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Résumé : Dans ce papier, nous définissons un nouveau modèle pour la représen-
tation et la révision locale de croyances que nous appelons le modèle C-structure.
D’autre part, en utilisant les systèmes de sphères de Grove, nous considérons des
contraintes additionnelles sur le calcul de la distance entre les interprétations et
nous prouvons que ces contraintes caractérisent précisément la contrepartie sé-
mantique de la révision par le modèle C-structure.
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1 Introduction

Agents faced with incomplete, uncertain, and inaccurate information must employ a
rational belief revision operation in order to manage belief changes. The agent’s epis-
temic state represents its reasoning process ; belief revision consists of modifying its
initial epistemic state in order to maintain consistency, while keeping new information
and modifying previous information as less as possible (principle of minimal change).

To introduce relevance-sensitivity into belief revision, Parikh (Parikh 99) defined the
language splitting model which says that any set of beliefs may be represented as a
family of letter-disjoint sets and that revision may be restricted to local portions of the
belief corpus (those intersecting with the language of the new epistemic input). In prac-
tice, since beliefs do have some overlap, the partition of the main set of beliefs cannot
be actually strict. In view of this gap, Parikh’s original model for belief revision (and
others based on it) (Chopra 01a; Kourousias 07; Parikh 99; Peppas 04) has been exten-
ded, by allowing for such overlap, in the B-structure model of (Chopra 00). However,
this model is incapable to guarantee a global revision by only a local one, i.e., after revi-
sing our beliefs we are not sure if they are globally consistent or not. This fact interferes
with the soundness of belief revision.

A new model for belief representation and local belief revision called the C-structure
model and also based on such overlap was defined (Doukari 07b). This model based
on the containment property defined in (Doukari 07a), allows some overlap between
the different belief subsets and preserves all the desirable properties of the language
splitting model, in particular soundness of revision operation. Furthermore, this model
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allows to respect the principle of minimal change when the language splitting (hence-
forth LS) model fails to do that.

Using Grove’s system of spheres construction (Grove 88), we provide a semantics for
local revision using theC-structure model, by providing additional constraints based on
a distance measurement between interpretations. We prove these constraints characte-
rize the containment property.

The structure of the paper is as follows. In section 2, we provide some preliminaries
on the AGM paradigm. In section 3, we define the C-structure model. In section 4, we
provide system of spheres semantics for belief revision by the C-structure model.

2 Preliminaries

Throughout this paper, L is a propositional language defined on some finite set of
propositional variables (atoms) V and the usual connectors (¬, ∨, ∧, →, ↔). |X| de-
notes the cardinality of the set X . If α ∈ L is a sentence, then V(α) represents the set
of variables appearing in α, and similarly for a set of sentences. If V is a subset of V
then L(V ) represents the propositional sublanguage defined over V . ` represents the
classical inference relation. A literal is a propositional variable or its negation. A clause
is a disjunction of literals. A clause c is an implicate of a sentence α iff α ` c. A clause
c is a prime implicate of α iff for all implicates c′ of α such that c′ ` c, it is the case that
c ` c′. We denote by Coveα an arbitrary covering of α, which is a set of prime impli-
cates of α such that for every clause c where α ` c, there exists c′ ∈ Coveα such that
c′ ` c. V(Coveα) is the minimal set of atoms needed to express (a sentence logically
equivalent to) α (Herzig 99). This set is unique (Parikh 99).

If X is a set of sentences then Cn(X) is the logical closure of X . In particular, X is
a theory iff X = Cn(X). For a theory T , BT denotes a belief base of T , which is a
finite set of sentences such that T = Cn(BT ). BT is a minimal belief base of T iff (i)
BT is a belief base of T , (ii) T is axiomatized by BT (i.e., ∀α ∈ BT , BT \ {α} 6` α),
and (iii) BT ⊆ Cove∧

α∈BT

.

In particular, if BT is an inconsistent belief base, M ⊆ BT is a minimal inconsistent
subset (MIS) of BT iff M is inconsistent, and ∀M ′ ⊂ M,M ′ is consistent. We denote
the set of all consistent theories of L by KL. A theory T of KL is complete iff ∀α ∈
L, α ∈ T or ¬α ∈ T . We denote by ML the set of all consistent complete theories
of L. In the context of system of spheres, consistent complete theories play the role of
interpretations (possible worlds). For a set of sentences X of L, [X] represents the set
of all interpretations of L that contain X . For a theory T and a set of sentences X of L,
T +X represents the set Cn(T ∪X).

