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Abstract

We present SAT encoding schemes for distance-based belief
merging operators relying on the (possibly weighted) dras-
tic distance or the Hamming distance between interpreta-
tions, and using sum, GMax (leximax) or GMin (leximin)
as aggregation function. In order to evaluate these encoding
schemes, we generated benchmarks of a time-tabling prob-
lem and translated them into belief merging instances. Then,
taking advantage of these schemes, we compiled the merged
bases of the resulting instances into query-equivalent CNF
formulae. Experiments have shown the benefits which can be
gained by considering the SAT encoding schemes we pointed
out. Especially, thanks to them, we succeeded in comput-
ing query-equivalent formulae for merging instances based
on hundreds of variables, which are out of reach of previous
implementations.

Introduction

In this paper, we are concerned with propositional belief
merging. With a profile of propositional belief bases (finite
sets of propositional formulae, interpreted conjunctively),
each of them representing the beliefs of an agent, and an
integrity constraint (a propositional formula representing
some laws which must be satisfied), a belief merging oper-
ator associates a propositional belief base which represents
the beliefs of the group of agents.

Propositional belief merging has received much atten-
tion for the past twenty years. Several belief merging op-
erators have been defined and investigated so far from a
logical standpoint, see e.g., (Lin 1996; Revesz 1997; Lib-
eratore and Schaerf 1998; Konieczny and Pino Pérez 2002;
Konieczny and Pino Pérez 2011). An important subset of
propositional merging operators which have been studied in
depth consists of the distance-based operators (Konieczny,
Lang, and Marquis 2004; Everaere, Konieczny, and Marquis
2010). For such operators, the models of the merged base are
precisely the models of the integrity constraint which are at
a minimal distance of the input profile. The distance to be
minimized is the aggregated distance of the constraint to the
bases of the profile.

Contrastingly, far less studies have focused to date on the
computational aspects of propositional belief merging, es-
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pecially about the corresponding inference problem: given a
profile of belief bases, an integrity constraint and a query,
determine whether the query is a logical consequence of
the merged base. More precisely, though the computational
complexity of the inference problem for several merging
operators has been identified (Konieczny, Lang, and Mar-
quis 2004; Everaere, Konieczny, and Marquis 2010), very
few implementations of such operators exist. This is all
the more salient for distance-based belief merging opera-
tors since, as far as we know, no implementation has been
achieved for them, but the one reported in (Gorogiannis and
Hunter 2008), which is based on representations of the input
bases by ordered binary decision diagrams (OBDD) (Bryant
1986). Such representations facilitate the dilation of formu-
lae, which is a key operation for some distance-based merg-
ing operators. (Gorogiannis and Hunter 2008) present some
empirical results showing that an OBDD representation of the
merged base can be computed, provided that the number of
propositional variables under consideration remains small
enough (up to 20 variables). However, the issue of deter-
mining how practical distance-based merging is when many
more variables are considered is still open, despite the fact
that being able to handle more variables is mandatory for
dealing with instances going beyond toy problems.

This paper contributes to fill this gap. A first contribu-
tion consists of SAT encoding schemes for belief merging
operators from the literature, namely those for which the
(possibly weighted) drastic distance or the Hamming dis-
tance between worlds is considered, and the aggregation
function is Σ (sum), GMax (leximax) or GMin (leximin)
(Konieczny, Lang, and Marquis 2004; Everaere, Konieczny,
and Marquis 2010). Encoding propositional merging into
SAT enables to take advantage of the recent and impressive
progress achieved in SAT solving, and related problems, es-
pecially the optimization problem known as weighted par-
tial MAXSAT. Basically, the encoding schemes we point
out in this paper follow a two-step compilation process: (1)
the value of the distance of the integrity constraint to the
profile is computed once using a solver for weighted par-
tial MAXSAT (this amounts to an optimization problem),
(2) a hard constraint (i.e., the resulting encoding) is gen-
erated, stating that the distance of the integrity constraint
to the profile must be equal to that value. Since this con-
straint is query-equivalent to the merged base and has a
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size that is polynomial in the size of the input of the in-
ference problem, this shows formally that this problem is
compcoNP-complete (Liberatore 1998); the membership to
compcoNP showing that this inference problem can be re-
duced to coNP after a polysize preprocessing (which does
not depend on the query). This extends to the belief merg-
ing situation some results known for Dalal revision (Dalal
1988), and reported in (Liberatore 1998). Another contribu-
tion of the paper is the description of a number of bench-
marks, obtained by generating instances of a time-tabling
problem, then translating them into instances of the merg-
ing problem. Taking advantage of our encoding schemes,
the resulting instances are then compiled into CNF formu-
lae which are query-equivalent to the corresponding merged
bases. Finally, a last contribution of this work consists of
an empirical evaluation of the encoding schemes we have
introduced, showing significant computational benefits. Es-
pecially, we succeeded in computing query-equivalent rep-
resentations of the merged bases for instances based on hun-
dreds of variables and out of reach of previous implementa-
tions of distance-based merging operators.

