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Résumé : La logique desimilarité comparative des concepissL a été intro-
duite en 2005 par Shremet, Tishkowsky, Wolter et Zakharyaschew nepué-
senter des informations qualitatives sur la similarité entre des concepigelu

“ A est plus similaire 8 qu'aC”. La sémantique utilise des espaces de distances
afin de représenter le degré de similarité entre objets du domaine. Dantate,

nous étudion€SL sur lesminspacesi.e des espaces de distances dans lesquels
tout ensemble de distances posséde un minimum, et donnons la praribéne-
tisation directe de cette logique dans ce contexte, ainsi qu'une méthodeude p

a tableaux. A notre connaissance, notre calcul est la premiére métbguieuve
pratique pouCSL.

Mots-clés: logiques modales, procédures a tableaux, logiques de description,
similarité comparative des concepts

1 Introduction

The logics of comparative concept similarifys £ have been recently proposed by
Sheremet, Tishkovsky, Wolter et Zakharyaschev in (Sheremal., 2005) to capture
a form of qualitative comparison between concept instanicethese logics we can
express assertions or judgments of the form : "Peugeot 2@Yore similar to Renault
Clio than to Porche Cayenne™, or "Tuscan order is more lgintb Doric order than
to lonic order™, as we might like to express in a KB about @&wlogy. These logics
could find a natural application in ontology languages, vehoglical base is provided
by Description Logics.

The language of SL is obtained by the addition of a binary modal connectivéo
an underlying language, so that the above examples can bdesh(using a description
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logic notation) by :

Peugeot207 C (Clio &= PorcheCayenne)

TuscanOrder T (DoricOrder &= IonicOrder)

The semantics of SL is defined in terms of distance spaces, that is to say stestur
equipped by a distance functieh whose properties may vary according to the logic
under consideration. In this setting, the evaluatiomlof= B can be informally stated
as follows :z € (A &= B) iff d(z, A) < d(z, B) meaning that the object is an
instance of the concept = B (i.e. it belongs to things that are more similarAdhan

to B) if z is strictly closer taA-objects than td3-objects according to distance function
d, where the distance of an object to a set of objects is defingHeanfimumof the
distances to each object in the set.

In a series of papers (Sheremsétl., 2005, 2008; Kurucet al., 2005; Sheremett al.,
2007), the authors have investigated the la@g#C with respect to different classes of
distance models, see (Shereratal, 2008) for a survey of results about decidability,
complexity, expressivity, and axiomatisation. Remariais shown thaCS L is unde-
cidable over subspaces of the reals. More@&L can be seen as a fragment, indeed a
powerful one (including for instance the lodset,, of topological spaces), of a general
logic for spatial reasoning comprising different modal igers defined by (bounded)
quantified distance expressions.

The authors have pointed out that in case the distance spgrassumed to bains-
pacesthat is spaces where the infimum of a set of distances islctiaair minimum
the logicCS L is naturally related to some conditional logics. The semarmf the latter
is often expressed in terms of preferential structures,sha say possible-world struc-
tures equipped by a family of strict partial (pre)-ordersparametrised on objects. The
intended meaning of the relatign<,. z is namely that: is more similar tay than toz.

In this paper we contribute to the study ©@5£ on minspaces. The minspace pro-
perty is essentially equivalent to the restriction to sgagbere the distance function is
discrete. This requirement does not seem in contrast wittpthipose of representing
qualitative comparisons of similarity.

Similarly to conditional logics, we consider a propositibtanguage extended by the
£ connective. In this setting (as opposed to concept/subpretation), the formula
A &= B may be naturally read asA'is (strictly) more plausible thaB™. We first show
that the semantics @fSL£ on minspaces can be equivalently restated in terms of pre-
ferential models satisfying some additional conditiorsamely modularity, centering,
and limit assumption. We then give the first sound, completedirect axiomatisation
of this logic ; this problem was left open in the recent (Shestet al,, 2008). Further-
more, we define a tableaux calculus for checking satisftgtofi CSL formulas. Our
tableaux procedure makes use of labelled formulas and pseodalities indexed on
worlds (., similarly to the calculi for conditional logics defined iGiprdanoet al,,
2003, 2009). To the best of our knowledge our calculus pessitie first known practi-
cal decision procedure for this logic.
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2 The logic of Comparative Concept Similarity CSL

The langageCcs, of CSL is generated from a set of propositional variablgsy
the following grammar :

AB =V, |-A|AANB| A& B.

