
Dolius: A Distributed Parallel SAT Solving Framework
Gilles Audemard, Benoı̂t Hoessen, Saı̈d Jabbour, and Cédric Piette ∗

Université Lille-Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{audemard,hoessen,jabbour,piette}@cril.fr

Abstract

Over the years, parallel SAT solving becomes more and more important. However, most of state-of-the-art
parallel SAT solvers are portfolio-based ones. They aim at running several times the same solver with different
parameters. In this paper, we propose a tool called Dolius, mainly based on the divide and conquer paradigm.
In contrast to most current parallel efficient engines, Dolius does not need shared memory, can be distributed, and
scales well when a large number of computing units is available. Furthermore, our tool contains an API allowing to
plug any SAT solver in a simple way.

1 Introduction
Cloud computing can change the landscape of computer science: it is now possible to request a virtually
unlimited number of computing units that can be allocated within a few seconds. In the case of SAT
solving, this fact means that larger formulas, much more difficult to solve could be considered, assuming
that we dispose of a parallel SAT solver that scales well across different computing units.

Unfortunately, such a scalable solver does not actually exist. Worst, a recent study about paralleliza-
tion of SAT [18] shows that it appears to be very difficult to benefit from portfolio parallelization for
modern CDCL solvers. Yet, since the emergence of multi-core CPUs, numerous parallel SAT solvers
have been proposed by the community. From the simple script that runs in parallel the best known se-
quential solvers (e.g. ppfolio [22]) to complex engines that are able to share knowledge (PeneLoPe
[2], plingeling [6]. . .) , most of the (empirically) best attempts are based on the portfolio schema
which exhibits per se limitations in term of scalability.

The goal of this paper is twofold: first, propose a framework allowing to facilitate the creation
of distributed divide and conquer (D&C) solvers. Those are alternatives to the parallel paradigm that
behaves the best in practice for SAT solving: portfolio solvers. Indeed, portfolio techniques monopolize
the prizes of each SAT competition, since the parallel track has appeared. By reducing the cost of
creating a new distributed solver with our framework, D&C can possibly challenge this position. The
second goal is to contribute to improve scalability in parallel solutions for SAT. The paper is organized
as follows: in the next Section, we present the differences between the main schemes to parallelize
SAT solvers and their implications. In Section 3 we present the main features of our framework called
Dolius. Its API, presented in Section 4, enables any SAT solver to be easily plugged to it. Next,
we evaluate in Section 5 the efficiency of our framework when instanced with one of the best current
sequential solvers, and we finally conclude with some perspectives.

2 Mains schemes to parallelize SAT solving
Two main approaches are commonly explored to parallelize SAT solvers, namely portfolio and divide
and conquer. Each general approach has its own pros and cons. In this section, we present those two

∗This work has been supported by CNRS and OSEO, under the ISI project “Pajero”.

1

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

Σ

S1(Σ) S2(Σ) S3(Σ) S4(Σ)

(a) Portfolio – Each Si is the incarnation of a
same solver S tuned with different parameters
(restart cutoffs, nogood database cleaning strat-
egy, etc.), and works with the original formula
Σ. The formula is solved as soon as one of the
Si finishes its work.

Σ

S(Σ1) S(Σ2) S(Σ3) S(Σ4)

(b) Divide & Conquer – All S represent the
same solver that solves a (independent) subset
of Σ. More precisely, Σ ≡ Σ1∨Σ2∨Σ3∨Σ4

and Σi ∧ Σj � ⊥ if i 6= j. The formula is
solved when all S prove their problem inconsis-
tent, or one of them finds a model.

Figure 1: Illustration of the main schemes for parallel SAT solving with 4 workers

frameworks for solving SAT in parallel, and compare them in a theoretical point of view.
Main differences between those two frameworks are illustrated in Figure 1, where 4 workers are

considered.
On the one hand, the parallel portfolio strategy exploits the complementarity between different se-

quential CDCL strategies to let them compete and cooperate on the same formula [22, 6, 19]. With
this approach, the crafting of the strategies is important, especially with a small number of workers. In
general, the objective is to cover the space of good search strategies in the best possible way. In order
to improve the capabilities of the portfolio solver, some have implemented communication of learnt
clauses [12, 2]. Using this technique, better results are obtained, but they cannot improve greatly their
results by increasing the computing power.