Additional ressources (a detailed example, some empiri-
cal results, the time-tabling benchmarks used in our experi-
ments, the generator of time-tabling instances, the translator
into instances of belief merging, and the compiler of such
instances into CNF encodings) are available on-line from
http://www.cril.fr/KC.

A Glimpse at Belief Merging

Let LP be a propositional language built up from a finite
set of propositional variables P and the usual connectives.
⊥ (resp. �) is the Boolean constant always false (resp.
true). An interpretation (or world) is a mapping from P to
{0, 1}.The set of all interpretations is denoted W . An inter-
pretation ω is a model of a formula ϕ ∈ LP if and only if
it makes it true in the usual truth functional way. Mod(ϕ)
denotes the set of models of the formula ϕ, i.e., Mod(ϕ) =
{ω ∈ W | ω |= ϕ}. |= denotes logical entailment and ≡
logical equivalence, i.e., ϕ |= ψ iff Mod(ϕ) ⊆ Mod(ψ)
and ϕ ≡ ψ iff Mod(ϕ) =Mod(ψ). Var(ϕ) denotes the set
of variables occurring in ϕ. A formula α is query-equivalent
to a formula β if Var(β) ⊆ Var(α) and when for every
formula γ such that Var(γ) ⊆ Var(β), we have α |= γ iff
β |= γ.

An integrity constraint μ is a consistent propositional for-
mula. A belief base ϕ represents the beliefs of an agent, it
is a finite and consistent set of propositional formulae, in-
terpreted conjunctively, so that ϕ is identified with the con-
junction of its elements. A profile K = {ϕ1, . . . , ϕm} is
a finite, non-empty multi-set of propositional belief bases,
and we note Var(K) =

⋃
ϕ∈K Var(ϕ). A belief merging

operator Δ is a mapping from LP × LPm to LP , asso-
ciating with every integrity constraint μ and every profile
K = {ϕ1, . . . , ϕm} of belief bases a belief base Δμ(K)
called the merged base.1

A set of nine standard properties denoted (IC0)–(IC8)
(so-called IC postulates) expected for merging operators

1Formally, Δ is a family of mappings, one for each m > 0.

have been pointed out (Konieczny and Pino Pérez 2002).
Operators satisfying them are called IC merging operators.
Among IC merging operators are some distance-based op-
erators, i.e., operators which are based on the selection of
some models of the integrity constraint, the “closest” ones
to the given profile. Those operators are characterized by a
distance d between interpretations and an aggregation func-
tion f (Konieczny, Lang, and Marquis 2004). They associate
with every μ and K a belief base Δd,f

μ (K) which satisfies

Mod(Δd,f
μ (K)) = min(Mod(μ),≤d,f

K )

where ≤d,f
K is the total preorder over interpretations induced

by K defined by ω ≤d,f
K ω′ if and only if df (ω,K) ≤

df (ω′,K), where df (ω,K) = fϕi∈K{d(ω, ϕi)} and
d(ω, ϕi) = minω′|=ϕi

d(ω, ω′).
Usual distances are the drastic distance (dD(ω, ω′) = 0

if ω = ω′ and 1 otherwise), and the Hamming distance
(dH(ω, ω′) = n if ω and ω′ differ on n variables).

Note that some distance-based operators are not IC merg-
ing ones (some conditions must be satisfied by f , see
(Konieczny, Lang, and Marquis 2004)) but taking advantage
of usual aggregation functions as Σ, GMax and GMin (Ev-
eraere, Konieczny, and Marquis 2010) lead to IC merging
operators. GMax operators2 associate with every formula μ
and every profile K a belief base Δd,GMax

μ (K) which satis-
fies Mod(Δd,GMax

μ (K)) = min(Mod(μ),≤d,GMax
K ), where

≤d,GMax
K is the total preorder over interpretations induced by

K defined by ω ≤d,GMax
K ω′ if and only if dGMax(ω,K) ≤lex

dGMax(ω′,K) (where ≤lex is the lexicographic ordering in-
duced by the natural order) and dGMax(ω,K) is the vector of
numbers d1, . . . , dn obtained by sorting in a decreasing or-
der the vector 〈d(ω,Ki) | Ki ∈ K〉. GMin operators are de-
fined in the same way, except that dGMin(ω,K) is the vector
of numbers d1, . . . , dn obtained by sorting in an increasing
order the vector 〈d(ω,Ki) | Ki ∈ K〉. Note that the com-
plexity of the inference problem for such distance-based be-
lief merging operators has been identified, showing the prob-
lem as “mildly hard”, i.e., at the first level of the polynomial
hierarchy. More precisely, the inference problem for ΔdD,Σ

and for ΔdH ,Σ is known as Θp
2-complete, while the inference

problem for ΔdH ,GMax and for ΔdH ,GMin is slightly harder,
i.e., known as Δp

2-complete (Konieczny, Lang, and Mar-
quis 2004; Everaere, Konieczny, and Marquis 2010). In both
cases, the inference problem appears as harder than the clas-
sical entailment problem, which is “only” coNP-complete.

