
PeneLoPe in SAT Competition 2014

Gilles Audemard, Benoı̂t Hoessen, Saı̈d Jabbour, Jean-Marie Lagniez, Cédric Piette

Université Lille-Nord de France

CRIL - CNRS UMR 8188

Artois, F-62307 Lens

{audemard,hoessen,jabbour,lagniez,piette}@cril.fr

Abstract—This paper provides a short system description of
our updated portfolio-based solver called PeneLoPe, based
on ManySat. Particularly, this solver focuses on collaboration
between threads, providing different policies for exporting and
importing learnt clauses between CDCL searches. Moreover,
different restart strategies are also available, together with a
deterministic mode.

I. OVERVIEW

PeneLoPe [2] is a portfolio parallel SAT solver that

uses the most effective techniques proposed in the sequential

framework: unit propagation, lazy data structures, activity-

based heuristics, progress saving for polarities, clause learning,

etc. As for most of existing solvers, a first preprocessing step

is achieved. For this step -which is typically sequential- we

have chosen to make use of SatElite [6].

In addition, PeneLoPe includes a recent technique for its

learnt clause database management. Roughly, this approach

follows this schema: each learnt clause c is periodically

evaluated with a so-called psm measure [3], which is equal

to the size of the set-theoretical intersection of the current

interpretation and c. Clauses that exhibit a low psm are

considered relevant. Indeed, the lower is a psm value, the more

likely the related clause is about to unit-propagate some literal,

or to be falsified. On the opposite, a clause with a large psm

value has a lot of chance to be satisfied by many literals,

making it irrelevant for the search in progress.

Thus, only clauses that exhibit a low psm are selected

and currently used by the solver, the other clauses being

frozen. When a clause is frozen, it is removed from the list

of the watched literals of the solver, in order to avoid the

computational over-cost of maintaining the data structure of

the solver for this useless clause. Nevertheless, a frozen clause

is not erased but it is kept in memory, since this clause may

be useful in the next future of the search. As the current

interpretation evolves, the set of learnt clauses actually used

by the solver evolves, too. In this respect, the psm value

is computed periodically, and sets of clauses are frozen or

unfrozen with respect to their freshly computed new value.

Let Pk be a sequence where P0 = 500 and Pi+1 =
Pi+500+100× i. A function ”updateDB” is called each time

the number of conflict reaches Pi conflicts (where i ∈ [0..∞[).
This function computes new psm values for every learnt

clauses (frozen or activated). A clause that has a psm value

less than a given limit l is activated in the next part of the

search. If its psm does not hold this condition, then it is frozen.

Moreover, a clause that is not activated after k (equal to 7 by

default) time steps is deleted. Similarly, a clause remaining

active more than k steps without participating to the search is

also permanently deleted (see [3] for more details).

Besides the psm technique, PeneLoPe also makes use of

the lbd value defined in [4]. lbd is used to estimate the quality

of a learnt clause. This new measure is based on the number

of different decision levels appearing in a learnt clause and is

computed when the clause is generated. Extensive experiments

demonstrates that clauses with small lbd values are used more

often than those with higher lbd ones. Note also that lbd

of clauses can be recomputed when they are used for unit

propagations, and updated if it becomes smaller. This update

process is important to get many good clauses.

Given these recently defined heuristic values, we present in

the next Section several strategies implemented in PeneLoPe.

II. DETAILLED FEATURES

PeneLoPe proposes a certain number of strategies regard-

ing importation and exportation of learnt clauses, restarts, and

the possibility of activating a deterministic mode.

Importing clause policy: When a clause is imported, we can

consider different cases, depending on the moment the clause

is attached for participating to the search.

• no-freeze: each imported clause is actually stored with the

current learnt database of the thread, and will be evaluated

(and possibly frozen) during the next call to updateDB

• freeze-all: each imported clause is frozen by default, and

is only used later by the solver if it is evaluated relevant

w.r.t. unfreezing conditions.

• freeze: each imported clause is evaluated as it would

have been if locally generated. If the clause is considered

relevant, it is added to the learnt clauses, otherwise it is

frozen

Exporting clause policy: Since PeneLoPe can freeze

clauses, each thread can import more clauses than it would

with a classical management of clauses, where all of them are

attached. Then, we propose different strategies, more or less

restrictive, to select which clauses have to be shared:

• unlimited: any generated clause is exported towards the

different threads.

• size limit: only clauses whose size is less than a given

value (8 in our experiments) are exported [8].

• lbd limit: a given clause c is exported to other threads if

its lbd value lbd(c) is less than a given limit value d (8

Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions, volume B-2014-2 of Department of Computer Science Series of Publications

B, University of Helsinki 2014. ISBN 978-951-51-0043-6.

58

by default). Let us also note that the lbd value can vary

over time, since it is computed with respect to the current

interpretation. Therefore, as soon as lbd(c) is less than d,
the clause is exported.

Restarts policy: Beside exchange policies, we define two

restart strategies.

• Luby: Let li be the i
th term of the Luby serie. The ith

restart is achieved after li × α conflicts (α is set to 100

by default).