On the other hand, the divide and conquer idea divides the search space into subspaces, successively
allocated to SAT workers. Each time a worker finishes its job (whereas the other ones are still doing
their task), a load balancing strategy is invoked, and dynamically transfers subspaces to this idle worker
[7, 9]. Those subspaces can be defined using the concept of guiding path [25].

Σ1

Φ2 Φ3

Φ4 Φ5

Σ2 Σ3

Σ5Σ4

Figure 2: Guiding tree for the instance Σ

A guiding path is the formula added to the instance Σ in order to divide the search space. This
guiding path is created by recursion. First, we define Σ1 as the undivided instance we want to solve Σ,
and therefore Σ1 = Σ. For the ease of the explanation we want to define Σi as a conjunction of some
formulae φ and Σ. Thus, we define Σ1 as Σ = Σ ∧ Φ1 and therefore Φ1 ≡ >. Second, we divide
Σ1 in two sub-spaces to obtain Σ2 and Σ3 by using respectively the formula Φ2 and Φ3. Later, when
a Σi needs to be divided into Σi∗2 and Σi∗2+1, its respective division formula, or guiding path, will be
Φi∗2 ∧ Φi ∧ Φi/2 ∧ . . . ∧ Φ1 and Φi∗2+1 ∧ Φi ∧ Φi/2 ∧ . . . ∧ Φ1. The conjunction of those guiding

2

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

path can be represented as a tree, called the guiding tree. An example of such depiction is shown at
Figure 2, applied on the instance Σ. From the figure, we can deduce Σ2 = Φ2 ∧ Σ, Σ3 = Φ3 ∧ Σ,
Σ4 = Φ4 ∧ Φ2 ∧ Σ, Σ5 = Φ5 ∧ Φ2 ∧ Σ.

Note also that the end of the search differs with the both approaches. In the portfolio case, the first
worker that finishes to solve the formula (satisfiable or not) puts an end to the global search. In divide
and conquer approach, the same occurs if the formula is satisfiable, but in the case of unsatisfiable
formula, it is only proved inconsistent when the last slave delivers its answer.

2.1 Pathological Cases of D&C
Example 1. Let φ be a CNF formula. Σ = ((a ∨ b) ∧ φ) ∧ ((a ∨ ¬b) ∧ φ) is also a CNF formula.
Dividing the search on either a or b causes some problems.

2.1.1 The Ping Pong Effect

If the search on Σ is divided using a, one of the subsequent task is very light, since it is easy to prove
that Σ � a. Hence, just using unit propagation, it is possible to show that Σ ∧ (¬a) � ⊥. The slave that
receives such (sub)-formula can prove it inconsistent without any exploration at all, and asks again for
work very quickly. This is a problem, since work division has a cost, particularly because of network
communication.

If bad choices are successively made when dividing the CNF, then one of the worker repetitively
receives a trivial subproblem, and spends more time asking for work than actually solving the problem.
This phenomenon is called Ping-Pong effect in earlier work [17].

2.1.2 Useless Division

Back to Example 1. If the search is divided on b, then each slave actually works on the same formula:
a ∧ φ. This is clearly not ideal, since redundant work has to be avoided as much as possible.

Hence, in such a situation, it would be desirable to divide the search with respect to a variable from
V ar(φ) rather than either a or b. Those results pled for a careful analysis of the division strategy.

2.2 Toward Scalability
Portfolio strategies are efficient on multicore architectures, but find their limits when they are used with
a large number of computing resources. Indeed, adding more and more resources is not helpful for this
kind of approach. This just leads to a large amount of redundant work, since in practice, the same parts
of the search space are very often explored by several workers simultaneously. Moreover, a recent study
shows that portfolio is a resolution schema that exhibits per se clear efficiency limitations [18].