Example 1 Let LP be built up from the set of propositional
variables P = {a, b, c},K1 ≡ ¬a∧¬b,K2 ≡ a∧¬c,K3 ≡
b∧c and μ ≡ (a∨b)∧(¬a∨c). Let us consider the operators
based on the Hamming distance, and Σ, GMax and GMin
as aggregators. Table 1 shows for each interpretation3 ω ∈

2Here we give an alternative definition of Δd,GMax by means of
lists of numbers. However using Ordered Weighted Averages, one
could fit the definition of a distance-based operator (Konieczny,
Lang, and Marquis 2004).

3Interpretations ω are denoted as binary sequences following
the ordering a < b < c.

1164



ω K1 K2 K3 dΣH(ω,K) dGMax
H (ω,K) dGMin

H (ω,K)

010 1 1 1 3 (1,1,1) (1, 1, 1)
011 1 2 0 3 (2, 1, 0) (0,1,2)
101 1 1 1 3 (1,1,1) (1, 1, 1)
111 2 1 0 3 (2, 1, 0) (0,1,2)

Table 1: An example

Mod(μ) the distances dH(ω,Ki) for i ∈ {1, 2, 3}, and the
distances dΣH(ω,K), dGMax

H (ω,K), and dGMin
H (ω,K). We get

that ΔdH ,Σ
μ (K) ≡ μ, ΔdH ,GMax

μ (K) ≡ (a ↔ c) ∧ b, and
ΔdH ,GMin

μ (K) ≡ b∧¬c. Similarly, we have that ΔdD,Σ
μ (K) ≡

ΔdD,GMax
μ (K) ≡ ΔdD,GMin

μ (K) ≡ b ∧ c.
More generally, we focus in the following on wider fami-

lies of merging operators, obtained by considering weighted
drastic distances and weighted Hamming distances. For-
mally, let w : P → N be a mapping associating a
non-negative integer with each propositional variable. In-
tuitively, w(x) quantifies how significant x is. The dras-
tic distance dwD (resp. Hamming distance dwH ) induced by
w is the mapping from W × W to N given by for any
ω, ω′ ∈ W , dwD(ω, ω′) = maxp∈Pw(p).|ω(p) − ω′(p)|
(resp. dwH(ω, ω′) = Σp∈Pw(p).|ω(p) − ω′(p)|). Thus, the
weighted drastic distance dwD between two worlds is the
weight of a most significant variable on which they dif-
fer, while the weighted Hamming distance dwH between two
worlds is the sum of the weights of the variables on which
they differ. Obviously, we have dD = dw1

D and dH = dw1

H ,
where w1 is the constant function 1. For the sake of com-
pactness, we also consider weighted profiles, i.e., finite,
non-empty multi-sets of weighted propositional belief bases
Kk = {ϕ1(k1), . . . , ϕm(km)}, where each weighted propo-
sitional belief bases ϕi(ki) is a pair consisting of a proposi-
tional formula ϕi and a positive integer ki (the weight of the
corresponding base ϕi). For any distance d and any aggre-
gation function f , one defines df (ω,Kk) as df (ω,K) where
K is the profile obtained from Kk by replacing in it every
ϕi(ki) by ki occurrences of ϕi.

SAT Encoding Schemes

Let us now explain how SAT encoding schemes can be
exploited to compute polynomial-size encodings, given by
CNF formulae which are query-equivalent to the merged
bases Δdw,f

μ (Kk) for the distance-based merging opera-
tors Δdw,f with dw = dwD or dw = dwH , and f ∈
{Σ,GMax,GMin} where weighted profiles Kk are con-
sidered as inputs. Formally, the objective is to asso-
ciate with each Kk and μ a propositional formula noted
EΔdw,f (Kk, μ) which is query-equivalent to Δdw,f

μ (Kk);
thus, EΔdw,f (Kk, μ) must have the same logical conse-
quences ϕ as those of Δdw,f

μ (Kk), provided that the queries
ϕ are built up from the variables occurring in Kk or μ. Fur-
thermore, one expects the size of the encodingEΔd,f (Kk, μ)
to be polynomial in the size of Kk plus the size of μ. As
evoked in the introduction, such encodings EΔd,f (Kk, μ)
are computed via a two-step compilation process: (1) using a
solver for weighted partial MAXSAT, one first computes the

value min , which is the distance of μ to Kk, i.e., the mini-
mal value of {df (ω,Kk) | ω |= μ}, (2) once min has been
computed, one generates the encoding EΔd,f (Kk, μ) which
states (among other things) that the distance of μ to Kk must
be equal to min .