For a sublanguage L′ of L defined over a subset V ′ of V , L′ = L(V \ V ′). CnL′(X)
for X ⊂ L′, represents the logical closure of X in L′. When no subscript is present, it
is understood that the operation is relevant to the original language L.

In belief revision, much work takes as its starting point the AGM postulates, which
appear to capture much of what characterizes rational belief revision (Alchourrón 85).
In this framework belief states are represented as theories of L, and the process of belief
revision is modeled on a revision function ∗ which is any function from KL×L to KL,



mapping 〈T, α〉 to T ∗α that satisfies the AGM postulates (see them in (Alchourrón 85)).
Apart from this axiomatic approach to belief revision, Grove(Grove 88) introduced

another construction of revision functions based on a special structure on consistent
complete theories, called a system of spheres. Let T be a theory of L, and ST a collec-
tion of sets of interpretations i.e., ST ⊆ 2ML . ST is a system of spheres centered on
[T ] iff the following conditions are satisfied :

(S1). ST is totally ordered ; if U,U ′ ∈ ST then U ′ ⊆ U or U ⊆ U ′.
(S2). The smallest sphere in ST is [T ] ; [T ] ∈ ST and if U ∈ ST then [T ] ⊆ U .
(S3).ML ∈ ST .
(S4). ∀α ∈ L, if there is any sphere in ST intersecting [α] then there is also a
smallest sphere in ST intersecting [α].

For a system of spheres ST and a sentence α ∈ L, the smallest sphere in ST intersecting
α is denoted CT (α). With any system of spheres ST , Grove associates a function fT :
L 7→ 2ML defined as follows : fT (α) = [α]∩CT (α). Consider now a theory T ofL and
let ST be a system of spheres centered on [T ]. Grove uses ST to define constructively the
process of revising T , by means of the following condition : (S∗) : T ∗ α =

⋂
fT (α).

Grove showed the class of functions generated from systems of spheres by means of
(S∗), is precisely the family of the functions satisfying the AGM postulates.

We now recall the main definitions and results of the C-structure model.

3 The C-structure model (Doukari 07b)
The C-structure model uses disjoint sublanguages to define a set of cores of a given

language, each surrounded by a covering of atoms. The concept of covering allows
some degree of overlap between the sublanguages defined over the coverings.

Definition 1
{V1, ..., Vn} is a set of cores of L iff it is a partition of V .

Example 1
Let the language L be built from the propositional variables a, b, c, d. Let T be an arbi-
trary theory of L, axiomatized by the minimal belief base BT = {¬a ∨ b,¬b ∨ c,¬c ∨
b,¬c ∨ d}. The set {{a}, {b}, {c}, {d}} is a set of cores of L.

To order the atoms of L, we use the following relevance relation from (Chopra 01b).

Definition 2
Let T be a theory of L. We say that two atoms, p and q, are directly relevant wrt BT ,
denoted byR(p, q, BT ) (or byR0(p, q, BT )), iff ∃α ∈ BT s.t., p, q ∈ V(α). Two atoms
p, q are k-relevant wrt BT , denoted by Rk(p, q, BT ), if ∃p0, p1, ..., pk+1 ∈ V s.t. :
p0 = p ; pk+1 = q ; and ∀i ∈ {0, ..., k}, R(pi, pi+1, BT ).

In Example 1, we find : R(a, b, BT ), R1(a, c, BT ), R2(a, d, BT ), etc.
To define clearly the extent of overlapping between the various sublanguages, we

define a distance between variables.
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Definition 3
Suppose two atoms p, q ∈ V , T is a theory of L. The distance between p, q wrt BT ,
denoted by dist(p, q, BT ), is defined as follows :

dist(p, q, BT ) =

 0 if p = q
min{k : Rk(p, q, BT )}+ 1 if k exists
∞ otherwise.

