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Abstract. We present a multi-modal action logic with first-order modalities,
which contain terms which can be unified with the terms inside the subsequent
formulas and which can be quantified. This makes it possible to handle simulta-
neously time and states. We discuss applications of this language to action theory
where it is possible to express many temporal aspects of actions, as for exam-
ple, beginning, end, time points, delayed preconditions and results, duration and
many others.

1 Introduction

Most action theories consider actions being specified by their preconditions and their
results. The temporal structure of an action system is then defined by the sequence
of actions that occur. A world is conceived as a graph of situations where every link
from one node to the next node is considered as an action transition. This yields also a
temporal structure of the action space, namely sequences of actions can be considered
defining sequences of world states. The action occurs instantantly at one moment and
its results are true at the “next” moment.

However, the temporal structure of actions can be much more complex and compli-
cated.

– Actions may have a duration.
– The results may be true before the action is completed or after it is finished.
– Actions may have preconditions which have to have been true during some interval

preceding the action occurrence.

In order to represent complex temporal structures, underlying actions’ occurrences,
we have developed an action logic which allows to handle both states and time simul-
tanuously.

We want to be able to express, for instance, that action a occurs at moment t if
conditions p1, . . .pn have been true during the intervals i1, . . . ik all preceding t.

Here we present an approach where it is possible to describe actions in a complex
temporal environment. In reality, actions have sometimes a beginning time, a duration,
preconditions which may also have temporal aspects. Action results may become true
only instants after the end of the action performance. For an example, consider the
action of calling an elevator, taking place at instant t1. Depending on the actual situation
this action may cause the elevator to move only many instants later, to stop still later, an



so on. The action of pressing the button of a traffic light, in order to get green light to
cross the street may result in a switch immediately or after some seconds and in another
switch after some more minutes.

In order to represent such issues, we define a modal action logic, Dal , where the
modalities are terms containing variables which can be quantified. The same variables
can occur inside the modalities as well as in the formulas after the modalities, allowing
for unification between action term components and logical terms. This language makes
it possible to express reasoning on states and the action terms allow to express temporal
aspects of the actions.

A similar logic, called term modal logic, has been defined in [1]. In this work, any
term of the first-order language can be a modal operator. This makes it possible to quan-
tify over variables naming the accessability relation. In our appraoch, we quanantify
over terms which index the accessability relation. It is possible to simulate term modal
logic in our logic Dal by having one single action a of arity 1 and by using as action
operators any operator a(t) for any term t of the language. The simulation of Dal by
term modal logic is not so straightforward, because in our logic action names cannot oc-
cur within the underlying first-order language (they are different from all predicate and
function symbols of underlying the first-order logic). Another difference of our logic
with term modal logic is that our logic includes equality.

Another related formalism is hybrid logic where it is possible to quantify over state
variables naming worlds. In hybrid logic however these state variables belong to the
object language.

2 The first-order modal action logic Dal

The language of first-order action logic is an extension of the language of classical
predicate logic, L0. L0 consists of a set of variables x, y, x1, y1, . . ., a set FF of function
symbols F , where |F | ∈ ω is the arity of F , a set PP of predicate symbols P , including
> and ⊥, where |P | ∈ ω is the arity of P 1, an equality symbol =, the logical symbols
¬, ∧ ,∀. Terms and formulas are defined as usual and so are ∃ and ∨. We denote by Vt

the set of all terms of L0. Free occurrence of a variable x in a formula φ is defined as
usual.
Dal is a multi-modal logic where each modality is a term of the form a(t1, . . . tn)

for some action name a. We call these terms actions terms. They only occur within
modalities. In addition, Dal contains the S4 -modal operator 2 which will be used to
express that a sentence is true in every world of a Kripke model.

Action terms The language for action operators consists of

– a set AA of action symbols a1, a2, . . . where |a| ∈ ω is the arity of a and such that
AA ∩ PP = ∅

Action terms are built from action symbols and terms of L0.