In the following we assume that μ and each weighted base
ϕi(ki) of Kk are given as CNF formulae. Note that such
a CNF assumption is harmless since any propositional for-
mula can be turned in linear time into a query-equivalent
CNF formula using Tseitin transformation (Tseitin 1968).4
In addition, the generated encodingEΔdw,f (Kk, μ) will also
be a CNF formula, enabling to take advantage of the power
of SAT solvers for solving the inference problem when the
queries ϕ are also given as CNF formulae. From now on,
we suppose that Kk contains m weighted bases, and that
Var(Kk) ∪ Var(μ) = {x1, . . . , xn}.

All the encodingsEΔdw,f (Kk, μ) we report in the follow-
ing share a common part C(Kk, μ) given by

μ∧
∧

ϕi(ki)∈Kk

ϕi
i∧

m∧

i=1

n∧

j=1

(dij ∨¬xij ∨xj)∧ (dij ∨xij ∨¬xj).

Each ϕi
i is a clone of ϕi obtained by renaming in ϕi in a uni-

form way every occurrence of a variable xj by a fresh vari-
able xij . Such a renaming of the bases enable to freeze any
conflict which would exist in the conjunction of μ and the
bases of the profile. This is reminiscent to the consistency-
based approach to belief merging reported in (Delgrande and
Schaub 2007). The last conjunct of C(Kk, μ) is a constraint
based on discrepancy variables dij , such that dij must be set
to true whenever it is not possible to assume that xij ↔ xj
holds without violating C(Kk, μ).

Distances. Taking into account the distance d under con-
sideration (dwD or dwH ) requires to add a further constraint
of the form

∧m
i=1D

d(μ, ϕi
i) to C(Kk, μ). Each Dd(μ, ϕi

i)
is over the variables occurring in μ, ϕi

i plus a number of
additional fresh variables. Dd(μ, ϕi

i) aims at characteriz-
ing the binary representation of maxn

j=1w(xj) × dij (resp.
Σn

j=1w(xj)× dij) when the drastic distance dw = dwD (resp.
the Hamming distance dw = dwH ) is considered. Let #Dw =
�log2(maxn

j=1w(xj))� and #Hw = �log2(Σn
j=1w(xj))�.

Each Dd(μ, ϕi
i) relates the variables di1, . . . , d

i
n with #Dw

variables bi#Dw , . . . , bi1 when dwD is considered, and with
#DH variables bi#DH , . . . , b

i
1 when dwH is considered. For

each model ω of C(Kk, μ) ∧ Dd(μ, ϕi
i), the bit vector ob-

tained by projecting ω over the additional variables is the
binary representation of the distance of the projection of ω
over the variables of μwith the projection of ω over the vari-
ables of ϕi

i.
4Indeed, Tseitin encoding scheme is a linear-time query-

equivalent encoding scheme, where every additional variable is de-
fined from the input variables. Hence the models of the resulting
CNF encoding are extensions of the models of the input formula,
but no ”new” model is created or removed. Assigning the weight
of each additional variable to 0 is thus enough to ensure that the
original distances between the models of the input are preserved.
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Several representations for theDdw
H (μ, ϕi

i) constraints are
possible (Sinz 2005). In our implementation, we considered
a weighted parallel binary counter to do the job. This counter
is a weighted version of the parallel binary counter reported
in (Muller and Preparata 1975). The CNF representation of
each Ddw

H (μ, ϕi
i) requires at most 3× n×#Hw additional

variables and at most 7× n×#Hw additional clauses.
As to the Ddw

D (μ, ϕi
i) constraints, we need to determine

the largest weight w(xj) such that the corresponding dis-
crepancy variable dij is set to true. To do so, we intro-
duce auxiliary variables ai1, . . . , a

i
#Im(w) where Im(w) =

{w(xj) | j ∈ {1, . . . , n}} is the image of w (i.e., the set of
weights). Let rank(w(xj)) be the rank of w(xj) in Im(w)

sorted in ascending order. We add to Ddw
D (μ, ϕi

i) the CNF
formula

∧#Im(w)
j=2 (¬aij ∨ aij−1). We also add to Ddw

D (μ, ϕi
i)

the CNF
∧n

j=1 ¬dij ∨ airank(w(xj))
. Altogether, those con-

straints ensure that for each i ∈ {1, . . . ,m}, the rank of the
largest weight we look for is given by the rank j∗ of the last
bit set to true in the bit vector ai1 . . . a

i
#w when such a bit ex-

ists. In this case, j∗ is #Im(w) when ai#Im(w) is set to true;
otherwise, it is the unique j such that aij is true and aij+1 is
false. When j∗ is defined, bi#Dw , . . . , bi1 is set to the binary
encoding of the weight of w(xj∗). In the remaining case,
each bit of bi#Dw , . . . , bi1 is set to false. The CNF represen-
tation of each Ddw

D (μ, ϕi
i) requires at most #Im(w) addi-

tional variables and at most #Im(w)+n+#Im(w)×#Dw

additional clauses.

