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Résumé : La logique desimilarité comparative des conceptsCSL a été intro-
duite en 2005 par Shremet, Tishkowsky, Wolter et Zakharyaschev pour repré-
senter des informations qualitatives sur la similarité entre des concepts, dutype
“A est plus similaire àB qu’àC”. La sémantique utilise des espaces de distances
afin de représenter le degré de similarité entre objets du domaine. Dans cet article,
nous étudionsCSL sur lesminspaces, i.e des espaces de distances dans lesquels
tout ensemble de distances possède un minimum, et donnons la premièreaxioma-
tisation directe de cette logique dans ce contexte, ainsi qu’une méthode de preuve
à tableaux. A notre connaissance, notre calcul est la première méthodede preuve
pratique pourCSL.

Mots-clés : logiques modales, procédures à tableaux, logiques de description,
similarité comparative des concepts

1 Introduction

The logics of comparative concept similarityCSL have been recently proposed by
Sheremet, Tishkovsky, Wolter et Zakharyaschev in (Sheremet et al., 2005) to capture
a form of qualitative comparison between concept instances. In these logics we can
express assertions or judgments of the form : "‘Peugeot 207 is more similar to Renault
Clio than to Porche Cayenne"’, or "‘Tuscan order is more similar to Doric order than
to Ionic order"’, as we might like to express in a KB about archeology. These logics
could find a natural application in ontology languages, whose logical base is provided
by Description Logics.

The language ofCSL is obtained by the addition of a binary modal connective⇇ to
an underlying language, so that the above examples can be encoded (using a description
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logic notation) by :

Peugeot207 ⊑ (Clio ⇇ PorcheCayenne)

TuscanOrder ⊑ (DoricOrder ⇇ IonicOrder)

The semantics ofCSL is defined in terms of distance spaces, that is to say structures
equipped by a distance functiond, whose properties may vary according to the logic
under consideration. In this setting, the evaluation ofA ⇇ B can be informally stated
as follows :x ∈ (A ⇇ B) iff d(x,A) < d(x,B) meaning that the objectx is an
instance of the conceptA ⇇ B (i.e. it belongs to things that are more similar toA than
toB) if x is strictly closer toA-objects than toB-objects according to distance function
d, where the distance of an object to a set of objects is defined as theinfimumof the
distances to each object in the set.

In a series of papers (Sheremetet al., 2005, 2008; Kuruczet al., 2005; Sheremetet al.,
2007), the authors have investigated the logicCSL with respect to different classes of
distance models, see (Sheremetet al., 2008) for a survey of results about decidability,
complexity, expressivity, and axiomatisation. Remarkably it is shown thatCSL is unde-
cidable over subspaces of the reals. MoreoverCSL can be seen as a fragment, indeed a
powerful one (including for instance the logicS4u of topological spaces), of a general
logic for spatial reasoning comprising different modal operators defined by (bounded)
quantified distance expressions.

The authors have pointed out that in case the distance spacesare assumed to bemins-
paces, that is spaces where the infimum of a set of distances is actually their minimum,
the logicCSL is naturally related to some conditional logics. The semantics of the latter
is often expressed in terms of preferential structures, that is to say possible-world struc-
tures equipped by a family of strict partial (pre)-orders≺x parametrised on objects. The
intended meaning of the relationy ≺x z is namely thatx is more similar toy than toz.

In this paper we contribute to the study ofCSL on minspaces. The minspace pro-
perty is essentially equivalent to the restriction to spaces where the distance function is
discrete. This requirement does not seem in contrast with the purpose of representing
qualitative comparisons of similarity.