1 There are two predicate symbols of arity 0 which can be identified with > and ⊥. Sometimes
> and ⊥ are also considered as empty conjunction and disjunction, hence as logical symbols.



– if a is an action symbol of arity n and t1, . . . tn are terms of L0, then a(t1, . . . tn)
is an action term.

An action term is called grounded if no variable occurs free in it. The set of grounded
action terms is denoted by AAt.

Action operators If a and a1, a2, . . . an are action terms, then

– [a] is an action operator
– [a1; a2; . . . an] is an action operator
– For n = 0, the corresponding action operator is noted [ε]

[ε] is the “empty” action operator. We use it in order to define the initial state of a
system.

Modal operator 2 is the standard modal operator ( S4 )
We use 2 for describing general laws (constraints) which hold in all states of a

system.
An action operator is called grounded if all the action terms occurring in it are

grounded.
Example: [a], [a(c1, c2, c3)] are grounded, [a(x, c2, y)] is not grounded.

Dal formulas

– Every first-order formula (of L0) is a Dal formula.
– If φ is a Dal formula and [A] is an action operator, then [A]φ is a Dal formula.
– If φ is a Dal formula and 2 is the modal operator, then 2φ is a Dal formula.
– If φ is a Dal formula and x is a variable, then ∀xφ is a Dal formula.

Instantiation If φ is a formula and t is a term, then φx
t is the formula obtained from φ

by replacing every free occurrence of x by t. If t is the name of an element of a set O
then φx

t is called O-instance of φ.
Example:

[a(x, c)](¬φ(c, x) ∨ ψ(x))x
c1

= [a(c1, c)](¬φ(c, c1) ∨ ψ(c1))
[a1; a2; a3(c, y)]P (c, y)y

c3
= [a1; a2; a3(c, c3)]P (c, c3)

A formula is called grounded if there is no variable occurring free in it. The notion of
free occurrence of a variable within a formula is extended to Dal -formulas as follows:
If a variable occurs free within an action term A then it occurs free in [A]φ.

2.1 Semantical Characterization of Dal

Dal formulas are semantically characterized by Kripe structures, i.e. sets of worlds
where each world is a classical structure. Since action operators are indexed by terms
of the language, we have a different action operator [a(t1, . . . tn)] for any grounded
tuple of terms t1, . . . tn of the first-order language L0. And consequently, we have a



different transition relation for each of these action operators. The semantics of Dal is
defined as follows:

A Dal structure is a Kripke-type structure, such that the transition relation between
worlds depends on grounded action terms.

A Dal structure is a tupleM = (W, {Sw : w ∈ W},A,R, τ), where

– W is a set of worlds
– for every w ∈ W , Sw = (O,Fw,Pw) is a classical structure, where O is the set of

individual objects (the same set in all worlds), Fw is a set of functions over O and
Pw is a set of predicates over O.

– A is a set of action functions, for f ∈ A, f : W ×O × . . .×O︸ ︷︷ ︸
n

−→ 2W , n ∈ ω.

Action functions will characterize the action operators (every action symbol of arity
n in AA will be associeted with an action function of arity n+ 1).

– R ⊆ W ×W is a binary accessability relation onW , which will characterize the
modal operater 2. We will write R(w) = {w′ : (w,w′) ∈ R}.

– τ is a valuation, τ = (τ0, τ1, τ2, τ3), where τ0 is a function assigning objects from
O to terms. In order to speak about objects fromO, we introduce into the language,
for every o ∈ O, an o-place function symbol (denoted equally o, for simplicity).
τ1 is a function assigning, for every world w ∈ W , functions (from Fw) to function
symbols (from FF ), of the same arity,
τ1 :W ×FF −→ F such that |τ1(w,F )| = |F |.
τ2 is a function assigning, for every world w ∈ W , predicates to predicate symbols
of the same arities,
τ2 :W ×PP −→ P , such that |τ2(w,P )| = |P |.
τ3 is a function assigning action functions to action symbols,
τ3 : AA −→ A, such that |τ3(a)| = |a|+ 1

– τ3(a)(w, τ0(t1), . . . , τ0(tn)) ⊆ R(w). If a world can be reached from w by the
execution of action a(t1, t2, . . . , tn) then it is accessible (via the relation R).