Aggregators. The objective is now to find min , the min-
imal distance of μ to Kk. Let r be #Dw when dwD is con-
sidered and r be #Hw when dwH is considered. The goal is
to determine the combination of values to be given to the bit
vectors bir, . . . , b

i
1, while taking account for the weights ki

associated with the bases ϕi in the profile Kk.
Let us first focus on the easiest case f = Σ. In this case,

the value we look for is the minimal value min which can
be taken by Σm

i=1ki × (Σr
j=12

j−1 × bij). Since this objec-
tive function is linear, in order to compute min , we take ad-
vantage of a weighted partial MAXSAT solver. Once this
is done, to get EΔdw,f (Kk, μ), it is enough to conjoin with
C(Kk, μ) ∧ ∧m

i=1D
d(μ, ϕi

i) a CNF representation of the
constraint Σm

i=1ki × (Σr
j=12

j−1 × bij) = min . Again, a
polynomial-size CNF representation of this last constraint
can be computed using a weighted parallel binary counter.

Let us now consider the harder cases f = GMax and
f = GMin. In both cases, we first consider an additional CNF
constraint P (Kk) which requires the introduction of m2 ad-
ditional variables pi,j . This constraint is used to “sort” the
bases (i.e., to associate with each j a position i) depending
on the respective values of their bit vectors bjr . . . b

j
1. P (Kk)

requires (5× r+ 2)×m3 clauses: 2×m3 clauses are used
to express the fact that each j is associated with a unique
i (a pigeonhole instance) and 5 × r × m3 clauses are used
to ensure (thanks to a standard comparator) that for every
j, k ∈ {1, . . . ,m}, i ∈ {1, . . . ,m-1}, if pi,j and pi+1,k are

set to true, then bjr . . . b
j
1 is greater than or equal to (resp.

lower than or equal to) bkr . . . b
k
1 when f = GMax (resp.

f = GMin). Thus, the only j such that p1,j is true is such
that the value of bjr . . . b

j
1 is maximal (resp. minimal) when

f = GMax (resp. f = GMin), and so on. The next step
aims at taking account for the weights ki. We determine the
positions of the bases for which the corresponding bit vec-
tors take the same values (they are necessarily pairwise ad-
jacent because of the constraint P (Kk)). To do so, we add
a further CNF constraint A(Kk) requiring the introduction
of m fresh variables ei, so that e1 is set to true and for ev-
ery i ∈ {1, . . . ,m-1}, ei is set to true precisely when the
bases associated with positions i and i−1 correspond to dif-
ferent bit vectors. A(Kk) requires (r + 1) ×m3 additional
clauses. The next step consists in adding a constraintK(Kk)
which is used to make the sums of the weights ki of the bases
which are associated with equal bit vectors (indeed, unlike
for the case f = Σ, multiplying by ki the value of the corre-
sponding bit vector is not convenient when a lexicographic
comparison is to be achieved). Let s = �log2(Σm

i=1ki)�.
Constraint K(Kk) requires the introduction of m × s fresh
variables, i.e., m bit vectors tis . . . t

i
1, and it ensures that for

each i ∈ {1, . . . ,m}, tis . . . t
i
1 is the binary representation

of ki when ei is true, and tis . . . t
i
1 is the binary representa-

tion of the sum of the value of ti−1
s . . . ti−1

1 with ki when
ei is false. K(Kk) is based on a half-adder and requires
6×m×s clauses. Then one needs to add a further constraint
O(Kk) which is used to “sort” the bit vectors bir, . . . , b

i
1 for

i ∈ {1, . . . ,m}. This constraint requires the introduction
of m × r fresh variables, i.e., m bit vectors oir . . . o

i
1. It en-

sures that for every i, j ∈ {1, . . . ,m}, if pi,j is set to true,
then bjr . . . b

j
1 is equal to oir . . . o

i
1. This constraint requires

2 × r × m2 additional clauses. Now, in order to compute
min (which can be viewed here as a sorted list of ordered
pairs of integers, where the second element of each pair is
the number of repetitions of the first element that must be
considered), one needs first to compute a model which min-
imizes the value v1o of o1r . . . o

1
1, and then minimizes (resp.

maximizes) the value v1t of t1s . . . t
1
1 when f = GMax (resp.

f = GMin). We achieve the two optimization processes in
one step, using a weighted partial MAXSAT solver on the
instance given by the hard constraint EΔdw,f (Kk, μ) =

C(Kk, μ)∧
m∧

i=1

Dd(μ, ϕi
i)∧P (Kk)∧A(Kk)∧K(Kk)∧O(Kk)

and the objective function 2s×Σr
i=12

i−1×o1i +Σs
i=12

i−1×
t1i (resp. 2s × Σr

i=12
i−1 × o1i + Σs

i=12
i−1 × ¬t1i ) when

f = GMax (resp. f = GMin). Once an optimal solu-
tion is found, we add to the hard constraint s + r × v1t
unit clauses in order to set the variables t1s, . . . , t