Similarly to conditional logics, we consider a propositional language extended by the
⇇ connective. In this setting (as opposed to concept/subset interpretation), the formula
A ⇇ B may be naturally read as "‘A is (strictly) more plausible thanB"’. We first show
that the semantics ofCSL on minspaces can be equivalently restated in terms of pre-
ferential models satisfying some additional conditions, namely modularity, centering,
and limit assumption. We then give the first sound, complete and direct axiomatisation
of this logic ; this problem was left open in the recent (Sheremetet al., 2008). Further-
more, we define a tableaux calculus for checking satisfiability of CSL formulas. Our
tableaux procedure makes use of labelled formulas and pseudo-modalities indexed on
worlds �x, similarly to the calculi for conditional logics defined in (Giordanoet al.,
2003, 2009). To the best of our knowledge our calculus provides the first known practi-
cal decision procedure for this logic.
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2 The logic ofComparative Concept Similarity CSL

The langageLCSL of CSL is generated from a set of propositional variablesVi by
the following grammar :

A,B ::= Vi | ¬A | A ∧B | A ⇇ B.

The others propositional connectives are defined as usual.
The semantic ofCSL introduced in (Sheremetet al., 2005) makes use ofdistance

spacesin order to represent the similarity degree between possible worlds. A distance
space is a pair(∆, d) where∆ is a non-empty set, andd : ∆ → R

≥0 is a distance
functionsatisfying the following condition :

(ID) ∀x, y ∈ ∆, d(x, y) = 0 iff x = y

Two further properties are usually assumed : symmetry and triangle inequality. We brie-
fly discuss them at the end of this section.

The distance between an objectw and a non-empty subsetX of ∆ is defined by
d(w,X) = inf{d(w, x) | x ∈ X}. If X = ∅, thend(w,X) = ∞. If for every onjectw
and for every (non-empty) subsetX we have the following property

(MIN) inf {d(w, x) | x ∈ X} = min {d(w, x) | x ∈ X} ,

we will say that(∆, d) is amin-space.
We next defineCSL-distance models as Kripke models based on distance spaces :

Definition 2.1 (CSL-distance model)
A CSL-distance model is a tripleM = (∆, d, .M) where :

– ∆ is a non-empty set ofobjects(or possible worlds).
– d is a distance on∆M (so that(∆, d) is a distance space).
– .M : Vp → 2∆ is the evaluation functionwhich assigns to each propositional

variableVi a setVM
i ⊆ ∆. VM

i can be seen as the set of possible worlds whereVi

is true. We also stipulate⊥M = ∅. For complex formulas,.M is defined inductively
as follows :

(¬C)M = ∆ − CM

(C ∧D)M = CM ∩DM

(C ⇇ D)M =
{

w ∈ ∆
∣

∣d(w,CM) < d(w,DM)
}

.

If (∆, d) is a min-space,M is called aCSL-distance minmodel.
We say that a formulaA is valid in a modelM if AM = ∆. We say that a formula

A is valid if A is valid in everyCSL-distance model.

As mentioned above, the distance function might be requiredto satisfy the further
conditions of symmetry(SYM) (d(x, y) = d(y, x)) and triangular inequality(TR)
(d(x, z) ≤ d(x, y) + d(y, z)). It turns out thatCSL cannot distinguish between min-
models which satisfy(TR) from models which do not. In contrast,CSL has enough
expressive power in order to distinguish between symmetricand non-symmetric min-
models1. We intend to consider symmetric models in future research.

1See (Sheremetet al., 2005).
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3 A preferential semantics forCSL

CSL is a logic of pure qualitative comparisons. This motivates an alternative seman-
tics where the distance function is replaced by a family of comparisons relations, one
for each object. We call this semanticspreferentialsemantic, similarly to conditional
logics. Technically, preferential structures are equipped by a family of strict preorders.
We may interprete this relations as expressing a similarityinformation between objects.
For three worlds/objects,x ≺w y states thatw is more similar tox than toy.

The preferential semantic in itself is more general than distance model semantic.
However, if we assume the additional conditions of the definition 3.1, it turns out that
these two are equivalent (theorem 3.3).

Definition 3.1
We will say that a preferential relation≺w over∆ :

(i) is modulariff ∀x, y, z ∈ ∆, (x ≺w y) → (z ≺w y ∨ x ≺w z).

(ii) is centerediff ∀x ∈ ∆, x = w ∨ w ≺w x.

(iii) satisfies thelimit assumptioniff ∀X ⊆ ∆,X 6= ∅ → min≺w
(X) 6= ∅.