τ0, τ1, τ2 and τ3 define the valuation τ as follows:

– If F (t1, t2, . . . , tm) is a term then
τ0(w,F (t1, t2, . . . , tm)) = τ1(w,F )(τ0(w, t1), τ0(w, t2), . . . , τ0(w, tm)).

– if P is an n-ary predicate symbol and t1, t2, . . . , tn are free object variables then
τ(w,Pt1, t2, . . . , tn) = > iff (τ0(t1), . . . τ0(tn)) ∈ τ2(w,P )

– τ(w, t1 = t2) = > iff τ0(w, t1) = τ0(w, t2)
– τ(w,¬φ) = > iff τ(w, φ) = ⊥
– τ(w, φ ∧ ψ) = > iff τ(w, φ) = τ(w,ψ) = >
– τ(w,∀xφ) = > iff for every o ∈ O2 τ(w, φx

o) = >
– τ(w, [a(t1, t2, . . . , tn)]φ) = > iff for every w′ ∈ τ3(a)(w, τ0(t1), . . . , τ0(tn)),
τ(w′, φ) = >

– τ(w,2φ) = > iff for every w′ ∈ R(w), τ(w′, φ) = >

2 Note that we added every o ∈ O as a new term (the name of o) to the language.



Let φ be a formula and x1, x2, . . . , xn be the free object variables occurring in φ.
Then τ(w, φ) = t iff for every tuple t1, t2, . . . , tn of ground terms,

τ(w, φx1, x2, . . . , xn
t1, t2, . . . , tn

) = t

A formula φ is called valid in state w ∈ W of a Dal -structureM iff τ(w, φ) = >.
This is denoted by M, w |= φ. We also say then that φ is satisfiable. A formula φ is
called valid in a Dal - structure M with the set of states W , iff φ is valid in every
w ∈ W . We denote that by M |= φ. A formula φ is called Dal - valid iff φ is valid
in every Dal - structure. This is denoted by |=Dal φ. We suppress the index Dal ,
whenever it is clear from the context, in which system we are.

Remark 1 [a]⊥ is satisfiable and we have τ(w, [a]⊥) = > iff
τ3(a)(w, τ0(t1), . . . , τ0(tn)) = ∅

2.2 Axioms and inference rules of Dal

In addition to the axioms and inference rules of classical first - order logic and those
of the system K, which rule all action operators including [ε], and those of the system
and S4, which rule the operator 2, we have the following axioms and inference rules,
(where [A], [A1] and [A2] are arbitrary action operators):

[A1] [A1;A2]α↔ [A1][A2]α
[A2] 2α→ [A]α
[A3] [ε]α→ α
[A4] ∀xα→ αx

c for any term c of L′
[A5] ∀x[X]α↔ [X]∀xα for any modal operator X, with no occurrence of x

[R1] From α infer 2α
[R2] From α→ β infer α→ ∀xβ provided x has no free occurrence in α

`Dal is defined as usual, such that `Dal φ for any instance φ of one of the axioms;
and `Dal ψ, whenever ψ can be inferred from φ, for any φ, such that `Dal φ by use
of one of the inference rules. Again, we suppress the index Dal , whenever it is clear
from the context, in which system we are.

A2 says that a formula which is true “in all worlds of a model” will still be true
after the occurrence of actions [A]. A3 asserts the “emptyness” of the action operator
[ε]: if formula α is true after the occurrence of ε it is already true. A5 is the well-known
Barcan formula (and its contrapositive). We need A5 because we choose the same set
of objects for every world. Objects cannot disappear neither new objects can appear.

2.3 Soundness, Completeness, Decidability

The Dal -logic is sound and complete:

Theorem 1 `Dal φ if and only if φ is Dal - valid (|=Dal φ)



The soundness proof is easy and the completeness proof goes along the lines of
completeness proofs for modal logics by construction of a canonical model. The proof,
which can be found in the full paper [13], bears several modifications according to
the specific language which allows to quantify over terms occurring within modal
operators.