The others propositional connectives are defined as usual.

The semantic o€ SL introduced in (Sheremedt al, 2005) makes use dfistance
spacesn order to represent the similarity degree between passibkids. A distance
space is a paifA, d) whereA is a non-empty set, andl : A — R=° is adistance
functionsatisfying the following condition :

(ID) Ve,y € A, d(z,y)=0iff z =y

Two further properties are usually assumed : symmetry daigie inequality. We brie-
fly discuss them at the end of this section.

The distance between an objectand a non-empty subséf of A is defined by
d(w,X) = inf{d(w,z) | z € X}. If X =0, thend(w, X) = oco. If for every onjectw
and for every (non-empty) subs&twe have the following property

(MIN) inf {d(w,z) |z € X} = min{d(w,z) |z € X},

we will say that(A, d) is amin-space
We next defin€ S L-distance models as Kripke models based on distance spaces :

Definition 2.1 (CS L-distance model)
A CSL-distance model is a triplet = (A, d, M) where :

— A is a non-empty set adbjects(or possible worlds

— d is a distance o™ (so that(A, d) is a distance space).

- My, — 22 s the evaluation functionwhich assigns to each propositional
variableV; a setVM C A. VM can be seen as the set of possible worlds whgre
is true. We also stipulate’™ = (). For complex formulas™ is defined inductively
as follows :

(-CYM =A - cM
(C A DYM = cMn DM
(C = D)YM = {w € A |d(w,CM) < d(w, D)} .
If (A, d) is a min-spaceM is called &CS L-distance minmodel.
We say that a formulal is valid in a modelM if AM = A. We say that a formula
A isvalid if A is valid in everyCS L-distance model.

As mentioned above, the distance function might be requiveshtisfy the further
conditions of symmetry{SY M) (d(z,y) = d(y,z)) and triangular inequalityT R)
(d(z,z) < d(z,y) + d(y, 2)). It turns out thalCSL cannot distinguish between min-
models which satisfy7'R) from models which do not. In contrastSL has enough
expressive power in order to distinguish between symmatret non-symmetric min-
model3. We intend to consider symmetric models in future research.

1See (Sheremaett al., 2005).
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3 A preferential semantics forCS L

CS L is alogic of pure qualitative comparisons. This motivatesternative seman-
tics where the distance function is replaced by a family eghparisons relations, one
for each object. We call this semantipeeferentialsemantic, similarly to conditional
logics. Technically, preferential structures are equipbpsg a family of strict preorders.
We may interprete this relations as expressing a similarformation between objects.
For three worlds/objects; <, y states thatv is more similar tar than toy.

The preferential semantic in itself is more general thatadise model semantic.
However, if we assume the additional conditions of the didini3.1, it turns out that
these two are equivalent (theorem 3.3).

Definition 3.1
We will say that a preferential relatior,, overA :

(i) is modulariff Va,y,z € A, (z <p y) = (2 <0 Y V T <y 2).
(ii) is centeredff Vx € A,z =w V w <y .
(iii) satisfies thdimit assumptionff X C A, X #( — min., (X) # 0.

Modularity is strongly related to the fact that the prefeia@melations represents dis-
tance comparisons. This is the key property to enforce thivalgnce with distance
models. Centering states thatis theuniqueminimal element for its preferential rela-
tion <,,, and can be seen as the preferential counterpart of (ID)lifftiteassumption
states that each non-empty set has at least one minimalmenrtea preferential rela-
tion (i.e it does not contain an infinitely descending chaamd corresponds to (MIN).

Definition 3.2 (CS L-preferential model)
A CSL-preferential model is a triplat = (A, (<) wen, M) where :
— AM js a non-empty set asbjects(or possible world
— (=w)wen is a family of preferential relationeach one being transitive, irreflexive,
asymmetric, modular, centered, and satisfyinglithét assumption
— .M s the evaluation function defined as in definition 2.1, exéep=— :

(A= BYM = {w € A|3z € AM such thatly € BM, z <, y}
Validity is defined as in definition 2.1.

We now show the equivalence between preferential modelsliatehce minmodels.
We say that &S L-preferential model and aCS L-distance minmodel/ areequiva-
lentiff they are based on the same ggtand for all formulasA € Les,, AT = A7

Theorem 3.3 (Equivalence betweedS L-preferential models andCS L-distance models)
1. For eacltS L-distance min-model, there is an equival€StC-preferential mo-
del.

