Arguing about potential causal relations

Leila Amgoud Henri Prade

IRIT, Université de Toulouse, CNRS

Reasoning about causality

i) Deductive causal reasoning

- generic causal relations
- particular situation
- \Rightarrow predict what is going to take place

(generally) A causes B A is true

B should be true (and might be expected to be reported as such)

ii) Abductive reasoning

- generic causal relations
- observed facts
- \Rightarrow diagnose plausible causes

(generally) A causes B B is true

A might be true

iii) causality assessment

- reported sequences of facts
- generic knowledge about the (normal) course of the world
- \Rightarrow identify the causal relation(s) between the reported facts

iv) analogical reasoning

- past experience:

set of reported sequences of facts with identified causal relations
⇒ guess causal relations in a new reported sequence of facts (on a similarity basis)

v) inductive reasoning

- a sufficiently large set of reported sequences
- \Rightarrow learn generic causal relations.

Case (iii)

context C $B_t, A_t, \neg B_{t'}$ t' > t

Definitions

- a sequence B_t , A_t , $\neg B_{t'}$ is reported to an agent
- agent's knowledge: nonmonotonic consequence relation $| \approx$

Facilitation C : $A_t \Rightarrow fa \neg B_{t'}$ if C $\models B$ and C $\land A \not\models B$

 A_t is perceived as having facilitated the occurrence of $\neg B_{t'}$ in context C

Causation C : $A_t \Rightarrow ca \neg B_{t'}$ if C $\models B$ and C $\land A \models \neg B$

 A_t is perceived as being the cause of $\neg B_t$, in context C

• If C: A \Rightarrow ca B, or if C: A \Rightarrow fa B, then C $\models \neg A$

• *restricted* transitivity If C: A \Rightarrow ca B, if C: B \Rightarrow ca D and if **B** \land C \models A

then C: A \Rightarrow ca D

holds for ⇒ca if l≈ is a preferential entailment holds for ⇒fa if l≈ is a rational closure entailment.

$\mathbf{B} \wedge \mathbf{C} \models \mathbf{A}$

the normal way to have B (in context C) is to have A

A = drinking, B = inebriated, D: staggering, 'drinking' \Rightarrow ca 'inebriated' 'inebriated' \Rightarrow ca staggering'

'drinking' ⇒ca 'staggering'

'inebriated' l≈ 'drinking'

Justification (or Explanation)

sequence: $B_t, A_t, \neg B_{t'}$

Agent's knowledge: $C \not\sim B, C \not\sim \neg B$ and $C \land A \not\sim \neg B$ ($\mid \approx$ non-monotonic consequence relation)

A is perceived as *justifying / explaining* the fact that B is now false in context C

Different possible scenarios

- C, B_t , $\neg B_t$, change without reported event
- C, B_t , B_t , persistence without reported event
- C, B_t , A_t , $\neg B_t$, change with reported event
- C, B_t , A_t , B_t , persistence with reported event

possible pieces of knowledge

- either C $\models B$, or C $\models \neg B$, or C $\models B$ and C $\mid \approx \neg B$
- either $C \land A \models B$, or $C \land A \models \neg B$, or

 $C \land A \not \approx B$ and $C \land A \not \approx \neg B$

36 scenarii

1	C, Bt, At, ⊐Bt'	C l≈ B	C∧A l≈ B	unexplained change,
				B should have persisted
2	C, Bt, At,	C l≈ B	C∧A l∕≈ B	change <i>facilitated</i> by A
	¬Bt'		and C∧A ⊮≈ ¬B	
3	C, Bt, At, ⊐Bt'	C l≈ B	C∧A I≈ ¬B	change <i>caused</i> by A
4	C, Bt, At, ⊐Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A l≈ B	unjustified change after A
5	C, Bt, At,	C l∕≈ B and	C∧A ⊭≈ B	contingent change
	¬Bt'	C ∕≈ ¬B	and C∧A ⊮≈ ¬B	
6	C, Bt, At,	C l∕≈ B and	C∧A ≈ ¬B	change <i>justified</i> by A
	⊐Bt'	C V≈ ¬B		
7	C, Bt, At,	C ≈ ¬B	C∧A l≈ B	unexplained change,
	¬Bt'			double defeated expectations!
8	C, Bt, At,	C l≈ ¬B	C∧A ⊭≈ B	from exceptionality to contingency
	¬Bt'		and C∧A ⊭~ ¬B	
9	C, Bt, At, ¬Bt'	C ≈ ¬B	C∧A ≈ ¬B	back to normality thanks to A

10	C, Bt, ⊐Bt'	C l≈ B	C∧A l≈ B	change for unknown reason
11	C, Bt, ⊐Bt'	C l≈ B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	change for unknown reason, A is a potential facilitating factor
12	C, Bt, ⊐Bt'	C l≈ B	C∧A I≈ ¬B	A is a potential <i>cause</i> for the change
13	C, Bt, ⊐Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A l≈ B	unexplainable change
14	C, Bt, ⊐Bt'	C l∕≈ B and C l∕≈ ¬B	$C \land A \not\sim B$ and $C \land A \not\sim \neg B$	fully contingent change
15	C, Bt, ⊐Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A ≈ ¬B	A would <i>justify</i> the change
16	C, Bt, ⊐Bt'	C l≈ ¬B	C∧A ≈ B	back to normality (not due to A)
17	C, Bt, ⊐Bt'	C I≈ ¬B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	back to normality, (could have been facilitated by A)
18	C, Bt, ⊐Bt'	C l≈ ¬B	C∧A ≈ ¬B	back to normality (maybe due to A)