Dal is a first order language and therefore undecidable in the general case. But for
action logics, we will make use of a decidable subset of Dal .
Dal is very close to term modal logic introduced by [1]. Term modal logic allows

terms in general as modalities, whereas our action logic only admits action terms. More-
over Dal contains the S4 modal operator 2 which is not part of term modal logic.

Decidable subsets of first-order logic can “yield” decidable subsets of Dal : the
subset of Dal without function symbols and existential quantifiers can be shown to be
decidable by the finite model property. We omit the proof for space limit.

3 Temporal Action Theories

Here we present one application of the formalism introduced above. This application is
related to the formal description of actions by modal logic. Frequenly in action theories
“time points” are identified with states (or worlds of a Kripke model). This yields a dis-
crete conception of systems where actions can occur in a state of the system producing
as a result a “next” state. But we argue that in real world systems both notions co-exist:
time and state. Frequenly, we conceive an action as occurring instantly and producing
its results at some “next” instant. But at the same time, we have an underlying idea of
time, measured eventually by a clock even when we do not systematically need to refer
to this time axis. For some scenarios it is necessary to take into account different (and
various) temporal a spects of actions, simply because there may be termporally delayed
preconditions or results of actions.

We can modelize these temporal aspects of actions using Dal . The modal logic
allows to define action operators as modalities much like in [3, 12]. The first order logic
is used to formulate actions at a more general level. Here, we show an example where
in addition to the relative representation of time by the modal operators, it is possible to
add assertions about time points or intervals.

Subsequently, we use a restricted subset Dal , whith no positive occurrence of ex-
istential quantifiers and no negative ocurrence of universal quantifiers.

We presuppose a time axis, T , linearly ordered (dense or continuous or discrete).
Given aDal -structure, we will define a transitive relation on the set of states,W , which
will be related to the order on T .

Definition 1 LetM = (W, {Sw : w ∈ W},A,R, (τ0, τ1, τ2, τ3)) , be a Dal -model.
Then w ≺0 w

′ iff ∃a ∈ A of arity n and there are terms t1, . . . , tn, such that w′ ∈
τ3(a)(w, τ0(t1), . . . , τ0(tn)). Let be � the reflexive and transitive closure of ≺0.

Intuitively, this means that w ≺ w′ if we can possibly “reach” w′ from w by
performing actions a1, a2, . . . , an. Obviously, � is transitive and reflexive. Since we
want to “link” worlds of W to time points in T , which is ordered, ≺ must also be



antisymmetric. The temporal entrenchment of the states is defined by a homomorphism
time : W −→ T from W into T , where w � w′ implies time(w) ≤ time(w′).
Using this construction, action operators can be defined admitting complex temporal
structures, including beginning and ending instants and a duration, which can be 0,
when the result is immediate. The preconditions and results of actions can be defined
to occur at freely determinable time instants before or after the instant when the action
occurs. When an action a occurs in the state w, time(w) gives us the time point at
which a occurs. If the duration of the action is ∆, the time point of the resulting state
w′ is time(w′) = time(w) +∆.

In this particular framework, we define

– Action terms as binary action predicates a(t, d,−→x ), where t denotes the instant on
which a occurs and d denotes the duration of a, i.e. the interval on T after which
the results of a will hold. , −→x is the sequence of other variables denoting the other
entities or objects involved in the action occurrence.
To give an example, let T = {1, . . . , 24} be discrete and finite, denoting the
hours during one day. Then action move(t, 3, TGV,Marseille, Paris) is the ac-
tion “train TGV goes from Marseille to Paris, the duration being 3 hours”.