On the contrary, adding more resources benefits better to the D&C framework, providing that useless
divisions are not regularly achieved. In the next Section, we formally present our divide and conquer
SAT solver, called Dolius.

3 Dolius
Since our goal is to contribute to improve scalability in parallel solutions and to deploy such solution
on distributed architectures, it appears better suited to propose a novel approach based on the divide
and conquer paradigm. This is the main objective of our framework Dolius. As presented in the next

3

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

section, our framework can easily plug any available SAT solver using a simple API and can be extended
as a portfolio SAT solver. Let us start with the main architecture of Dolius.

Dolius uses one master and many slaves. This architecture was chosen for different reasons: first
of all, it allows a much easier development. Such an architecture is used by webservers, which can
handle ten thousands of concurrent connections. As depicted later, the work of the master in Dolius
is very light, and only consists in putting in touch hungry slaves with active ones. Therefore, as our
master’s task is lighter than one of those webservers, such an architecture appears appropriate.

Even so, in contrast to full-decentralized techniques, this approach can clearly lead to bottlenecks. If
this case would occurs, a tree structure could be implemented (a slave could be composed of a Dolius
master that uses its own sub-slaves), as the one provided with the Domain Name Server (DNS) system.

Each slave is a SAT solver, whereas the master is a process that does not participate actively to the
search, and is only used as the cornerstone for communication between the slaves. The master knows
all its active slaves (the latter ones contact the former one in order to register) but slaves do not know
each other. Moreover, the master is designed to be flexible, and workers can be added on the fly during
the search. To divide the work, Dolius allows a divide and conquer approach through guiding-paths.
Such guiding paths are not reduced to a single variable but can also split the formula with two sets of
clauses. However, in that case, one needs to be careful on some properties that the sets of clauses must
verify.

In order to be as opportunistic as possible with respect to available resources, a load balancing
technique must then be implemented. Indeed, in practice, certain slaves finish their task before the
others and become idle. There exists two main schemas to achieve this load balance. With the first one,
each busy worker regularly looks up in some defined ”neighbourhood” of workers to (possibly) find an
idle worker and push some work to it. The second schema makes responsible idle workers to contact an
active worker in order to steal a part of its load.

Actually, in Dolius, when a slave becomes idle, it does not contact an active worker but the
master. This last one has to choose an active slave to ask him to divide its load. Different criteria can be
considered to choose this active slave. We propose the following work-stealing scheduling strategy: the
master node stores a FIFO data structure of currently working nodes, proposes the first node to balance
its load and puts this node at the end of the list. This system allows to ensure that work request is sent
fairly between active workers. In addition, this choice has been made to avoid contacting the same active
slave several times in a row in case of simultaneous requests for work to the master. A work request can
be denied by the active worker if the underlying solver has not worked enough.

In order to achieve good performances and reduce the effect of an eventual bad division [3], solvers
can choose to send to each other (through the master) some clauses learnt during the search. This
induces that the solver can also find which part of its guiding path is responsible for the UNSAT answer
and send it to the other worker. If there is no guilty part in the guiding path, an empty clause can be sent
to stop all other workers. This is extremely useful as it can balance a bad division. To understand the
opportunity of this mechanism, let us suppose that a worker W has the guiding path G = l1 ∧ ...∧ ln. It
is possible that W generates the clause C = ¬l1 ∨ ¬l2 during its search. This clause can be very useful
as it leads to the termination of every active node using l1∧ l2 as part of their guiding path. Furthermore,
if a worker is able to generate an UNSAT proof without using its guiding path, an empty clause can be
sent in order to stop every other worker.

When solving an UNSAT instance with a portfolio approach, the process stops after the first thread
has stopped. In classical divide and conquer, the answer can be given only when every sub-problems
have been found UNSAT. Therefore, sending the responsible part of the guiding path can bring us back
to the portfolio situation, since any worker can possibly prove the original CNF unsatisfiable.