Modularity is strongly related to the fact that the preferential relations represents dis-
tance comparisons. This is the key property to enforce the equivalence with distance
models. Centering states thatw is theuniqueminimal element for its preferential rela-
tion ≺w, and can be seen as the preferential counterpart of (ID). Thelimit assumption
states that each non-empty set has at least one minimal element wrt. a preferential rela-
tion (i.e it does not contain an infinitely descending chain), and corresponds to (MIN).

Definition 3.2 (CSL-preferential model)
A CSL-preferential model is a tripleM = (∆, (≺w)w∈∆, .

M) where :
– ∆M is a non-empty set ofobjects(or possible worlds).
– (≺w)w∈∆ is a family of preferential relation, each one being transitive, irreflexive,

asymmetric, modular, centered, and satisfying thelimit assumption.
– .M is the evaluation function defined as in definition 2.1, except for ⇇ :

(A ⇇ B)M =
{

w ∈ ∆
∣

∣∃x ∈ AM such that∀y ∈ BM, x ≺w y
}

Validity is defined as in definition 2.1.

We now show the equivalence between preferential models anddistance minmodels.
We say that aCSL-preferential modelI and aCSL-distance minmodelJ areequiva-
lent iff they are based on the same set∆, and for all formulasA ∈ LCSL,AI = AJ .

Theorem 3.3 (Equivalence betweenCSL-preferential models andCSL-distance models)
1. For eachCSL-distance min-model, there is an equivalentCSL-preferential mo-

del.

2. For eachCSL-preferential model, there is an equivalentCSL-distance min-model.

Sketch of the proof
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1. Contained in (Sheremetet al., 2005).

2. Since the relation≺w is modular, we can assume that there exists aranking func-
tion rw such thatx ≺w y iff rw(x) < rw(y). Therefore, given aCSL-preferential
modelJ = (∆J , (≺w)w∈∆J , .J ), we can define aCSL-distance min-model
I = (∆J , d, .J ), where the distance functiond is defined as follow : ifw = x

thend(w, x) = 0, andd(w, x) = rw(x) otherwise. We can easily check thatI is
a min-space (by the limit assumption), and thatI andJ are equivalent.

4 An axiomatization of CSL over minspaces

We now give an axiomatisation ofCSL over minspaces. An axiomatisation ofCSL
in various classes of models can be found in (Sheremetet al., 2008), but it makes use of
an extended language. Moreover, the case of minspaces has not been studied yet, and it
does not seem that our axioms can be easily derived from (Sheremetet al., 2008).

(Ax⊥) ¬(⊥ ⇇ A) (AxTR) (A ⇇ B) ∧ (B ⇇ C) → (A ⇇ C)

(AxAS) ¬(A ⇇ B) ∨ ¬(B ⇇ A) (Ax¬B) (A ⇇ B) → ¬B

(AxMN) A ∧ ¬B → (A ⇇ B) (AxMD) (A ⇇ B) → (A ⇇ C) ∨ (C ⇇ B)

(Ax∨) (A ⇇ B) ∧ (A ⇇ C) → (A ⇇ (B ∨ C)) (Ax∧) (A ⇇ B) → ((A ∧ ¬B) ⇇ B)

(AxU1) ¬(A ⇇ ⊥) → ¬((A ⇇ ⊥) ⇇ ⊥) (AxU2) (A ⇇ ⊥) → ¬(¬(A ⇇ ⊥) ⇇ ⊥)

(Rr)
⊢ (A → B)

⊢ (A ⇇ C) → (B ⇇ C)
(Rl)

⊢ (A → B)

⊢ (C ⇇ B) → (C ⇇ A)

(Taut) Classical tautologies and rules.

FIG. 1 –CSMS axioms.