2. Foreaclé S L-preferential model, there is an equivaléstL-distance min-model.

Sketch of the proof
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1. Contained in (Sheremet al., 2005).

2. Since the relatior,, is modular, we can assume that there exisen&ing func-
tionr,, such that: <,, yiff r,(z) < r,(y). Therefore, given €S L-preferential
model 7 = (A7, (<w)weas,-7), we can define &SL-distance min-model
T = (A7,d,.7), where the distance functiahis defined as follow : ifv = =
thend(w, z) = 0, andd(w, z) = r,,(z) otherwise. We can easily check thais
a min-space (by the limit assumption), and thatnd.7 are equivalent.

4 An axiomatization of CSL over minspaces

We now give an axiomatisation 6fS£ over minspaces. An axiomatisation@§ £
in various classes of models can be found in (Sheretrat, 2008), but it makes use of
an extended language. Moreover, the case of minspaces hasamostudied yet, and it
does not seem that our axioms can be easily derived froméBtetet al., 2008).

(Azl) (L= A) (AsTR) (AE=B)A(B=C)— (A=C)

(AzAS)  =(A = B)V (B = A) (Az-B)  (A=B)—-B

(AzMN)  AA-B— (A& B) (AzMD) (A=B)— (A=C)V(C =B)

(AzVv) (AEB)ANAEC)— (A= (BV0O)) (AzN) (A=B) - (AN-B) & B)

(AzU1)  —(A=1)— (A =1)=1) (AzU2) (AE 1) > (~(A=1) = 1)

(Rr) __r@-B (R1) __ru=p
FA=0C)— (B=0) F(C=B)— (C=4)

(Taut) Classical tautologies and rules.

Fic. 1 —-CSMS axioms.

Our axiomatisation, name@SMS is presented in figure 1. If we interprdt = B
as “A is more plausible tha”, we can give the following intuitive meanings to the
axioms :(Ax 1) states that a contradiction cannot be more plausible thafoamula.
(AzV) states that if a formula is more plausible than two otherd, is more plau-
sible than their disjunctionlAzA) states that if a formulal is more plausible than a
formula B, thenA A =B is more plausible thad. (AzT'R), (AzAS) and (AzM D)
represent respectively transitivity, asymmetry and madiyl of the preferential rela-
tion. (Az—B) and(AxM N) are needed to express the centering and limit assumption
conditions.

(AzU1) and (AzU2) were introduced for a technical purpose. They are the trans-
lations iNCSL of the modalS5 axioms[JA — OOA and(®A — O A2, meaning
that all preference relations have the same range. The (Blesand (RIl) express the
monotony oft= in the first argument, and the anti-monotony in the second one

We can show that our axiomatisation is sound and completenegpect to the pre-
ferential semantics introduced in section 3.

°Note that we can defin@A in CSL by (A = ).
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Theorem 4.1 (Soundness o SMS)
(Soundness) If a formula is derivable €6SMS, then it is valid in everyCSL-
preferential model.
(Completeness) If a formula is valid in evatys L-preferential model, then it is de-
rivable inCSMS.

Sketch of the proof

(Soundness) By induction on the derivation length. We chibek the axioms are
valid in all CS L-preferential models, and that the rules preserve validity
(Completeness) We show the contrapositive : if a formulatglerivable inCSMS,
then its negation is satisfiable in soil®& L-preferential model. For this, we show
how to construct for a given non-derivable formdlaa canonical model in which
—C'is satisfiable.
To begin, letU be the set of almaximal consistensets forLcs.. We define a
binary relationR overU by R(x,y) iff VA € Lese, Acy — (A= 1) € x. We
can prove thaf? is an equivalence relation (by virtue fzU1) and (AzU?2)).
Forallz € U, we let[z] be its equivalence class with respeciio
SinceC is not derivable inCSMS, —C is consistent, and so there is a maximal
consistent set € U such that-C' € z. We can define a model (called canonical
mode) Mc = (A, (<w)wea, M) as follow :
- A=z
— x <, y iff there exists a formulaB € y such that for all formulasi € =z,
(A= B) € w.
- VMe = {z € A|V; € z}, for all propositional variable¥;.
We can check that each preferential relatiop is centered, modular, and satisfies
the limit assumption, and that for all formulasand for all worldsw € A, we
havew € AM iff A € w. Sincez € A and—-C € z, we obtain that-C)Mc £ ),
and thus tha€ is not valid. Details are in (Alenda, 2008).