1
1, as well

as the variables ojr, . . . , o
j
1 (j ∈ {1, . . . , v1t }) to the truth

values they have in this solution. We iterate this process
by considering then the second greatest (resp. least) value
of the bit vectors ov

1
t+1

r , . . . , o
v1
t+1

1 for i ∈ {1, . . . ,m},
and so on. The number of iterations is upper bounded by
m. The computation of min is achieved when all the it-
erations have been done. Then EΔdw,f (Kk, μ) is equal to
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C(Kk, μ)∧∧m
i=1D

d(μ, ϕi
i)∧P (Kk)∧A(Kk)∧K(Kk)∧

O(Kk) conjoined with all the unit clauses which have been
generated during the optimization step. By construction of
the encodings, all the merging operators under consideration
are query-compactable (Cadoli et al. 1999):

Proposition 1 For each weighted drastic (or Hamming)
distance dw and each f ∈ {Σ,GMax,GMin}, the size of
EΔdw,f (Kk, μ) is polynomial in the size of Kk plus the size
of μ5 andEΔdw,f (Kk, μ) is query-equivalent to Δdw,f

μ (Kk).

Compilability of merging. A direct consequence of the
previous proposition is that the inference problems for the
distance-based belief merging operators under consideration
can be reduced to the classical entailment problem by tak-
ing advantage of our encoding schemes. Since the size of
EΔdw,f (Kk, μ) is in every case polynomial in the size of Kk

plus the size of μ, we get that the corresponding inference
problems (when queries ϕ are unrestricted propositional for-
mulae) are compilable to the complexity class coNP (see
(Liberatore 1998)):

Corollary 1 For each weighted drastic (or Hamming) dis-
tance dw and each f ∈ {Σ,GMax,GMin}, the inference
problem for Δdw,f is compcoNP-complete.

Accordingly, our results extend some compilability re-
sults known for Dalal revision operator ◦H (Liberatore
1998), since ◦H corresponds to a specific case of ΔdH ,Σ,
ΔdH ,GMax, and ΔdH ,GMin when each profile consists of a
single belief base. From the practical side, the computa-
tional effort required to generate EΔdw,f (Kw, μ) is spent
only once (during the compilation phase), independently of
the number of queries. Since the complexity of the infer-
ence problem falls to coNP once the preprocessing has been
done, this effort can be easily balanced by considering suffi-
ciently many queries.

Experiments

Benchmarks. The non-availability of merging bench-
marks corresponding to an actual application was a diffi-
culty we had to face. To deal with it, we turned some time-
tabling benchmarks into distance-based merging ones; we
considered instances of the time-tabling problem described
in (Bonutti et al. 2012). This time-tabling problem consists
of the weekly scheduling of the lectures of a set of courses
within a given number of rooms and time periods. The ba-
sic entities are days, time slots, periods, courses, teachers,
rooms, buildings and curricula, and a number of constraints
link those entities. Thus, all lectures must be scheduled and
assigned to different periods, lectures taught by the same
teacher must be scheduled in different periods, two lectures
cannot take place in the same room at the same period, the
teacher of each course must be available at each period when
a corresponding lecture is scheduled, and the capacity of
each room must be taken into account. Beyond these basic
conditions, other requirements have been considered as hard

5The size of EΔdw,f (Kk, μ) also depends on w, but dw is a
parameter of Δ and not a part of the input.

constraints. Thus, the lectures of each course are expected to
be spread into a given number of days, and the lectures be-
longing to a given curriculum should not have periods with-
out teaching, the number of daily lectures should be within
a given range, lectures given in rooms located in different
buildings should not be in two adjacent periods, and some
rooms are not suitable for some courses because of the lack
of specific equipment.

We have developed a generator for such time-tabling
benchmarks (encoded in XML, following the format of the
PATAT competition http://www.patatconference.org). We
have also developed a translator associating a distance-based
merging instance (μ,Kk) with each time-tabling bench-
mark. μ is a CNF formula encoding all the hard constraints
of the time-tabling instance (using the approach presented in
(Achá and Nieuwenhuis 2014)) conjoined with CNF repre-
sentations of a number of equivalences σ ↔ sσ between the
soft constraints σ and some fresh variables sσ used to name
them. Kk is a profile of propositional bases, corresponding
to the curricula. With each curriculum is associated some
soft constraints, the weight of each constraint (whose val-
ues have been arbitrarily chosen in our benchmarks) being
the penalty to be considered when the constraint is violated:
room capacity (the capacity of each room must be respected
and each course from the curriculum violating it leads to a
penalty of 1), min working days (each course from the cur-
riculum must be spread within a given number of days and
each violation leads to a penalty of 2, e.g., if a course is ex-
pected to be spread on 3 days and is finally scheduled on
1, then a penalty of 4 will be considered), isolated lectures
(lectures belonging to a curriculum should be in consecu-
tive periods and each violation leads to a penalty of 1), and
room stability (all lectures of a course from the curriculum
should be given in the same room and each violation leads
to a penalty of 5). Each base ϕi of Kk is a conjunction of
variables sσ so that the weight of violating σ is equal to the
weight w(sσ), and the weight given to the other variables is
0. Finally, since the soft constraints are intended to encode
the preferences of the students following the correspond-
ing curriculum, each ϕi of Kk is associated with a weight
ki equal to the median number of students who follow the
courses of the corresponding curriculum.