19	C, Bt, At, Bt'	C l≈ B	C∧A l≈ B	A agrees with persistence of B
20	C, Bt, At, Bt'	C l≈ B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	B has persisted in spite of A
21	C, Bt, At, Bt'	C l≈ B	C∧A I≈ ¬B	unexplained persistence of B
22	C, Bt, At, Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A l≈ B	A explains persistence of B
23	C, Bt, At, Bt'	C l∕≈ B and C l⁄≈ ¬B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	contingent persistence of B
24	C, Bt, At, Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A I≈ ¬B	A disagrees with persistence of B
25	C, Bt, At, Bt'	C l≈ ¬B	C∧A ≈ B	back to normality
26	C, Bt, At, Bt'	C ≈ ¬B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	from exception to contingency
27	C, Bt, At, Bt'	C l≈ ¬B	C∧A ≈ ¬B	double defeated expectations, exceptional situation

28	C, Bt, Bt'	C l≈ B	C∧A ≈ B	expected persistence
29	C, Bt, Bt'	C l≈ B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	expected persistence
30	C, Bt, Bt'	C l≈ B	C∧A ≈ ¬B	expected persistence
31	C, Bt, Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A ≈ B	contingent persistence
32	C, Bt, Bt'	C l∕≈ B and C l∕≈ ¬B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	contingent persistence
33	C, Bt, Bt'	C l∕≈ B and C l∕≈ ¬B	C∧A ≈ ¬B	contingent persistence
34	C, Bt, Bt'	C l≈ ¬B	C∧A ≈ B	from exception to normality in case A took place
35	C, Bt, Bt'	C l≈ ¬B	$C \land A \not \approx B$ and $C \land A \not \approx \neg B$	persistence of exceptionality, might be facilitated to A
36	C, Bt, Bt'	C l≈ ¬B	C∧A ≈ ¬B	persistence of exceptionality

Arguing causality

- Argument : a reason for claiming that event A causes B
 - \Rightarrow A causes B is not necessarily true
 - \Rightarrow argument may be attacked by other

arguments

• Argumentation : reasoning about interacting arguments

Causal Argument

Definition: Causal argument scheme

A is an *arguable cause for* ¬ B because:

- a. Normally in context C, B is true $C \models B$
- b. The actual context is $C' = C \land A$

(assuming consistency of C and A)

c. In the new context C', \neg B is reported as true

A relevant or (significant) difference between contexts C and C'

Example

- A bicyclist moves into the traffic lane in order to pass a truck illegally parked in the bike lane. The driver of a car approaching from the rear slams on her brakes in order to avoid hitting the bicycle. A following car fails to stop in time, and smashes into the back of the first.
- The bicyclist's insurance company may claim that the illegally parked truck (i) caused her client to swerve (s) into the lane of traffic, using

Argument A: i caused s because:

- a. C l≈ ¬s
- b. $C' = C \land i$
- c. s is true

Critical questions

- Does it hold that C l≈ B ? Are there cases where C ∧ ¬B holds?
- Is it really the case that $\neg B$ is true?
- Is there another A' such that both C \land A' and \neg B hold?
- Is the difference A pointed out between contexts C and C' relevant

(w. r. t. a possible change from B to \neg B)?

- Does the possible cause A invariably, or at least generally, produce the effect $\neg B$?
- ⇒ answering the above questions amounts to exhibit counter-arguments

 \Rightarrow one or several of the prototypical situations listed in Table

Example

several persons get sick after eating a pizza during a party organized by their friend Mary. Moreover, each of them had a fancy hat also.

> Argument A_1 : *pizza* caused *sick* because: party $|\approx \neg$ sick C' = party \land pizza sick is true.

Argument A₂: wearing a hat caused sick because: party l≈ ¬sick C' = party ∧ wearing a hat sick is true. Argument A₃: wearing a hat l≈ ¬sick not a causal argument!

fancy hats were treated by means of some toxic product

Argument A_4 : toxic product caused sick because: wearing a hat $|\approx \neg$ sick C' = wearing a hat \land toxic product sick is true

argumentation is a dynamical process where arguments and counter-arguments interact with each other in order to assess a possible cause

Concluding remarks

- to figure out what may be the different types of reaction an agent may have in face of a sequence, depending on his beliefs on the normal course of things
- causal arguments, where do they come from, and how they may be refuted.
- Dung's acceptability semantics are not suitable in case of causal arguments

looking for **responsibility**

"If A' had taken place, ¬B would not have happened"

- A' is an uncontrolled event

"if no storm had taken place, there would be no flood"

- A' is an action performed by some agent

"if Peter had abstained drinking, he would not have got a fee"

Here ¬B is something **undesirable**

A' may be regarded as a cause for it

But similar patterns exist where ¬B is **desirable**

- "if Peter had not received a solid education, he would have not succeeded"
- "if embankments had not be built, the flood would have not been avoided"

condition part may appear either in a positive or negative form