– Action axioms. An action axiom is characterized by a precondition π(t,−→x ) and a
result ρ(t+ d,−→x ), where π is a Dal formula describing all preconditions of action
a and ρ is a conjunction of litterals describing the results of a.
To continue the previous example, the action execution axiom
of the move-action is at(t, x, y) → [move(t, d, x, y, z)]at(t +
d, x, z) (and can be instantiated to at(6, TGV,Marseille) →
[move(6, 3, TGV,Marseille, Paris)]at(9, TGV, Paris)), which means: if
x is at y at instant t, then, after moving from y to z, x is at z at instant t+ d.

The general form of an action law is

(∗) 2(π(t1,−→x1)→ [a(t, d,−→x2)]ρ(t2,−→x3)),where −→x1 ∪ −→x2 ⊆ −→x3

Note that it is then possible to derive one action law

2(π(t1,−→x1)→ [a(t, d,−→x2)]l(t2,−→x3))

from axiom (*) for each of the litterals occurring within ρ.
We define action systems much as in [3, 4] or [2].
An action system is a tuple (Π,Frame, C) where Π is a set of action laws, and of

causal laws, C is a set of constraints (or general laws) and Frame provides a classifi-
cation of the atoms of the language as frame fluents and non-frame fluents. As in [3, 4]
we use a completion construction in order to solve the frame problem.

Causal laws have the general form 2(α ∧ [a]γ → [a]f) or 2(β ∧ [a]δj → [a]¬f),
where f is an atom (a fluent) and α, β, γ and δ are first-order formulas (not containing
modalities).

Frame is a set of pairs (f, a), where a ∈ AA is an action symbol and f is an atom.
Our action system relies on solutions to the frame problem similar to those described



in [3, 4]. In this paper a completion construction is defined which, given a domain de-
scription, introduces frame axioms for all frame fluents in the style of the successor
state axioms in situation calculus [10]. This completion construction applies only to
action laws and causal laws and not to the constraints.

Let be Π contain action and causal laws which both have the general form

2(αi ∧ [a]γi → [a]f) 2(βj ∧ [a]δj → [a]¬f),

where αi, βj , γi, δj are arbitrary (non-temporal) formulas and some of the conjuncts in
the antecedents may be missing (in the case of action laws). This is an enumeration of
the action laws for action a.

The completion of Π is the set of formulas Comp(Π) containing, for all actions a
and fluents f such that (f, a) ∈ Frame, the following axioms:

2(〈a〉> → ([a]f ↔
∨
i

(αi ∧ [a]γi) ∨ (f ∧ ¬[a]¬f))) (1)

2(〈a〉> → ([a]¬f ↔
∨
j

(βj ∧ [a]δj) ∨ (¬f ∧ ¬[a]f))) (2)

Notice that, for each action a and fluent f which is nonframe with respect to a, i.e.
(f, a) 6∈ Frame, axioms (1) and (2) above are not added in Comp(Π). As in [10],
these laws express that a fluent f (or its negation ¬f ) holds either as a consequence of
some action a or some causal law, or by persistency, since f (or ¬f ) held in the state
before the ocurrence of a and ¬f (or f ) is not a result of a. The occurrences of 〈a〉>
assure that there is a succeeding state after action a occurred (formula 〈a〉> is true if
there is a resulting state after occurrence of action a).

From the two axioms above we can derive the following axioms, which are similar,
in their structure to Reiter’s successor state axioms [10]:

2(〈a〉> → ([a]f ↔ (
∨

i(αi ∧ [a]γi)) ∨ (f ∧
∧

j(¬βj ∨ ¬[a]δj))))
2(〈a〉> → ([a]¬f ↔ (

∨
j(βj ∧ [a]δj)) ∨ (¬f ∧

∧
i(¬αi ∨ ¬[a]γi))))

The construction above is similar to the one that we have introduced in [3], though there
are some differences for the fact that in [3], we have adopted a different formalization
of causal laws by using the next operator. Also, in the present paper, causal laws are
more general than in [3], as they refer (in their antecedent) to the values of fluents in
the current state as well as in the next state.

4 Example

The following example is due to Lewis [6] and has been discussed by Halpern and Pearl
in [5] in the framework of a theory of causation. Interestingly, this example defines
actions with a complex temporal structure.