Our axiomatisation, namedCSMS is presented in figure 1. If we interpretA ⇇ B

as “A is more plausible thanB”, we can give the following intuitive meanings to the
axioms :(Ax⊥) states that a contradiction cannot be more plausible than any formula.
(Ax∨) states that if a formulaA is more plausible than two others,A is more plau-
sible than their disjunction.(Ax∧) states that if a formulaA is more plausible than a
formulaB, thenA ∧ ¬B is more plausible thanA. (AxTR), (AxAS) and(AxMD)
represent respectively transitivity, asymmetry and modularity of the preferential rela-
tion. (Ax¬B) and(AxMN) are needed to express the centering and limit assumption
conditions.

(AxU1) and(AxU2) were introduced for a technical purpose. They are the trans-
lations inCSL of the modalS5 axioms�A → ��A and♦A → �♦A2, meaning
that all preference relations have the same range. The rules(Rr) and(Rl) express the
monotony of⇇ in the first argument, and the anti-monotony in the second one.

We can show that our axiomatisation is sound and complete with respect to the pre-
ferential semantics introduced in section 3.

2Note that we can define♦A in CSL by (A ⇇ ⊥).
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Theorem 4.1 (Soundness ofCSMS)
(Soundness) If a formula is derivable inCSMS, then it is valid in everyCSL-

preferential model.
(Completeness) If a formula is valid in everyCSL-preferential model, then it is de-

rivable inCSMS.

Sketch of the proof

(Soundness) By induction on the derivation length. We checkthat the axioms are
valid in all CSL-preferential models, and that the rules preserve validity.

(Completeness) We show the contrapositive : if a formula is not derivable inCSMS,
then its negation is satisfiable in someCSL-preferential model. For this, we show
how to construct for a given non-derivable formulaC a canonical model in which
¬C is satisfiable.
To begin, letU be the set of allmaximal consistentsets forLCSL. We define a
binary relationR overU byR(x, y) iff ∀A ∈ LCSL, A ∈ y → (A ⇇ ⊥) ∈ x. We
can prove thatR is an equivalence relation (by virtue of(AxU1) and(AxU2)).
For allx ∈ U , we let[x] be its equivalence class with respect toR.
SinceC is not derivable inCSMS, ¬C is consistent, and so there is a maximal
consistent setz ∈ U such that¬C ∈ z. We can define a model (called canonical
model)MC = (∆, (≺w)w∈∆, .

MC ) as follow :
– ∆ = [z].
– x ≺w y iff there exists a formulaB ∈ y such that for all formulasA ∈ x,

(A ⇇ B) ∈ w.
– VMC

i = {x ∈ ∆ | Vi ∈ x}, for all propositional variablesVi.
We can check that each preferential relation≺w is centered, modular, and satisfies
the limit assumption, and that for all formulasA and for all worldsw ∈ ∆, we
havew ∈ AM iff A ∈ w. Sincez ∈ ∆ and¬C ∈ z, we obtain that(¬C)MC 6= ∅,
and thus thatC is not valid. Details are in (Alenda, 2008).

By virtue of theorem 3.3, we obtain :

Corollary 4.2
CSMS is sound and complete wrt. theCSL-distance min-models.

5 Tableau algorithm

In this section, we sketch a tableau-based decision procedure for CSL. As usual, a
tableau is a tree whose branches are sets of formulas. These formulas are either the ini-
tial formulas or they are obtained from previous formulas bythe application of tableau
rules, the rules may produce branching in the tree.

Our calculus makes use of labels to represent possible worlds. In order to check whe-
ther a formulaA is satisfiable, we initialise a tableau byx : A for an arbitrary labelx.
Informally, the tableau is construction proceeds as follows : we apply the tableaux rules
to each formula in a branch until, either we detect a contradition (the branch is closed),
or no new formula is introduced in the branch (the branch is saturated). If every branch
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is closedA is not satisfiable, otherwise it is satisfiable and each open branch specifies a
model of it. In order to check the validity of a formulaA, we check whether its negation
is satisfiable, so thatA is valid if the tableau initialised withx : ¬A is closed.