In Example 1 : dist(a, b, BT ) = 1, dist(a, c, BT ) = 2, dist(a, d, BT ) = 3, etc.
We now define the notion of a covering, parametrized by its thickness :

Definition 4
Let {V1, ..., Vn} be a set of cores of L and T be a theory of L. Covk(Vi, BT ) is a
covering whose thickness is equal to k of Vi wrt BT iff : Covk(Vi, BT ) ⊆ V ; and
∀p ∈ V, if∃q ∈ Vi s.t., dist(p, q, BT ) ≤ k then p ∈ Covk(Vi, BT ).

For example, the set of coverings with thickness 1 corresponding to the set of cores
{{a}, {b}, {c}, {d}} wrt BT (Example 1) is : {{a, b}, {a, b, c}, {b, c, d}, {c, d}}.

In order to parametrize a C-structure by a particular thickness, we require a definition
of the size of a MIS :

Definition 5
Let BT and B′T ′ be two belief bases such that V(B′T ′) ⊆ V(BT ) and B′T ′ is incon-
sistent. The size of the MIS M of B′T ′ wrt BT , Size(M,BT ) = max{dist(a, b, BT ) :
a, b ∈ V(M)}.

In Example 1, let M = {a ∧ ¬b, a → b} be a MIS of B′T ′ = BT ∪ {a ∧ ¬b}, so
Size(M,BT ) = 1.

When we want to construct a C-structure C on a belief base BT , we only require that
the thickness of coverings of cores (value of k) should be (at least) equal to the maximal
size of MISs which may exist in BT .

Definition 6
Let T be a theory defined in L and BT an arbitrary belief base of T . The set C =
{(V1, Covk(V1, BT ), T1), ..., (Vn, Covk(Vn, BT ), Tn)} is a C-structure of T iff : (i)
{V1, ..., Vn} is a set of cores of L, (ii) Cov(C) = {Covk(V1, BT ), ..., Covk(Vn, BT )}
is a corresponding set of coverings wrt BT s.t., ∀i ∈ {1, ..., n}∀α ∈ L(Covk(Vi, BT )),
if BT ∪{α} is inconsistent, then ∀M a MIS of BT ∪{α}, Size(M,BT ) ≤ k, and (iii)
∀Ti, Ti = CnL(Covk(Vi,BT ))(L(Covk(Vi, BT ))∩T ).C is called an atomicC-structure
of T iff ∀i ∈ {1, ..., n}, |Vi| = 1

We obtain the following C-structure corresponding to Example 1 by assuming that the
maximal size of eventual exiting MISs inBT is 1 (condition (ii) of Definition 6) : {({a},
{a, b}, CnL({a,b})({¬a∨ b})), ({b}, {a, b, c}, CnL({a,b,c})({¬a∨ b, ¬b∨ c, ¬c∨ b})),
({c}, {b, c, d}, CnL({b,c,d})({¬b∨c, ¬c∨b, ¬c∨d})), ({d}, {c, d}, CnL({c,d})({¬c∨
d}))}.

Now, we can formalize the local revision property called containment property.



(Containment Property) : Let T be a theory of L, BT an arbitrary belief base of T ,
and C = {(V1, Covk(V1, BT ), T1), ..., (Vn, Covk(Vn, BT ), Tn)} a C-structure
of T . If α ∈ L(Covk(Vi, BT )) and V(Coveα) ∩ Vi 6= ∅ for some i, then :
T ∗ α = (Ti ◦ α) + ((

⋃n
j=0 Tj) \ Ti) where ◦ is a revision operator of the

sublanguage L(Covk(Vi, BT )).

4 Semantics for the Containment Property
Consider a C-structure C = {(V1, Covk(V1, BT ), T1), ..., (Vn, Covk(Vn, BT ),

Tn)} of the theory T . Moreover, let α be any sentence in L(Covk(V1, BT )) such that
V(Coveα) ∩ V1 6= ∅. According to the containment property, anything outside T1 in T
will not be affected during the revision of the theory T by α. More formally, this leads
to the following condition, which is equivalent to the containment property.