Setting. Since the number of parameters to be considered
for generating a time-tabling instance is huge, we have de-
cided to set some of them in the generated instances: the
number of days (4), the number of courses (10), the number
of rooms (5), the number of buildings (3). For each course,
for each period, the probability that the course can be sched-
uled during the period is set to 50%, and for each room, the
probability that the room is suitable to the course is set to
50%. We let other parameters vary in specific intervals: the
number of periods per day (1 ... 4), the number of courses
per teacher (1 ... 4), the number of lectures per course (1 ...
4), the number of days when the lectures of a given course
are scheduled (1 ... 4), the number of students attending a
given course (30 ... 60), the rooms capacities (20 ... 80), the
number of courses per curriculum (3 ... 7), the number of
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#Kk 5 7 9 11 13 15
#varμ 1040 ± 0 1104 ± 0 1168 ± 0 1232 ± 0 1296 ± 0 1360 ± 0
#clμ 5650 ± 254 6127 ± 396 6700 ± 346 7295 ± 505 7965 ± 276 8623 ± 424
#clKk 213 ± 25 288 ± 32 375 ± 42 460 ± 51 538 ± 72 616 ± 52

dwD

Σ

time 0.65 ± 0.3 0.63 ± 0.3 0.66 ± 0.3 0.83 ± 0.4 0.77 ± 0.4 1.37 ± 1.9
#solved 25 25 25 25 25 25
#var 11815 ± 5 17099 ± 6 22887 ± 6 29186 ± 11 36011 ± 8 43342 ± 6
#cl 22392 ± 275 30943 ± 425 40347 ± 351 50530 ± 525 61479 ± 452 73313 ± 498

GMin

time 0.72 ± 0.3 1.05 ± 0.7 2.58 ± 2.2 40.22 ± 66.3 90.726 ± 121.1 260.34 ± 284.1
#solved 25 25 25 25 15 10
#var 11755 ± 30 17099 ± 55 22960 ± 81 29389 ± 85 36322 ± 110 43809 ± 192
#cl 23086 ± 340 32871 ± 521 43823 ± 595 56282 ± 607 69973 ± 988 85163 ± 1334

GMax

time 0.69 ± 0.3 0.80 ± 0.3 1.73 ± 1.2 29.45 ± 66.4 78.71 ± 167.8 191.54 ± 239.4
#solved 25 25 25 24 23 17
#var 11755 ± 30 17099 ± 55 22960 ± 81 29382 ± 79 36346 ± 110 43833 ± 177
#cl 23086 ± 340 32872 ± 522 43823 ± 596 56238 ± 574 70030 ± 857 85091 ± 1225

dwH

Σ

time 1.02 ± 0.3 1.27 ± 0.4 1.76 ± 0.3 4.73 ± 7.2 7.73 ± 13.2 21.634 ± 43.5
#solved 25 25 25 25 25 25
#var 35393 ± 85 51990 ± 139 70121 ± 165 89909 ± 206 110890 ± 241 133990 ± 318
#cl 75671 ± 373 108444 ± 559 143819 ± 474 191779 ± 567 220914 ± 681 264168 ± 840

GMin

time 1.8 ± 0.3 2.66 ± 0.6 6.1 ± 2.5 36.86 ± 40.7 181.9 ± 218 145.87 ± 113.3
#solved 25 25 25 25 19 8
#var 33722 ± 88 49752 ± 120 67284 ± 145 86580 ± 240 107017 ± 248 129500 ± 441
#cl 72655 ± 417 105567 ± 543 141456 ± 657 181005 ± 727 222371 ± 1072 268089 ± 1772

GMax

time 1.75 ± 0.4 2.51 ± 0.5 4.44 ± 1.54 21 ± 23.6 54.85 ± 76.2 100 ± 113.28
#solved 25 25 25 25 23 18
#var 33722 ± 88 49752 ± 120 67284 ± 175 86580 ± 240 107031 ± 271 129590 ± 342
#cl 72655 ± 416 105568 ± 543 141448 ± 652 181001 ± 728 222307 ± 993 268247 ± 1274