When a worker has to divide its work, it is also possible to send the learnt clauses or a selected
subset. The choice of sending the clauses, and sending which clauses is somewhat important as some

4

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

Master Worker DSolver
TCP/IP function�call

-�Work�request

-�Solution

-�Solution�found

-�...

-�sendClause

-�requireSolutionSending

-�solutionFound

-�addClause

-�addToGuidingPath

-�...

Figure 3: Communication between the master, the worker and the solver

start search end

initialization run(), stop() sat related info
mandatory set GP create GP

optional addLearntClause() addClause()
iterators

Table 1: Summary of functionalities used by the Dolius API

clauses will not be used through the next search, but others might. Moreover, as communication is not
done through shared memory, the cost is not negligible. The communication is made through TCP/IP,
minimizing the need for external API. This choice was mainly made for portability and reliability of
communications.

Dolius has a clear separation between the main platform (master, slaves, communication. . .) and
the SAT solver as shown in Figure 3. This offers multiple advantages. The main one is that each worker
does not need to use the same SAT solver (minisat[10], PeneLoPe [2], ...) allowing to easily
introduce a portfolio approach inside the divide and conquer paradigm. This clear separation is possible
with the provided API introduced in the next section. The reader can refer to [3] for more details on the
architecture of Dolius.

4 Application Programming Interface

We detail in this section the proposed API to make any solver able to be used with Dolius. This API
has actually been designed to be as complete as possible, but all functions are not needed, some of them
are optional. First, we provide the minimal set of functionalities that have to be implemented to make
use of Dolius.

To make a solver distributed with Dolius, only a few functions have to be fully implemented.
Those functions are summarized in Table 1 that considers the life of a SAT search as 3 main phases: its
start/initialization, the actual search period, and its end of the search.

The implementation of some of those functions should not be hard. For instance, the functions dedi-
cated to retrieve information about the status of the search are easy to implement: solutionFound()
is a simple state function that is used to know whether the search is still active, or if a solution has been
already obtained. isSolutionFoundSAT() is used to know the nature of the delivered answer (SAT

5

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

/ / i n i t i a l i z a t i o n
void s e t C N F F i l e (c o n s t char∗ i n p u t F i l e) ;
void i n i t i a l i z e (i n t nbVar , i n t n b C l a u s e s) ;
/ / t h r e a d r e l a t e d f u n c t i o n s
void run () ;
void s t o p () ;
/ / c l a u s e d a t a b a s e m o d i f i c a t i o n
void a d d L e a r n t C l a u s e (c o n s t s t d : : v e c t o r<i n t>& c l a u s e) ;
void addClause (c o n s t s t d : : v e c t o r<i n t>& c l a u s e) ;
/ / i t e r a t o r s
void l e a r n t C l a u s e I t e r a t o r R e s t a r t () ;
void l e a r n t C l a u s e I t e r a t o r N e x t (s t d : : v e c t o r<i n t>& c l a u s e) ;
void g u i d i n g P a t h I t e r a t o r R e s t a r t () ;
void g u i d i n g P a t h I t e r a t o r N e x t (s t d : : v e c t o r<i n t>& c l a u s e) ;
i n t g e t G u i d i n g P a t h S i z e () c o n s t ;
/ / g u i d i n g pa th m o d i f i c a t o r s
bool c r e a t e G u i d i n g P a t h (s t d : : v e c t o r<s t d : : v e c t o r<i n t> >& gpA ,

s t d : : v e c t o r<s t d : : v e c t o r<i n t> >& gpB) ;
void addToGuid ingPa th (c o n s t s t d : : v e c t o r<i n t>& c l a u s e s) ;
/ / s a t r e l a t e d i n f o r m a t i o n
bool s o l u t i o n F o u n d () c o n s t ;
bool i sSo lu t ionFoundSAT () c o n s t ;
i n t getNbVar () c o n s t ;
i n t g e t S o l u t i o n L i t e r a l (i n t v a r) c o n s t ;
i n t g e t N b L e a r n t C l a u s e s () c o n s t ;

Figure 4: functions to implement in order to incorporate a solver in Dolius

/ UNSAT), whereas the function getSolutionLiteral() is called to get the model, when a SAT
answer has been obtained.