(C). If C = {(V1, Covk(V1, BT ), T1), ..., (Vn, Covk (Vn, BT ), Tn)} is a C-
structure of T , α ∈ L(Covk (V1, BT )) and V(Coveα) ∩ V1 6= ∅, then : (i)
if ∀i ∈ {2, ..., n}, L(Covk (V1, BT )) ∩L(Covk (Vi, BT )) = ∅, then : T ∩
L(Covk(V1, BT )) = (T ∗ α) ∩ L(Covk(V1, BT )) ; (ii) otherwise : ((

⋃n
i=0 Ti) \

T1) ⊆ T ∗ α.
Condition (C) is straightforward : when revising a theory T by a sentence α, the part
of T that is not related to α is not affected by the revision ; we do not remove any
information from it since the size of MISs is limited by k. However, we can deduce
more consequences because the existence of the overlap between the parts related and
unrelated to α. The following result shows (C) is equivalent to the containment property.

Theorem 1
Let ∗ be a revision function satisfying the AGM postulates (T ∗ 1)–(T ∗ 8). Then ∗
satisfies the containment property iff ∗ satisfies (C).

4.1 The special case of Complete Theories
Let T be a consistent complete theory, and let ST be a system of spheres centered on

[T ]. The intended meaning of ST is that it represents comparative similarity between
possible worlds i.e., the further away a world is from the center of ST , the less similar
it is to [T ]. However, none of the conditions (S1)–(S4) indicate how similarity between
worlds should be measured. In (Peppas 00), a specific criterion of similarity is consi-
dered, originally introduced in the context of reasoning about action with Winslett’s
Possible Models Approach (PMA) (Winslett 88).

This criterion, called PMA’s criterion of similarity, measures “distance” between
worlds based on propositional variables. In particular, let w,w′ be any two interpre-
tations of L. By Diff(w,w′) we denote the set of propositional variables that have
different truth values in the two interpretations i.e., Diff(w,w′) = {vi ∈ V : vi ∈ w
and vi /∈ w′} ∪ {vj ∈ V : vj /∈ w and vj ∈ w′}. A system of spheres ST is a PMA
system of spheres iff it satisfies the following condition (Peppas 00) :
(PS) For any two consistent complete theories w and w′, if Diff (T, w) ⊂ Diff (T,

w′) then there is a sphere U ∈ ST that contains w but not w′.
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4.1.1 Condition (C) and Systems of Spheres

In our case, condition (PS) is the counterpart of (C) in the realm of systems of spheres.

Theorem 2
Let ∗ be a revision function satisfying the AGM postulates (T ∗1)–(T ∗8), T a consistent
complete theory of L, and ST the system of spheres centered on [T ], corresponding to
∗ by means of (S∗). Then ∗ satisfies (C) at T iff ST satisfies (PS).

What is appealing about Theorem 2 is that it characterizes (C), not in terms of some
technical non-intuitive condition, but rather by a natural constraint on similarity bet-
ween interpretations, that in fact predates (C) and was motivated independently in a
different context (Winslett 88). Moreover, as we will show in the next section, the es-
sence of this characterization of (C) in terms of constraints on similarity, carries over
into the general case of incomplete theories (albeit with some modifications).

4.2 The General Case
To elevate Theorem 2 to the general case, we need to extend the definition ofDiff to

cover comparisons between an interpretation w and an arbitrary, possibly incomplete,
theory T . Our generalization of Diff is based on the comparison between an interpre-
tation w and a C-structure C which gives us the minimal subsets of atoms, wrt C, such
that w does not satisfy the subtheories of T defined over these subsets (w is not a pos-
sible world of them), and it satisfies the subtheories of T defined over the complements
of these subsets (w is a possible world of them). The usual distance definition between
w and T (Winslett 88) wrt set inclusion fails to compute that.

Definition 7
Let C be a consistent C-structure constructed on the belief base BT , and w an inter-
pretation. Diff(C,w) = min{|

⋃
r∈R | : R is a subset of Cov(C) s.t., for some α ∈

L
(⋃

r∈R
)
, Cn(BT ) ` α, andw ` ¬α ; and ∀α ∈ Cn(BT \(BT∩L(

⋃
r∈R))), w ` α}.

Minimality is required for the elements of Diff(C,w) as the coverings of C overlap
and are not disjoint.

To guarantee the satisfaction of the minimal change principle, we use, to compute the
difference between a (possibly incomplete) theory T of L and an interpretation w, only
atomic C-structures constructed on minimal belief bases of T :

Definition 8
Let T be a consistent theory of L (possibly incomplete) and w an interpretation. Diff
(T, w) =

⋂
Diff (C, w), s.t., C is an atomic C-structure of T constructed on BT a

minimal belief base of T .