Billy and Suzanne throw rocks at a bottle. Suzanne throws first and her rock arrives
first. The bottle shatters. When Billy’s rock gets to where the bottle used to be, there is



nothing there but flying shards of glass. Without Suzanne’s throw, the impact of Billy’s
rock on the intact bottle would have been one of the final steps in the causal chain from
Billy’s throw to the shattering of the bottle. But, thanks to Suzanne’s preempting throw,
that impact never happens.

In our formulation, we focalize on the temporal structure of the throw action. We
consider that the action occurs along a continuous (or dense) time axis, [0,∞[. We
define one action term for “throw”, T , and two predicates H for “hits” and BB for “the
bottle is broken”. The action term T (t, d, p) means that “person p throws a stone to a
bottle at instant t and the result of the action (the stone hits its target) occurs at instant
t+ d”. The formula H(t, p) means that “the stone thrown by person p hits the bottle at
instant t and formula BB(t) means that the bottle is broken at instant t. The intended
result of the action is to hit the bottle, but this result can only be achieved if the bottle
is still at the intended place and nothing else has been happened to it, namely if it is not
broken in the meantime. In this example it is not enough to have the precondition that
the bottle is there and not broken at the instant of throwing, but it must be non-broken
at the moment when the action is to be completed, just before it is to be hit. Therefore
the action law for “throw” has a precondition which must hold after the instant when
the action occurs.

Example 1 The following set of laws represents the framework of this story:

(1) 2(¬BB(t+ d)→ [T (t, d, p)]H(t+ d, p))
(2) 2(H(t, p)→ BB(t+ d1))
(3) 2(BB(t)→ ∀t′(t < t′ → BB(t′)))
(4) [ε]¬BB(0)

(1) is the action law for successful execution of the throw action, (2) describes the
impact of hitting the bottle (d1 is infinitesimally small) and the general law (3) says that
a broken bottle remains broken “forever” 3.

Several scenarios can happen within this framework. Here we discuss the scenario
where Suzanne throws at instant 0 and Billy throws some instant later4.

(5) < T (0, ds, suzy) > >
(6) < T (t1, db, billy) > >

Three cases can be distinguished:

1. The moment when the bottle can be hit (and broken) after Suzanne’s throw (ds+d1)
occurs before Billy’s stone could possibly hit the bottle t1 + db.

3 In this example we focus on the temporal relations between the different instants of throwing
(by Suzanne and by Billy), so we neglected other preconditions, as for example having a
stone, heavy enough, but not too heavy, having members enabling the person to throw, seeing
the object to aim, etc. The throw action defined here is highly abstracted for the purpose of our
temporal action theory.

4 In order to express that action aoccurs, we write [a]>, which simply means that action a occurs
(even when nothing can be said about its results). It is always possible to throw a stone at a
bottle, even if the intended result of hitting cannot be achieved.



(7) ds + d1 < t1 + db

(8) 2(BB(ds + d1)→ BB(t1 + db)) from (3) and (7)
(9) ¬BB(ds) by persistency from (4)5

(10) [T (0, ds, suzy)]H(ds, suzy) from (1) and (9)
(11) [T (0, ds, suzy)]BB(ds + d1) from (2), (10), K for the action modality and (A2)
(12) [T (0, ds, suzy)]BB(t1 + db) from (11), (8), K and (A2)

In this scenario, the law ¬BB(t1+db)→ [T (t1, db, billy)]H(t1+db, billy) cannot
be used to derive T (t1, db, billy)]H(t1 + db, billy) because BB(t1 + db) holds
after Suzanne’s throw (12). Billy’s stone cannot hit the bottle, because it is already
broken when his stone could hit it and we have just [T (t1, db, billy)]> ((6), Billy
has thrown).