In the start phase, initialize() serves to allocate memory, and the input CNF file can be read
through setCNFFile(), preparing the solver to be runned. In the ”search” phase, the function run()
is called to actually start the search process in its dedicated thread, whereas stop() is on the contrary
used to interrupt this process.

Only 2 functions need more code to distribute a solver: addToGuidingPath() is used to restrain
the search space of a worker, with respect to a guiding path given in parameter. As the guiding path is
provided as a set of clauses, it allows developers to create new heuristics to divide the work. The other
one, createGuidingPath(), represents the heart of load balancing, since it is called when an idle
worker makes a work-steal to an active one. Thus, the active solver has to divide its own task to give
a part of it to the active solver. In our current implementation, the division is made using a unit clause
selected through a look-ahead procedure (see [3]), but other division strategies can be implemented in
this createGuidingPath() function.

Iterators on learnt clauses are also used to send those on work division. By tweaking which clauses
are iterated on, a heuristic can be implemented to choose how many clauses are sent when the work is
divided. Those will be added by the idle worker through addLearntClause().

In addition, the API proposes numerous optional functions (e.g. iterators on the guiding path,
getGuidingPathSize() , etc.) that can be implemented for statistical and debug purposes. Hence,

6

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

our API has been designed to be both complete and easy-to-implement. As an example, the code needed
to plug GLUCOSE [4] with Dolius consists of less than 300 lines of code.

Let us also note that a solver integrated in Dolius has also access to functionalities of our frame-
work (log files, etc.). And in order to ease the integration of solvers, several tools have been developed
such as a graphical depiction of the resulting guiding tree that can be animated and colouration of the
log files.1

5 Evaluation
In the following, the hardware used is 2 Dell R910 with 4 Intel Xeon X7550 providing each 8 cores
making 32 cores available per node. Each node has a gigabit ethernet controller and 256GB of RAM.
The installed operating system is CentOS 6. For each experiment, given an instance and a number of
workers, we choose a time limit of 20 minutes. Let us also note that we consider wall clock time, instead
of CPU time, in this Section. We only made one run for a given instance and a given number of workers,
because of limited resources. Indeed, one run, for a given number of workers, can make use of 17 hours
in the worst case (20 minutes × 51 instances). As we consider 7 numbers of workers, with and without
clause sharing, one entire run lasts more than one week. Running 10 times each instance would have
been computationally very expensive.

In order to evaluate our platform, two elements are needed: instances and a solver that will be
plugged in. Concerning instances, as the resources needed to make tests with many slaves may be quite
important, a subset of the instances from the SAT Competition 2013 (application track) [5] are used.
To be used, an instance needs to be solved by at least one of the five first parallel solver form the SAT
Competition 2013 and may not be solved by everyone of them. Those criteria insure us to evaluate
ourselves against reachable instances. From that set, we skim large instance families. We reduced that
set to have a manageable number of instances: 51. In the final set, there are more unsatisfiable instances
(33) than satisfiable ones (18).2

As solver, we have modified the solver GLUCOSE to be compatible. The work division strategy
implemented in createGP is based on unit clauses where the chosen literal is one of the literal with
the highest VSIDS value when the work is divided and must also provide a good balance value between
the two branches. The balance value is obtained by using look-ahead techniques. As we are using
unit clauses for the guiding path, we incorporated them in the assumption vector of the solver, as
presented in [15]. This allows us to provide us more information whenever we find UNSAT. Indeed,
through the analyzeFinal function that was designed in Minisat, we are able to find the responsi-
ble part of the guiding path, if any. Once found, this information can be sent to other solver (through the
master) to avoid exploring redundant search spaces. Using assumption also allows us keep clauses
whenever the guiding path is changed, allowing us to keep clauses that were generated. Two flavors
were tested: in the first one the learnt clause iterator send the learnt clauses under the condition that
their literal block distance (LBD) value needs to be lower than 4 and the maximum number of clauses
sent must be lower than 10% of the total amount of learnt clauses. The results of this version of Dolius
+ GLUCOSE are shown in Figure 5 (a). As we can see, the cactus plot that represents 1 worker is higher
than other curves showing that the work division helps in reducing the overall solving time. However,
the curve for 16 workers is lower than the one using 32 workers, for a equivalent number of solved
instances.3 The main reason for this is the communication cost.