It is not hard to verify that in the special case of a consistent complete theory, the above
definition of Diff collapses to the one given in Section 4.1.

From Example 1, Table 1 illustrates the computation of Diff(T,wi) for all wi ∈
ML\ [T ]. In this table we are representing interpretations as sequences of literals rather



wi Diff(C,wi) Diff(T,wi)
w1 = abcd {{c,d}} {c,d}
w2 = abcd {{a,b,c},{b,c,d}} {b,c}
w3 = abcd {{a,b,c},{b,c,d}} {b,c}
w4 = abcd {{a,b,c}} {a,b,c}
w5 = abcd {{a,b,c,d}} {a,b,c,d}
w6 = abcd {{a,b}} {a,b}
w7 = abcd {{a,b}} {a,b}
w8 = abcd {{c,d}} {c,d}
w9 = abcd {{a,b,c},{b,c,d}} {b,c}
w10 = abcd {{a,b,c},{b,c,d}} {b,c}
w11 = abcd {{a,b,c},{b,c,d}} {b,c}
w12 = abcd {{b,c,d}} {b,c,d}

TAB. 1 – Diff(T,wi) computation of Example1

than theories ; moreover the negation of a propositional variable p is denoted p. [T ] =
{abcd, abcd, abcd, abcd}.

If T is incomplete, then for any interpretation w such that w ∈ [T ], Diff(T,w) = ∅.
Moreover, for any interpretation w′, Diff(T,w′) ⊆

⋃
w∈[T ]Diff(w,w′).

4.2.1 Condition (C) and Systems of Spheres

(Peppas 04) showed that condition (PS) does not correspond to the revision by the
LS model in the general case of arbitrary theories. Indeed, (PS) does not correspond to
(C) for a system of spheres ST related to a theory T which is not necessarily complete,
since the LS model is a special case of the C-structure model. To see this, refer to the
counter-example given in (Peppas 04).

Despite its failure to generalize, (PS) should not be disregarded altogether. It can still
serve as a guide in formulating the appropriate counterpart(s) of (C) for the general
case ; as we prove later in this section, the two general conditions (Q1) and (Q2) that
correspond to (C) are both in the spirit of (PS) (and surprisingly, they collapse to (PS)
in the special case of complete theories).

To formulate the conditions (Q1) and (Q2), we need to define concepts related to the
notion of distance between an interpretation and an incomplete theory (Peppas 04).

Definition 9
Let w,w′ be interpretations, and let T be a theory of L. The interpretations w and w′

are external T -duals iff Diff(T,w) = Diff(T,w′) and w ∩ (V \ Diff(T,w)) =
w′ ∩ (V \Diff(T,w′)).

Multiple T -duals (external and internal ones as we will see later) add more structure
to a system of spheres, and render condition (PS) too strong for the general case. The
possibility of placing external T -duals in different spheres, opens up new ways of or-
dering interpretations that still induce containment property revision functions without
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fulfilling entirely the demands of (PS). Let us elaborate on this point and define the
notion of w′-cover :

Definition 10
Let T be a theory of L, let w,w′ be two interpretations s.t., Diff (T, w) ⊂ Diff (T,
w′), and let w′′ be an external T -dual of w. The interpretation w′′ is the w′-cover for w
at T denoted by ϑT (w,w′), iff w′′ ∩Diff(T,w) = w′ ∩Diff(T,w).

In Table 1, w11 is the w4-cover for w9 at T (T is the theory of Example 1).
The notion of “cover” will be used to weaken (PS). In particular, consider the condi-

tion (Q1) below :
(Q1). If Diff(T,w) ⊂ Diff(T,w′) then there is a sphere V ∈ ST that contains
ϑT (w,w′) but not w′.

Condition (Q1) formalizes the intuition mentioned earlier about weakening (PS) with
the aid of external T -duals. It is not hard to show that (PS) entails (Q1), and that (Q1)
collapses to (PS) when the initial theory T is complete. Moreover, (Q1) is strictly wea-
ker than (PS).