By virtue of theorem 3.3, we obtain :

Corollary 4.2
CSMS is sound and complete wrt. tlie&S L-distance min-models.

5 Tableau algorithm

In this section, we sketch a tableau-based decision proedduCSL. As usual, a
tableau is a tree whose branches are sets of formulas. Téreselés are either the ini-
tial formulas or they are obtained from previous formulaghsy application of tableau
rules, the rules may produce branching in the tree.

Our calculus makes use of labels to represent possible svéndrder to check whe-
ther a formulaA is satisfiable, we initialise a tableau by: A for an arbitrary label.
Informally, the tableau is construction proceeds as fadlowe apply the tableaux rules
to each formula in a branch until, either we detect a conticad{the branch is closed),
or no new formula is introduced in the branch (the branchtisrated). If every branch
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is closedA is not satisfiable, otherwise it is satisfiable and each opamdh specifies a
model of it. In order to check the validity of a formuly we check whether its negation
is satisfiable, so that is valid if the tableau initialised with : = A is closed.

Tableau rules encode the semantics of the formulas. It iskmen how this works
for boolean operators. Let us look at the formulas &= B) and—(A4 &= B) under
preferential semantics. We have :

w € (A= BYMiff 3u(z € AMAV2(z € BM — 2 <y, 2))

In minspaces, the right part is equivalent to :

Juu e AMAVYy(y € BM — Jz(x € AM Az <4y )

We introduce a pseudo-modality,, indexed on possible worlds.
z € (O, M iff Vy(y <w © — y € AM)

This pseudo-modality is needed for a technical purposembaning is thatr €
(0, A)M iff Aholdsin all preferred worlds te with respect to<,,. It makes it possible
to obtain analytic rules fod &= B.

By means of this modality, we obtain the following equivalen

we (As BYMiff AM 40 A Vy(y g BM vy e (-0,~AM

This last equivalence yields the tableaux rul€s—) and(F' ). Figure 2 shows alll
tableaux rules for our logic.

Let us point out that rul¢ FJ,,) introduces the formulal,,—A. This corresponds to
the limit assumption and will prevent the calculus to praslinfinit descending chains.
We can show that no tableau contains infinite descendingstddilabels related by
the same relatiorc,, provided it does not contain an infinite number of positive
formulas, i.e. formulas of the form : ¢ & ¢ labelled with the same label A formal
proof can be found in (Alenda, 2008)

Definition 5.1 (Closed branch, closed tableau)
A branchB of aCS L-tableau isclosedif one of the three following conditions hold :
() x:AeBandx:—-A € B, forany formulaA, orx : 1 € B. (i) y <, y € B. (iii)
y <, x € B.
A CSL-tableau is closed if every branch is closed.

In order to prove soundness and completeness of the taklel@sx we introduce the
notion of satisfiability of a branch by a model.
Given a branciB, we denote byV s the set of labels occurring iB.

Definition 5.2 (CS £-mapping, satisfiable branch)

Let M = (AM (=) weam, ™M) aCSL-preferential model, an® a branch of a
CSL-tableau. ACS L-mapping fronB to M is a functionf : Wg — A satisfying
the two following conditions :

(i) foreveryy <, z in B, we havef(y) <) f(z) in M.
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z:-(AANB
) x:ANB (NA) @ ( )
z:A z:B z:-A|z:-B
(NEG) x A
z: A
A B z:~(A=B
(T =)(+) rAE (Fe)m) 2 7AEB)
-0-4, y: =B |y:-0.,-A O0-A|y:B, y:0,-A
0,4 =0 A
(IO V< ? (FO)(sv) — 2i7HeA
y: A y<zz y:-A y:0A
Ty 2A (FD)xe) =24
y: A y:—A
(Trans) y7<"" 2 Zatt (Mod)(x) _ pseuw
y<zu z<zy|ly<esu
(Cent) S E— (E = R)() —
r<zylz=y y=y
(E—8) =Y (E-T) rZvhy=e
y=ua z=2z
— ol 0y — oy — — .
(B— <) z=a\y=vy,z2=2\y<sz (E - A) z=y, x: A
Yy <gr 2 A

(*) y is a label occuring in the branch
(**) y is a new label not occuring in the branch

FIG. 2 — Tableau rules fafSL.

z: (A=A

T~

z 0,54 -0-A, z:-A

Yy<zx, ...

y:—0z-A

z2<ay, 2: A, z:0—A

z:—A 2z =—A
1 1

FiIG. 3— An exemple of tableau : provability ef{ A &= A).

