as the agenda.

For space reasons we can not provide a full formal background on belief merging and judgment aggregation; the reader can refer to [6] for belief merging and to [3] for judgment aggregation. The logical properties we consider in the following are reported in these papers.

2 MERGING VS. JUDGMENT AGGREGATION

In the following we assume that the agenda is the set of all interpretations (i.e. all complete formulæ) \(X = \{\omega_1, \ldots, \omega_m\} \). The connection between merging and JA illustrated on the previous figure takes advantage of a decision policy \(p_C \) that denotes the answer \(\gamma_i(\omega_j) \) agent \(i \) provides to question \(\omega_j \) of the agenda, i.e. \(p_C(K_i) = \gamma_i \) and:

- \(\gamma_i(\omega_j) = 1 \) if \(\omega_j \models K_i \) and \(\gamma_i(\omega_j) = 0 \) otherwise.

We also define the inverse operation \(p_C^{-1} \) as follows: \(p_C^{-1}(\gamma_i) = K_i \) such that the set of models \(\{K\} \) of \(K \) is \(\{\omega | \gamma_i(\omega_j) = 1\} \).

Thanks to the decision policy \(p_C \) we can associate a merging operator \(\Delta \) with a resolute JA correspondence \(\gamma \), and a resolute JA correspondence \(\gamma \) with a merging operator \(\Delta \), as follows:

Definition 1 Given an integrity constraint \(\mu \), a merging operator \(\Delta \) and a profile \(E = \{K_1, \ldots, K_n\} \), we note \(P = \{pC(K_1), \ldots, pC(K_n)\} \) and we define \(\forall \omega \models \mu \models \gamma(p_C(\omega)) = 1 \) if \(\omega \models \Delta(\mu)(E) \), \(\gamma(P) = \{\gamma(p_{C}(\omega)) | \mu \models \omega \} \).

- Given a non-empty set of interpretations \([\mu] \), a resolute judgment aggregation correspondence \(\gamma \) and a profile \(P = \{\gamma_1, \ldots, \gamma_n\} \) of judgments on \([\mu] \), we note \(E = \{p_{C}^{-1}(\gamma_1), \ldots, p_{C}^{-1}(\gamma_n)\} \) and \([\Delta_{\mu}(E)] = \{\omega \in [\mu] | \exists \gamma_{p_{C}(\omega)} \in \gamma(P) \text{ s.t. } \gamma_{p_{C}(\omega)}(\omega) = 1\} \).

To study the links between merging and judgment aggregation properties, in the following we enumerate the standard IC merging properties and see what are their corresponding properties in judgment aggregation.

- **(IC0)** By construction of \(\Delta \), (IC0) is satisfied, and this postulate does not impose any constraint on the corresponding \(\gamma \).

- **(IC1)** Proposition 1 \(\Delta \) satisfies (IC1) iff \(\gamma \) satisfies collective rationality.

- **(IC2)** Let us define an additional property for JA methods, namely consensuality:

Definition 2 A judgment profile \(P = (\gamma_1, \ldots, \gamma_n) \) is consensual for a given agenda \(X = \{\varphi_1, \ldots, \varphi_m\} \) when there exists \(\varphi_j \) such that \(\gamma_i(\varphi_j) = 1 \) for all \(i \).
Consensuality. \(\gamma \) satisfies consensuality iff for any agenda \(X = \{ \varphi_1, \ldots, \varphi_m \} \) and any consensual judgment profile \(P = (\gamma_1, \ldots, \gamma_n) \) for it, we have \(\gamma_i(\varphi_j) = 1 \) iff \(\gamma_j(\varphi_i) = 1 \) for all \(i \).

Proposition 2 \(\Delta \) satisfies (IC2) iff \(\gamma \) satisfies consensuality.

Proposition 3 \(\Delta \) satisfies (IC3) iff \(\gamma \) satisfies anonymity.

Proposition 4 If \(\gamma \) satisfies neutrality,\(^5\) then \(\Delta \) satisfies (IC4).

Proposition 5 Let us now define two additional properties for JA methods, based on the consistency condition that exists for voting methods \([12, 1]\). They correspond respectively to properties (IC5) and (IC6).