Now, condition (Q1) alone does not suffice to guarantee the satisfaction of the contain-
ment property ; from something too strong for (C) (condition (PS)), we have now moved
to something too weak. Consider the following counter-example given in (Peppas 04) :
the language L is built over three propositional variables a, b, c, the initial theory T is
T = Cn({a↔ b}), and the system of spheres ST centered on [T ] is the following :
abc

abc abc

abc ≤ abc ≤ abc ≤ abc

abc
In this example all the interpretations outside [T ] (i.e. inML \ [T ]) differ from [T ] on
precisely the same propositional variables, namely on {a, b}. Consequently ST satisfies
(Q1) since its antecedent Diff(T,w) ⊂ Diff(T,w′) never holds for w,w′ /∈ [T ]. Yet
despite the compliance with (Q1), the revision function ∗ induced from ST violates (C)
at T (simply consider the revision of T by a ∧ ¬b).

To secure the correspondence with (C), condition (Q1) needs to be complimented
with a second condition, (Q2). This second condition uses the notion of internal T -dual.

Definition 11
Let w,w′ be interpretations, and let T be a theory of L. The interpretations w and w′

are internal T -duals iff Diff(T,w) = Diff(T,w′), and w ∩ Diff(T,w) = w′ ∩
Diff(T,w′).

In Table 1, w2, w3, w9, and w10 are internal T -duals.
Clearly, for any theory T and any two interpretations w,w′, if w and w′ are both

internal and external T -duals, then they are identical.
We now proceed with the presentation of condition (Q2), which together with (Q1),

brings about the correspondence with (C1). In the following condition T is an arbi-
trary consistent theory of L, ST is a system of spheres centered on [T ], and w,w′ are
interpretations.



(Q2). If w and w′ are internal T -duals, then they belongs to the same spheres in
ST ; i.e., for any sphere V ∈ ST , w ∈ V iff w′ ∈ V .

In the special case that T is complete, no interpretation w has internal or external T -
duals (other than itself). Consequently, in that case (Q1) reduces to (PS), while (Q2)
degenerates to a vacuous condition.

The promised correspondence between (C) and the two conditions (Q1) and (Q2) is
given by the theorem below :

Theorem 3
Let ∗ be a revision function satisfying (T ∗ 1)–(T ∗ 8). Let T be a consistent theory of
L, and ST a system of spheres centered on [T ], that corresponds to ∗ by means of (S∗).
Then ∗ satisfies (C) at T iff ST satisfies (Q1)–(Q2).

It should be noted that in the case of overlapping theories T , the LS model cannot avoid
the counter-intuitive effect of throwing away all non-tautological beliefs in T whenever
the new information is inconsistent with T , regardless of whether these beliefs can be
kept or not. For example, the system of spheres ST centered on [T ] (T is the theory
of Example 1), which is based on the LS model (see in (Peppas 04) for all details on
ST construction) is composed only of two spheres : the sphere [T ] and the sphereML,
the set of all consistent complete theories of L. However, systems of spheres based on
the C-structure model (satisfying the two conditions (Q1) and (Q2)) allows us to avoid
such undesirable systems of spheres. To see this, consider one system of spheres S′T
corresponding to the theory T of Example 1, and satisfying the two conditions (Q1)
and (Q2) as given below. Then, consider the revision of T by a ∧ ¬b using ST and S′T .
By ST , the result is Cn(a ∧ ¬b).

w1 : abcd
w2 : abcd

abcd w3 : abcd
abcd w6 : abcd w4 : abcd
abcd ≤ w7 : abcd ≤ w12 : abcd ≤ w5 : abcd
abcd w8 : abcd

w9 : abcd
w10 : abcd
w11 : abcd

Theorems 1 and 3 provide immediately the following theorem that provides semantics
for the containment property.

Theorem 4
Let ∗ be a revision function satisfying the AGM postulates (T ∗ 1)–(T ∗ 8). Let T be a
consistent theory ofL, and ST a system of spheres centered on [T ], that corresponds to ∗
by means of (S∗). Then ∗ satisfies the containment property iff ST satisfies (Q1)–(Q2).

5 Conclusion
In this paper, based on Grove’s system of spheres construction, we provided seman-

tics for local revision using the C-structure model by considering additional constraints
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on measuring distance between interpretations. We also proved these constraints cha-
racterize precisely the containment property.

In future work we intend to carry out a thorough study of this property by generalizing
our results to belief merging.
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