Tableau rules encode the semantics of the formulas. It is well known how this works
for boolean operators. Let us look at the formulas(A ⇇ B) and¬(A ⇇ B) under
preferential semantics. We have :

w ∈ (A ⇇ B)M iff ∃x(x ∈ AM ∧ ∀z(z ∈ BM → x ≺w z))

In minspaces, the right part is equivalent to :

∃u u ∈ AM ∧ ∀y(y ∈ BM → ∃x(x ∈ AM ∧ x ≺w y))

We introduce a pseudo-modality�w indexed on possible worlds.

x ∈ (�wA)M iff ∀y(y ≺w x→ y ∈ AM)

This pseudo-modality is needed for a technical purpose. Itsmeaning is thatx ∈
(�wA)M iff A holds in all preferred worlds toxwith respect to≺w. It makes it possible
to obtain analytic rules forA ⇇ B.

By means of this modality, we obtain the following equivalence :

w ∈ (A ⇇ B)M iff AM 6= ∅ ∧ ∀y(y 6∈ BM ∨ y ∈ (¬�w¬A)M

This last equivalence yields the tableaux rules(T ⇇) and(F ⇇). Figure 2 shows all
tableaux rules for our logic.

Let us point out that rule(F�x) introduces the formula�x¬A. This corresponds to
the limit assumption and will prevent the calculus to produce infinit descending chains.
We can show that no tableau contains infinite descending chains of labels related by
the same relation<x, provided it does not contain an infinite number of positive⇇-
formulas, i.e. formulas of the formx : φ ⇇ ψ labelled with the same labelx. A formal
proof can be found in (Alenda, 2008)

Definition 5.1 (Closed branch, closed tableau)
A branchB of a CSL-tableau isclosedif one of the three following conditions hold :
(i) x : A ∈ B andx : ¬A ∈ B, for any formulaA, orx : ⊥ ∈ B. (ii) y <x y ∈ B. (iii)
y <x x ∈ B.

A CSL-tableau is closed if every branch is closed.

In order to prove soundness and completeness of the tableauxrules, we introduce the
notion of satisfiability of a branch by a model.

Given a branchB, we denote byWB the set of labels occurring inB.

Definition 5.2 (CSL-mapping, satisfiable branch)
Let M = (∆M, (≺w)w∈∆M , .M) a CSL-preferential model, andB a branch of a
CSL-tableau. ACSL-mapping fromB toM is a functionf : WB −→ ∆M satisfying
the two following conditions :

(i) for everyy <x z in B, we havef(y) ≺f(x) f(z) in M.
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(T∧)
x : A ∧ B

x : A, x : B
(N∧)

x : ¬(A ∧ B)

x : ¬A | x : ¬B

(NEG)
x : ¬¬A

x : A

(T ⇇)(∗)
x : A ⇇ B

¬�¬A, y : ¬B | y : ¬�x¬A
(F ⇇)(∗∗)

x : ¬(A ⇇ B)

�¬A | y : B, y : �x¬A

(T�x)(∗)
z : �xA, y <x z

y : A
(F�x)(∗∗)

z : ¬�xA

y <x z, y : ¬A, y : �xA

(T�)(∗)
�A

y : A
(F�)(∗∗)

¬�A

y : ¬A

(Trans)
y <x z, zxu

y <x u
(Mod)(∗)

z <x u

z <x y | y <x u

(Cent)
x <x y | x = y

(E − R)(∗)
y = y

(E − S)
x = y

y = x
(E − T ) x = y, y = z

x = z

(E− <)
x = x′, y = y′, z = z′, y <x z

y′ <
x
′ z′

(E − A)
x = y, x : A

y : A

(*) y is a label occuring in the branch
(**) y is a new label not occuring in the branch

FIG. 2 – Tableau rules forCSL.

x : (A ⇇ A)

x : ¬�x¬A

y <x x, . . .

⊥

¬�¬A, x : ¬A

y : A

y : ¬A

⊥ y : ¬�x¬A

z <x y, z : A, z : �x¬A

z : ¬A
⊥

z : ¬�x¬A

⊥

FIG. 3 – An exemple of tableau : provability of¬(A ⇇ A).

(ii) for everyx = y in B, we havef(x) = f(y) in M.