• LBD [4]: Let LBDg be the average value of the LBD of

each learnt clause since the beginning. Let LBD100 be

the same value computed only for the last 100 generated

learnt clause. With this policy, a restart is achieved as

soon as LBD100×α > LBDg (α is set to 0.7 by default).

In addition, the VSIDS score of variables that are unit-

propagated thank for a learnt clause whose lbd is equal

to 2 are increased, as detailled in [4].

Furthermore, we have implemented in PeneLoPe a deter-

ministic mode which ensures full reproducibility of the results

for both runtime and reported solutions (model or refutation

proof). Large experiments show that such mecanism does not

affect significantly the solving process of portfolio solvers

[7]. Quite obviously, this mode can also be unactivated in

PeneLoPe.

III. FINE TUNING PARAMETERS OF PENELOPE

PeneLoPe is designed to be fine-tuned in an easy way,

namely without having to modify its source code. To this

end, a configuration file (called configuration.ini, an

example is provided in Figure 1) is proposed to describe the

default behavior of each thread. This file actually contains

numerous parameters that can be modified by the user before

running the solver. For instance, besides export, import and

restart strategies, one can choose the number of threads that

the solver uses, the α factor if the Luby techniques is activated

for the restart strategy, etc. Each policy and/or value can

obviouly differ from one thread to the other, in order to ensure

diversification.

ACKNOWLEDGMENT

PeneLoPe has been partially developed thank to the

financial support of CNRS and OSEO, under the ISI project

“Pajero”.

REFERENCES

[1] Gilles Audemard, Benoı̂t Hoessen, Said Jabbour, Jean-Marie Lagniez, and
Cédric Piette. Penelope, a parallel clause-freezer solver. In proceedings of
SAT Challenge 2012: Solver and Benchmarks Descriptions, pages 43–44,
Lens, may 2012.

[2] Gilles Audemard, Benoı̂t Hoessen, Saı̈d Jabbour, Jean-Marie Lagniez,
and Cédric Piette. Revisiting clause exchange in parallel sat solving.
In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and

Applications of Satisfiability Testing – SAT 2012, volume 7317 of Lecture
Notes in Computer Science, pages 200–213. Springer Berlin Heidelberg,
2012.

[3] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar
Saı̈s. On freezeing and reactivating learnt clauses. In proceedings of

SAT, pages 147–160, 2011.

1 ncores = 8

2 d e t e rm i n i s t i c = f a l s e

3 ; t h i s i s t h e d e f a u l t b e h a v i o r o f each

4 ; t h r e ad , can be mod i f i ed o r s p e c i f i e d

5 ; a f t e r each [so lve rX] i t em

6 [d e f a u l t]

7 ; i f s e t t o t r u e , t h en psm i s used

8 usePsm = t r u e

9 ; a l l owed v a l u e s : avgLBD , luby

10 r e s t a r t P o l i c y = avgLBD

11 ; a l l owed v a l u e s : lbd , u n l im i t e d , s i z e

12 expor tPo l i c y = l bd

13 ; a l l owed v a l u e s :

14 ; f r e e z e , no−f r e e z e , f r e e z e−a l l

15 impor tPo l i cy = f r e e z e

16 ; number o f f r e e z e b e f o r e t h e c l a u s e

17 ; i s d e l e t e d

18 maxFreeze = 7

19 ; i n i t i a l # c o n f l i c t b e f o r e t h e f i r s t

20 ; updateDB

21 i n i t i a lNbCon f l i c tBe f o r eReduce = 500

22 ; i n c r em e n t a l f a c t o r f o r updateDB

23 nbConf l ic tBeforeReduceIncrement = 100

24 ; maximum lbd va l u e f o r exchanged c l a u s e s

25 maxLBDExchange = 8

26 [s o l v e r 0]

27 impor tPo l i cy = no−f r e e z e

28 [s o l v e r 1]

29 i n i t i a lNbCon f l i c tBe f o r eReduce = 5000

30 nbConf l ic tBeforeReduceIncrement = 1000

31 [s o l v e r 2]

32 maxFreeze = 8

33 ; s o l v e r 3 i s t h e d e f a u l t s o l v e r

34 [s o l v e r 3]

35 [s o l v e r 4]

36 r e s t a r t P o l i c y = l uby

37 lubyFactor = 100

38 [s o l v e r 5]

39 expor tPo l i c y = s i z e

40 [s o l v e r 6]

41 maxFreeze = 4

42 [s o l v e r 7]

43 impor tPo l i cy = f r e e z e−a l l

Fig. 1. Configuration.ini file

[4] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In proceedings of IJCAI, pages 399–404, 2009.

[5] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT, page 2008.
[6] N. Eén and A. Biere. Effective preprocessing in SAT through variable

and clause elimination. In proceedings of SAT, pages 61–75, 2005.
[7] Youssef Hamadi, Said Jabbour, Cédric Piette, and Lakhdar Saı̈s. Deter-

ministic parallel DPLL. Journal on Satisfiability, Boolean Modeling and

Computation, 7(4):127–132, 2011.
[8] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. Control-based clause

sharing in parallel SAT solving. In proceedings of IJCAI, pages 499–504,
2009.

[9] Knot Pipatsrisawat and Adnan Darwiche. Width-based restart policies for
clause-learning satisfiability solvers. In SAT, pages 341–355, 2009.

59