1The results of those tools are presented at http://www.cril.fr/˜hoessen/dolius.html
2The exhaustive list can be found at http://www.cril.fr/˜hoessen/dolius.html
3Using 32 workers, we were able to solve 2 instances more but due to the non determinism, solving 2 instances more is not

really significant.

7

http://www.cril.fr/~hoessen/dolius.html
http://www.cril.fr/~hoessen/dolius.html

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

0

200

400

600

800

1000

1200

5 10 15 20 25 30

(a)�Using�clause�sharing�at�division

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35

(b)�Without�using�clause�sharing�at�division

1�worker
2�workers
4�workers
8�workers

16�workers
32�workers
64�workers

Figure 5: Scalability of the Dolius + GLUCOSE implementation

Solver #threads SAT UNSAT Total

PCASSO 32 9 21 30
plingeling 32 14 23 37
PeneLoPe 32 16 26 42

Dolius + GLUCOSE 32 9 23 32
Dolius + GLUCOSE 64 13 24 37

Table 2: Results for some of the parallel SAT solvers submitted to the SAT Competition 2013 and
Dolius + GLUCOSE

The second flavor is obtained by simply deactivate the communication of learnt clauses at division
through a different implementation of the learnt clause iterator. The results of this version are shown in
Figure 5 (b). As we can see, in this version, the 32 workers curve is lower than the 16 workers curve.
This motivated us to try this flavor using 64 workers. The gain obtained is quite significant, the curve
being always lower than any other curve and providing answer for 5 more instances for a grand total of
37 solved instances.

Both flavors have their limitation, communication providing better results with a low number of
resources and no communication with a higher number of resources. This should mean that in order to
develop a good heuristic concerning the communication of learnt clause, the number of workers should
be taken into account, in order to avoid the case where the learnt clause communication is completely
disabled. This appears essential to keep an effective scalable communication when a large number of
workers is involved. The experiments underlines that new heuristics that are able to take into consider-
ation this increase of computing units have to be designed.

In order to understand those results and compare those with the current state-of-the-art, let us
compare to 3 shared memory solvers among the best ones proposed in the SAT Competition 2013:
plingeling [6], PCASSO [16] and PeneLoPe [1]. They were choosen for the following reasons:
plingeling was the 2013 winner, PCASSO uses a division strategy and the authors wanted to com-
pare against themselves with our previous solver, PeneLoPe. Each solver is launched using 32 threads
as it is the highest number of cores available on a single machine. Results are shown in Table 2. First,

8

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

we have to recall that those solvers use shared memory for communication making their communication
de facto faster than the one proposed in Dolius. Nevertheless, shared memory are a lot less scal-
able than distributed ones. Moreover, PeneLoPe and plingeling are portfolio: they use different
configurations in each thread, allowing to increase the orthogonality of the search. And with a greater
orthogonality comes a more robust solver against different families of benchmarks. With those details
in mind, we can see that using twice the resources of plingeling –the solver who won the SAT
Competition 2013–, we are able to obtain the same number of instances solved. Finally, PCASSO is
partitioning the search space iteratively, an approach similar to the one described here. We can see that
we achieve similar results with the same amount of threads/workers.

6 Related Works
Different divide and conquer algorithms have been proposed in the past to solve SAT.

First, the SAT@HOME project [20] initiated in 2010, relies on the open source system for grid comput-
ing BOINC [21] to achieve a massive divide and conquer solving. This work inherits of the architecture
of the famous SETI@HOME project, which aims at distribute to volunteers the computation resulting
from the analysis of radio signals, searching for signs of extra terrestrial intelligence. SAT@HOME is
based on a static load balance, namely the instance is divided before the actual search starts, and cannot
be modified latter.