Given a branchB of a CSL-tableau, aCSL-preferential modelM, and aCSL-
mappingf from B toM, we say thatB is satisfiable underf in M if

x : A ∈ B impliesf(x) ∈ AM.
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A branchB is satisfiable if it is satisfiable in someCSL-preferential modelM under
someCSL-mappingf . A CSL-tableau is satisfiable if at least one of its branches is
satisfiable.

Theorem 5.3 (Soundness and completeness of the calculus)
(Soundness) If the tableau starting byx : ¬A is closed, thenA is CSL-valid (wrt.

the preferential semantics).
(Completeness) If a formula isCSL-valid (wrt. our preferential semantics), then the

tableau starting byx : ¬A is closed.

Sketch of the proof

(Soundness) The proof is standard : we show that rule application preserves satisfia-
bility.

(Completeness) The completeness of the tableaux calculus is proved in the standard
way : we show by contraposition that if a formula is not provable by the calculus
then it is not valid. To this purpose we need a notion of saturated branch (see
(Alenda, 2008)). Intuitively a saturated branch is a branchthat is closed under the
application of every rule of the calculus, that is to say if itcontains the premise
of the rule, then it contains at least one of its conclusions.Then the proof runs
as follows : if aC is not provable, then there exists an open saturated branchB

containingx : ¬C. We can define a modelMB associated toB which satisfies
all formulas occurring inB under a suitable mapping, thus in particular it satisfies
x : ¬C. Details can be found in (Alenda, 2008).

Corollary 5.4
Our calculus is sound and complete wrt. theCSL-distance min-models.

The calculus presented above can lead to non-terminating computations due to the
interplay between the rules which generate new labels (the dynamic rules(F ⇇), (F�)
and(F�x)) and the static rule(T ⇇) which generates formula¬�xA to which(F�x)
may again be applied. For instance, the tableaux construction forw : p ⇇ (q ⇇ r)
can generate an infinite branch containingx1 : r, x1 : �x¬q, x1 : ¬(q ⇇ r), x2 :
r, x2 : �x¬q, x2 : ¬(q ⇇ r), . . .. Our calculus can be made terminating, without
loosing completeness, by defining a systematic procedure for applying the rules and by
introducing appropriate blocking conditions.

To this aim, we first define a total ordering≺ on the labels of a branch such thatx ≺ y

for all labelsx that are already in the tableau wheny is introduced. The systematic
procedure for constructing the tableau for formulax : A applies first all static rules as
far as possible and then applies one dynamic rules to some formula labelledx only if
no dynamic rule is applicable to a formula labelledy, such thaty ≺ x.

In order to stop the infinite expansion of a branch, we consider an equivalence relation
on labels : given a branchB, we say that two labelsx andy areB−equivalent, denoted
byx ≡B y, if they label the same set of formulas inB, ignoring modal-pseudo formulas
of type (¬)�uC ∈ B (on which they might differ). Since the tableau is initialised by
a finite number of formulas, there can be only a finite number oflabels that are not
≡B-equivalent in any branchB. Thus a loop-checking mechanism can be devised to
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ensure termination. Moreover, it can be shown, similarly to(Giordanoet al., 2009), that
idenditying≡B labels preserve the completeness of the method (an open branch will
not become close). Details will be given in a full paper.

6 Conclusion

In this paper, we have studied the logicCSL over minspaces, and we have obtained
two main results : first we have provided a direct, sound and complete axiomatisation of
this logic. Furthermore, we defined a tableau calculus, which gives a decision procedure
for this logic.

There are a number of issues to explore in future research. The decision procedure
outlined in the previous section is not guaranteed to have anoptimal complexity. To
this concern, it is shown in (Sheremetet al., 2005) thatCSL is EXPTIME-complete, so
that we can consider how to improve our calculus in order to match this upper bound.
Another issue is the extension of our results to symmetric minspaces, and possibly to
other classes of models. Finally, since one original motivation ofCSL is to reason about
concept similarity in ontologies, and particularly in description logics, we plan to study
further its integration with this family of formalisms.
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