Table 2: Empirical results

curricula (5, 7, 9, 11, 13, 15).
For each number of curricula, we generated 25 time-

tabling benchmarks and turned them into distance-based
merging instances (μ,K), ensuring that they are not “triv-
ial ones”, i.e., ensuring that μ is consistent, and that at least
two bases from K are jointly conflicting with μ (but no base
alone conflicts with it). Thus, we obtained 150 non-trivial
instances. For each (μ,Kk) and each Δdw,f under consid-
eration, we have computed the encoding EΔdw,f (Kk, μ);
here, dw is dwD or dwH , and f is Σ, GMin or GMax. We
took advantage of the weighted partial MAXSAT solver
MaxHS (Davies and Bacchus 2013a; 2013b) for achiev-
ing the optimization phase (step 1)) in the computation
of EΔdw,f (Kk, μ). Our experiments have been conducted
on Intel Xeon E5-2643 (3.30GHz) processors with 32 GiB
RAM on Linux CentOS. We allocated 900s CPU time and 8
GiB of memory per instance.

Empirical results. Our empirical results are reported in
Table 2. The raws correspond to the 6 (weighted) distance-
based operators we implemented, and the columns to the
number s ∈ {5, 7, 9, 11, 13, 15} of bases in the profiles we
considered. For each s, we have computed the average avg
and the standard deviation std of the values of the following
measurements on instances with profiles containing s bases
(results are typically reported as pairs of the form avg±std ).
The #varμ measurement gives the number of variables in
μ, #clμ is the number of clauses in μ, and #clKk is the to-
tal number of clauses in Kk (it is equal to the number of
variables in it, since all clauses are unit ones). The other
measurements are time , the compilation time (in seconds)
needed to compute the encoding, the number #solved of

instances solved (over 25 per profile size) within the time
and memory bounds, the number #var of variables in the
encoding, and the number #cl of clauses in it.

From these experiments, one can make the following ob-
servations. First, unsurprisingly, the more bases in Kk the
more difficult the compilation process. This is reflected by
the number of instances solved, the compilation times and
the sizes of the encodings. Furthermore, the choice of the
aggregator has a major impact on the efficiency of the com-
pilation step. When Σ has been used, every instance has
been solved within 212s (actually, every instance but one has
been solved within 100s). The compilation times are typi-
cally much greater when GMin or GMax are used. This can
be explained by the fact that the computation of the distance
of μ to Kk requires only one optimization step when Σ is
used, but typically several steps (in average, 3) when GMin
or GMax is considered. We can also observe that the opti-
mization steps are typically harder for GMin than for GMax.

Increasing the time-out from 900s to 3600s (which is not
that high, since the computation of the encoding is done off-
line and once), 144 (resp. 148) instances over 150 have been
solved when GMax and dwD (resp. dwH ) were used; 134 (resp.
135) instances over 150 have been solved when GMin and
dwD (resp. dwH ) were used.

For a comparison purpose, we have also taken into ac-
count the OBDD-based approach to belief merging from
(Gorogiannis and Hunter 2008). In this approach, μ and
each base ϕi of Kk are first turned into OBDD representa-
tions. Thus, we tried to compile μ into an OBDD representa-
tion for each of the 150 instances using the OBDD compiler
cnf2obdd given in (Toda and Tsuda 2015). It proved ac-
tually impossible to compute an OBDD representation of μ
under the memory limit of 8 GiB for any of those instances.
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Other Related Work

Besides (Gorogiannis and Hunter 2008) few implementa-
tions of belief merging operators exist. The implementa-
tion given in (Hué, Würbel, and Papini 2008) concerns an-
other family of operators than distance-based ones. Since the
evaluation of this implementation was limited to instances
containing less than 20 variables. (Macı́as and Pozos Parra
2009) shows how to translate a similar (yet simplified) time-
tabling problem as the one we considered, into a merging
problem. This work departs significantly from our own one
and suffers from a number of limitations. In particular, a
specific syntax-based merging operator has been targeted,
and for it, the computation of the merged base required each
base of the profile to be turned into DNF, which is computa-
tionally demanding. The paper does not furnish any detailed
empirical evaluation but the largest instances reported in the
experiments have few variables (15). Finally, (Delgrande et
al. 2013) shows how to implement some merging operators
for logic programs using answer-set programming (ASP),
but without any preprocessing. Two merging operators have
been targeted (basic merging and arbitration), and they are
not distance-based ones. In addition, no empirical evaluation
of the corresponding ASP encodings has been reported.

Conclusion

We have presented SAT encoding schemes for distance-
based belief merging operators. Thanks to them, one
can compute polynomial-size encodings which are query-
equivalent to the corresponding merged bases. We have eval-
uated our encoding schemes on non-trivial instances ob-
tained by translating time-tabling benchmarks; leveraging
the power of SAT solvers, we have shown that the result-
ing encodings can be computed within reasonable time and
space limits, for instances based on hundreds of variables
which are out of reach of previous implementations. By
showing how SAT solvers can be exploited for solving merg-
ing problems located higher than coNP, this work also con-
tributes to the recent Beyond NP initiative (beyondnp.org).
As a perspective for further research, other distances and
other aggregation functions will be targeted.
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