There also exists other divide and conquer implementations for SAT. For instance, Feldman et al.
[11] propose such an implementation, that is able to share nogoods between the different slaves. How-
ever, this nogood sharing is done in a central memory that must be common to all slaves, making this
implementation impossible to distribute to different computers.

Let us also cite the GridSat [8] portal. Initiated in 2000, it aims at providing a public easy-to-use
interface to perform SAT solving using widely distributed and possibly heterogeneous resources. This
ambitious portal is unfortunately old, and does not exploit recent advances in SAT solving. Indeed,
it is based on Chaff, the solver that first introduced watched literals. However, this solver is not
representative of state-of-the-art solvers anymore.

Schulz and Blochinger [23] have proposed an original approach to distribute SAT. Indeed, in con-
trast to most other distributed techniques where a central point (often called master) is needed, their
contribution consists in proposing a full peer-to-peer (P2P) system, where all workers play exactly the
same role, without any need of centralization. The resulting P2P system is called SatCiety [23].

There also are very recent attempts to make use of the divide-and-conquer paradigm. Let us cite
Treengeling that is a so-called concurrent cube-and-concur implementation [24, 13] using the
CDCL solver Lingeling. Unfortunately, this implementation is not distributed. The solver by M.
Soos CryptoMinisat, also benefits from a network parallelization. Hence, it can be distributed, but
a portfolio scheme, where only unary and binary clause are exchanged, has been chosen to this extend.

Finally, a study on static partitioning of CNF formula has been proposed [14]. This partitioning
viewing CNF formulas as trees has to be performed before the actual search. Such static partitioning
are not the most efficient to obtain well-balanced (i.e. of similar solving difficulty) subformulas, but
the authors argue that once the CNF is partitioned, its sub-formulas can be solved using one of many
available solvers, without having to modify its source code, using it as a black box.

7 Conclusion
In this paper, we have presented a novel framework called Dolius for solving SAT in parallel which,
in contrast to most of previously proposed attempts, is not based on portfolio, but on divide-on-conquer

9

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

paradigm. The resulting tool is distributed and scales well with respect to the number of computing
units it makes use. Moreover, Dolius is not tied to a certain solver, but proposes an API to easily plug
any available SAT solver.

As Dolius is very flexible, we plan in the next future to use it with plugging different SAT solvers,
in order to hybridize the two main approaches to solve SAT in parallel.

References
[1] Gilles Audemard, Benoıt Hoessen, Saıd Jabbour, Jean-Marie Lagniez, and Cédric Piette. Penelope in SAT

competition 2013. Proceedings of SAT Competition 2013; Solver and Benchmark Descriptions, page 66,
2013.

[2] Gilles Audemard, Benoı̂t Hoessen, Said Jabbour, Jean-Marie Lagniez, and Cédric Piette. Revisiting clause
exchange in parallel sat solving. In Fifteenth International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’12), pages 200–213, may 2012.

[3] Gilles Audemard, Benoı̂t Hoessen, Said Jabbour, and Cédric Piette. An effective distributed D&C approach for
the satisfiability problem. In 22nd Euromicro International Conference on Parallel, Distributed and network-
based Processing (PDP’14), february 2014.

[4] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In proceedings
of IJCAI, pages 399–404, 2009.

[5] Adrian Balint, Marijn JH Heule, Anton Belov, and Matti Järvisalo. The application and the hard combina-
torial benchmarks in sat competition 2013. Proceedings of SAT Competition 2013; Solver and Benchmark
Descriptions, page 99, 2013.

[6] Armin Biere. Lingeling, plingeling and treengeling entering the sat competition 2013. Proceedings of
SAT Competition 2013; Solver and Benchmark Descriptions, page 51, 2013. http://fmv.jku.at/
lingeling.