(i) for everyx =y in B, we havef(x) = f(y) in M.

Given a branciB of a CSL-tableau, aCSL-preferential modelM, and aCSL-
mappingf fromB to M, we say thaB is satisfiable undef in M if

x: Ac Bimpliesf(z) € AM.
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A branchB is satisfiable if it is satisfiable in son@& L-preferential modeM under
someCSL-mappingf. A CSL-tableau is satisfiable if at least one of its branches is
satisfiable.

Theorem 5.3 (Soundness and completeness of the calculus)
(Soundness) If the tableau starting by —A is closed, the is CSL-valid (wrt.
the preferential semantics).
(Completeness) If a formula &S L-valid (wrt. our preferential semantics), then the
tableau starting by : —A is closed.

Sketch of the proof

(Soundness) The proof is standard : we show that rule apiplicareserves satisfia-
bility.

(Completeness) The completeness of the tableaux calaipreved in the standard
way : we show by contraposition that if a formula is not prdeayy the calculus
then it is not valid. To this purpose we need a notion of saétardranch (see
(Alenda, 2008)). Intuitively a saturated branch is a brathett is closed under the
application of every rule of the calculus, that is to say ifdintains the premise
of the rule, then it contains at least one of its conclusidien the proof runs
as follows : if aC' is not provable, then there exists an open saturated brBnch
containingz : ~C. We can define a model/p associated td which satisfies
all formulas occurring i3 under a suitable mapping, thus in particular it satisfies
x : =C. Details can be found in (Alenda, 2008).

Corollary 5.4
Our calculus is sound and complete wrt. é&L-distance min-models.

The calculus presented above can lead to non-terminatimgpetations due to the
interplay between the rules which generate new labels gthardic rule F' &), (FO)
and(F0,)) and the static ruléT’ =) which generates formutaJ, A to which (F,)
may again be applied. For instance, the tableaux construér w : p &= (¢ &= r)
can generate an infinite branch containing: r, x; : O,—q, 1 : —(¢ & 1), 22 :

r, X9 @ Ug—q, x2 : —(¢ & r), .... Our calculus can be made terminating, without
loosing completeness, by defining a systematic procedugpfalying the rules and by
introducing appropriate blocking conditions.

To this aim, we first define a total orderirgon the labels of a branch such thak y
for all labelsz that are already in the tableau wheris introduced. The systematic
procedure for constructing the tableau for formula A applies first all static rules as
far as possible and then applies one dynamic rules to somwifarabelled: only if
no dynamic rule is applicable to a formula labellgduch thaty < x.

In order to stop the infinite expansion of a branch, we comsidequivalence relation
on labels : given a branch, we say that two labels andy are B—equivalent, denoted
by z =g y, if they label the same set of formulasht) ignoring modal-pseudo formulas
of type (—)0,,C € B (on which they might differ). Since the tableau is initialisby
a finite number of formulas, there can be only a finite numbedabéls that are not
=pg-equivalent in any branclB. Thus a loop-checking mechanism can be devised to
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ensure termination. Moreover, it can be shown, similarlf@mrdancet al,, 2009), that
idenditying=g labels preserve the completeness of the method (an opeahovélth
not become close). Details will be given in a full paper.

6 Conclusion

In this paper, we have studied the logi§ £ over minspaces, and we have obtained
two main results : first we have provided a direct, sound analpdete axiomatisation of
this logic. Furthermore, we defined a tableau calculus, vbiges a decision procedure
for this logic.

There are a number of issues to explore in future researahd&hision procedure
outlined in the previous section is not guaranteed to havepgimal complexity. To
this concern, it is shown in (Sherenedtal,, 2005) thaCS L is EXPTIME-complete, so
that we can consider how to improve our calculus in order techthis upper bound.
Another issue is the extension of our results to symmetritspaces, and possibly to
other classes of models. Finally, since one original mttveof CS L is to reason about
concept similarity in ontologies, and particularly in deégtion logics, we plan to study
further its integration with this family of formalisms.
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