Weak consistency. For any two judgment profiles \(P \) and \(P' \) and any \(\varphi \in X \), if \(\gamma_P(\varphi) = 1 \) and \(\gamma_{P'}(\varphi) = 1 \), then \(\gamma_{P \cup P'}(\varphi) = 1 \).

Consistency. For any two judgment profiles \(P \) and \(P' \). If there is \(\varphi \in X \), s.t. \(\gamma_P(\varphi) = 1 \) and \(\gamma_{P'}(\varphi) = 1 \), then for every \(\psi \in X \), if \(\gamma_P(\psi) = 1 \) then \(\gamma_{P \cup P'}(\psi) = 1 \) and \(\gamma_{P'}(\psi) = 1 \).

Quite surprisingly these conditions have not been considered as standard ones for JA methods\(^6\).

Proposition 6 \(\Delta \) satisfies (IC5) iff \(\gamma \) satisfies weak consistency

Proposition 7 \(\Delta \) satisfies (IC7) iff \(\gamma \) satisfies Sen’s property \(\alpha \).

Proposition 8 If \(\gamma \) satisfies Sen’s property \(\alpha \) and Sen’s property \(\beta \), then \(\Delta \) satisfies (IC8). If \(\Delta \) satisfies (IC8), then \(\gamma \) satisfies Sen’s property \(\beta \).

Notice that there is no direct correspondence between (IC8) and Sen’s property \(\beta \), we need also Sen’s property \(\alpha \) to obtain (IC8).

The following proposition summarizes the results:

Proposition 9 \textbullet If \(\gamma \) satisfies collective rationality, consensuality, anonymity, neutrality, weak consistency, consistency, Sen’s property \(\alpha \) and Sen’s property \(\beta \), then \(\Delta \) is an IC merging operator (it satisfies (IC0-IC8)).

\textbullet If \(\Delta \) is an IC merging operator (it satisfies (IC0-IC8)), then \(\gamma \) satisfies collective rationality, consensuality, anonymity, weak consistency, consistency, Sen’s property \(\alpha \) and Sen’s property \(\beta \).

Let us also stress that a JA operator cannot satisfy both consensuality and majority preservation:

Proposition 10 Consensuality and majority preservation cannot be satisfied together.

Surprisingly, unanimity and consensuality are not logically connected:

Proposition 11 Consensuality does not imply unanimity and unanimity does not imply consensuality.

Now that the connections between the postulates satisfied by \(\Delta \) and those satisfied by the corresponding \(\gamma \) have been made precise, a key question is to determine whether one can find existing JA operators satisfying all JA postulates above. Interestingly, the answer is positive: the ranked majority methods proposed in \([3]\).\(^7\) Especially this is the case of the ranked majority judgment aggregation methods \(\gamma^{RM\alpha} \) with \(\oplus = \Sigma \) or \(\oplus = \text{lexmax} \) (or more generally with any \(\oplus \) satisfying strict non-decreasingness) – all these operators coincide when the agenda \(X \) is the set of all interpretations.

Proposition 12 Let the agenda \(X \) be the set of all interpretations. For any \(\oplus \) satisfying strict non-decreasingness, \(\gamma^{RM\alpha} \) satisfies collective rationality, collective completeness, anonymity, neutrality, unanimity, consensuality, weak consistency and consistency, Sen’s properties \(\alpha \) and \(\beta \). It satisfies neither independence nor majority preservation.

3 CONCLUSION

In this paper we have sketched some relationships between propositional merging operators and judgment aggregation ones in the full information case (when the agenda contains all possible interpretations). We have also obtained some results in the general case, which cannot be reported here but are left for the long version of this paper.

REFERENCES

\(^5\) We consider here the JA standard notion of neutrality \([9]\), and not the one proposed in \([3]\).

\(^6\) We are only aware of \([7, 11]\) that gives the consistency condition (but called it separability).

\(^7\) Some operators of \([7]\) are recovered as special cases of ranked majority

methods (see \([3]\)), so they also satisfy these properties.