[7] Wahid Chrabakh and Rich Wolski. GrADSAT: A parallel SAT solver for the grid. Technical report, UCSB,
2003.

[8] Wahid Chrabakh and Richard Wolski. The gridsat portal: a grid web-based portal for solving satisfiability
problems using the national cyberinfrastructure. Concurrency and Computation: Practice and Experience,
19(6):795–808, 2007.

[9] Geoffrey Chu, Peter J. Stuckey, and AAron Harwood. Pminisat: a parallelization of minisat 2.0. Technical
report, SAT Race, 2008.

[10] Niklas Een and Niklas Sörensson. An extensible SAT-solver. In proceedings of SAT, pages 502–518, 2003.
[11] Yulik Feldman, Nachum Dershowitz, and Ziyad Hanna. Parallel multithreaded satisfiability solver: Design

and implementation. Electr. Notes Theor. Comput. Sci., 128(3):75–90, 2005.
[12] Youssef Hamadi, Said Jabbour, and Lakhdar Saı̈s. Manysat: a parallel SAT solver. Journal on Satisfiability,

Boolean Modeling and Computation, 6:245–262, 2009.
[13] Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer: Guiding cdcl sat solvers

by lookaheads. In Haifa Verification Conference (HVC’11), pages 50–65, 2011.
[14] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partitioning sat instances for distributed solving.

In Proceedings of the 17th international conference on Logic for programming, artificial intelligence, and
reasoning, LPAR’10, pages 372–386, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka Niemelä. Grid-based SAT solving with iterative
partitioning and clause learning. In proceedings of CP, pages 385–399, 2011.

[16] Ahmed Irfan, Davide Lanti, and Norbert Manthey. Pcasso–a parallel cooperative sat solver. Proceedings of
SAT Competition 2013; Solver and Benchmark Descriptions, page 64, 2013.

[17] Bernard Jurkowiak, Chu Min Li, and Gil Utard. Parallelizing satz using dynamic workload balancing. Elec-
tronic Notes in Discrete Mathematics, 9:174–189, 2001.

10

http://fmv.jku.at/lingeling
http://fmv.jku.at/lingeling

Dolius: A Distributed Parallel SAT Solving Framework Audemard, Hoessen, Jabbour and Piette

[18] George Katsirelos, Ashish Sabharwal, Horst Samulowitz, and Laurent Simon. Resolution and parallelizability:
Barriers to the efficient parallelization of sat solvers. AAAI’13, 2013.

[19] Stephan Kottler and Michael Kaufmann. SArTagnan - a parallel portfolio SAT solver with lockless physical
clause sharing. In Pragmatics of SAT, 2011.

[20] Mikhail Posypkin, Alexander Semenov, and Oleg Zaikin. Sathome web page. http://sat.isa.ru/
pdsat, 2008 (a verifier).

[21] C.B. Ries. BOINC: Hochleistungsrechnen mit Berkeley Open Infrastructure for Network Computing. Springer,
2012.

[22] Olivier Roussel. ppfolio. http://www.cril.univ-artois.fr/˜roussel/ppfolio.
[23] Sven Schulz and Wolfgang Blochinger. Parallel sat solving on peer-to-peer desktop grids. Journal of Grid

Computing, 8(3):443–471, 2010.
[24] P. van der Tak, Marijn Heule, , and A. Biere. Concurrent cube-and-concur. In Proceedings of the 3rd Interna-

tional Workshop on Pragmatics of SAT (POS’12), 2012.
[25] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. Psato: a distributed propositional prover and its

application to quasigroup problems. Journal of Symbolic Computation, 21(4):543–560, 1996.

11

http://sat.isa.ru/pdsat
http://sat.isa.ru/pdsat
http://www.cril.univ-artois.fr/~roussel/ppfolio

	Introduction
	Mains schemes to parallelize SAT solving
	Pathological Cases of D&C
	The Ping Pong Effect
	Useless Division

	Toward Scalability

	Dolius
	Application Programming Interface
	Evaluation
	Related Works
	Conclusion