2. Billy’s stone hits the bottle, which breaks, before Suzanne’s stone could possibly
hit the bottle.

(13) t1 + db + d1 < ds

(14) 2(BB(t1 + db + d1)→ BB(ds)) from (3) and (13)
(15) ¬BB(t1 + db) by persistency from (4), see (9)
(16) [T (t1, db, billy)]H(t1 + db, billy) from (1) and (15)
(17) [T (t1, db, billy)]BB(t1 + db + d1) from (2), (16), K and (A2)
(18) [T (t1, db, billy)]BB(ds) from (14), (17), K and (A2)

Here, Suzanne’s stone, which could hit the bottle at instant ds, will not hit it
since we have BB(ds) and therefore the precondition ¬BB(ds) is not more true.
The law 2(¬BB(ds) → [T (0, ds, suzy)]H(ds, suzy)) cannot be used to derive
[T (0, ds, suzy)]H(ds, suzy) because BB(t1 + db + d1) holds after Billy’s throw
(17). All we have is [T (0, ds, suzy)]> (Suzanne throws).

3. Suzanne’s and Billy’s stone hit the bottle precisely at the same moment.

(19) t1 + db = ds

(20) ¬BB(t1 + db) ∧ ¬BB(ds) by persistency from (4), see (9)
(21) [T (0, ds, suzy)]H(ds, suzy) like (10)
(22) [T (t1, db, billy)]H(t1 + db, billy) as (16)
(23) [T (0, ds, suzy)]BB(ds + d1) from (21)
(24) [T (t1, db, billy)]BB(t1 + dsb+ d1) from (22))

In this case, both stones hit the bottle which breaks as a result of Suzanne’s throw
and Billy’s throw.

5 Conclusion and Related Work

Modal logic approaches to action theories define a space of states but cannot handle
time, neither explicitly not implicitly [2, 7]. In situation calculus [11, 8] reasoning about
time was not foreseen, properties change discretely and actions do not have durations.
Remember that in situation calculus, there is a starting state, s0 and for any action a



and state s, do(a, s) is a resulting state of s. One can consider that the set of states
is given by {s : ∃a1 . . . ans = do(an, do(an−1, . . . do(a1, s0)))}. Hence the temporal
structure of situation calculus is discrete and branching and does not allow for actions
of different duration neither for preconditions or results which become true during the
action execution or later after the action is ended.

Javier Pinto has extended situation calculus in order to integrate time [9]. He
conserves the framework of situation calculus and introduces a notion of time. Intu-
itively, every situation s has a starting time and an ending time, where end(s, a) =
start(do(a, s)) meaning that situation s ends when the succeeding situation do(a, s) is
reached. The end of the situation s is the same time point as the beginning of the next
situation resulting from the occurrence of action a in s. The obvious asymmetry of the
start and end functions is due to the fact that the situation space has the form of a tree
whose root is the beginning state s0. Thus, every state has a unique preceding state but
eventually more that one succeeding state.

Paolo Tereziani proposes in [14] a system that can handle temporal constraints be-
tween events and temporal constraints between instants of events.

In this present article, we have introduced a new modal logic formalism which can
handle simultaneously states and time. We did not address here the problem of the
persistency of facts over time (or over the execution of actions), because we wanted to
focus on the modal temporal formalism. We have adopted a solution similar to the one
presented in [12], i.e. “weak” frame laws are nonmonotonically added to the theory.
But this solution is a bit more complicated in the case of our first-order action logic
presented in this paper, because we need to restrict ourselves to a decidable subset of
Dal .

Concerning the implementation, we use a labelled analytic tableaux approach in-
cluding an abductive mechanism for the weak persistency laws, which will be described
in more detail in a following paper.

Further work is carried out in two directions:

1. Concerning the logical formalism we want to make a more complete study of the
undecidability and complexity issues. We want to study decidability for subclasses
corresponding to well known first-order decidability classes.

2. Concerning applications, we will apply this formalism to planning problems where
a hybrid approach (states and time) can be very powerful. The idea is to infer tem-
poral constraints from a Dal specification in order to create a plan for a problem.
This will yield a hybrid approach to planning and scheduling

Acknowledgement: Many thanks to Jelle Gerbrandy for his critical remarks to a
former version of this paper.
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