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Abstract—Most of state-of-the-art parallel SAT solvers are
portfolio-based ones. They aim at running several times the same
solver with different parameters. In this paper, we propose a
solver called Dolius, based on the divide and conquer paradigm.
In contrast to most current parallel efficient engines, Dolius
does not need shared memory, can be distributed, and scales
well when a large number of computing units is available.

I. INTRODUCTION

The propositional satisfiability problem, called SAT, asks
whether a given propositional formula in conjunctive normal
form (CNF) has a satisfying assignment. SAT is the canonical
NP-complete problem [1], and its practical resolution first
came in the context of automated theorem proving. Today,
many hard problems are translated into a SAT problem,
which is now the cornerstone of multiple application domains,
such that electronic design automation, computational biology,
automated planning and formal verification to name of few.

These last years, the wide availability of cheap multicore
platforms has made parallel SAT solving more and more
popular, and this topic has received major attention lately.
Numerous attempts have been made, but the focus is now on
portfolio solvers, which aim at running on the initial problem,
different versions of a same solver, with different parameters.

Nevertheless, portfolio-based techniques do not scale well
when a large number of computing units is available. In
this case, they clearly show their limits, and other ways to
parallelize SAT solving should be envisaged. We propose in
this paper a new distributed approach, based on the divide and
conquer (D&C) paradigm. We compare this framework with
the portfolio one in the SAT context, and introduce Dolius,
our new D&C-based SAT solver.

This paper is organized as follows: in the next section,
we briefly present background knowledge about SAT solving;
we present state-of-the-art parallel techniques to solve SAT,
and discuss the respective pros and cons of portfolio-based
and divide and conquer approaches in Section III. Our new
distributed SAT solver, called Dolius, is presented in details
in Section IV and empirically evaluated in Section V. Next,
we present different works related to divide and conquer
techniques for SAT in Section VI, and finally conclude with
some perspectives.

II. TECHNICAL BACKGROUND

First of all, we assume that the reader is familiar with logic
notions (variables, literal, clause, unit clause, interpretations,
CNF formula). Many modern SAT solvers are called CDCL,
for ”Conflict-Driven Clause Learning”, and they are getting far
from the original DP [2] and DLL [3] procedures. Nowadays,
high-performance SAT engines rely on different powerful
mecanisms which we briefly recall in the following. A typical
branch of a CDCL solver can be seen as a sequence of
decisions followed by propagations, repeated until a conflict
is reached. Each decision literal, chosen by some heuristic,
usually activity-based ones, is assigned at its own level, shared
with all propagated literals assigned at the same level. Each
time a conflict is reached, a nogood is extracted using a
particular method, usually the First UIP (Unique Implication
Point) one [4], [5]. The learnt clause is then added to the learnt
clause database and a backjumping level is computed from it.
Periodically, restarts are performed. The interested reader can
refer to [6] for a more detailled presentation of SAT solving.

In this paper, parallel CDCL-based solvers are considered.
Such searches are called workers in the following, or slaves in
the divide and conquer case. A worker (or slave) is said active
if it is currently working, namely searching to a solution to
the CNF. Otherwise, it is said idle.

III. PORTFOLIO VS DIVIDE AND CONQUER

Two main approaches are commonly explored to parallelize
SAT solvers, namely portfolio and divide and conquer.

On the one hand, the parallel portfolio strategy exploits the
complementarity between different sequential CDCL strategies
to let them compete and cooperate on the same formula
[7], [8], [9]. The general objective is to cover the space of
good search strategies in the best possible way. In order to
improve the capabilities of the portfolio solver, some have
implemented communication of learnt clauses [10], [11]. Using
this technique, better results are obtained, but they cannot
improve greatly their results by increasing the computing
ressources.

On the other hand, the divide and conquer idea divides
the search space into subspaces, successively allocated to
SAT workers. Each time a worker finishes its job (whereas
the other ones are still doing their task), a load balancing
strategy is invoked, and dynamically transfers subspaces to this
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idle worker [12], [13]. Unfortunately, this framework exhibits
certain pathological cases in the SAT context, illustrated with
the following example.

Example 1: Let φ be a CNF formula. Σ = ((a∨ b)∧φ)∧
((a∨¬b)∧ φ) is also a CNF formula. Dividing the search on
either a or b causes some problems.

1) The Ping Pong Effect: If the search on Σ is divided
using a, one of the subsequent task is very light, since it is
easy to prove that Σ � a. Hence, just using unit propagation,
it is possible to show that Σ ∧ (¬a) � ⊥. The slave that
receives such (sub)-formula can prove it inconsistent without
any exploration at all, and asks again for work very quickly.
This is a problem, since work division has a cost, particularly
because of network communication.

If bad choices are successively made when dividing the
CNF, then one of the worker repetitively receives a trivial
subproblem, and spends more time asking for work than
actually solving the problem. This phenomenon is called Ping-
Pong effect in earlier work [14].

2) Useless Division: Back to Example 1. If the search is
divided on b, then each slave actually works on the same
formula: a∧φ. This is clearly not ideal, since redundant work
has to be avoided as much as possible.

Furthermore, if φ does not admit any model, it is only
proved inconsistent when the last slave delivers its answer.
Note that using a portfolio on Σ, the first worker that finishes
to prove the formula inconsistent puts an end to the global
search. Hence, in such a situation, it would be desirable to
divide the search with respect to a variable from V ar(φ) rather
than either a or b. Those results pled for a careful analysis of
the division strategy, based on the concept of guiding path.
This is studied in the Section IV-B of this paper.

IV. MAIN FEATURES OF DOLIUS

A. Work Stealing

MasterS1

S2 S3

S4

(a) Slave S4 finishes its load, so it
contacts the master

MasterS1

S2 S3

S4

(b) Master asks to an active slave
(S2) if it accepts to divide it load

MasterS1

S2 S3

S4

(c) If S2 accepts, it sends a part of
its load to S4

MasterS1

S2 S3

S4

(d) All slave are now active

Fig. 1. Load Balance through Work Stealing Procedure of Dolius

Partitioning a CNF into subformulas that represent similar
amount of work for several CDCL-based workers appears to
be a difficult task. Ideally, all slaves should have an equivalent
amount of work to achieve, yet predicting the difficulty of a
given formula is very computationally heavy.

In order to be as opportunistic as possible with respect
to available resources, a load balancing technique must then
be implemented. Indeed, in practice, certain slaves finish their
task before the others and become idle. Dolius is then given
a well-known load balancing mechanism: work stealing. One
of the advantage of such a solution is that any active slave does
not have to listen to other (possibly) idle ones. Idle slaves ask
for work by themselves.

The different steps of the work stealing process imple-
mented in Dolius are illustrated in Figure 1. When a slave
(denoted S4) finished its task, it gets in touch with the Master
to signal that it has no work left, (step 1(a)). The master asks to
one of the active slave (denoted S2 in Figure 1) if it accepts to
divide its task (step 1(b)). If S2 accepts, it comes into contact
with S4 to give it some of its load (step 1(d)). In this last step,
slaves communicate directly without needing the master that is
only contacted to put in touch a newly idle slave to an active
one. In order to assure communication between the master and
the workers, four different cases are depicted in Fig. 2.

1) The first case (Fig. 2(a)) depicts how the first worker
can receive its workload. It uses a work request and
the master responds by asking this slave to work on
the initial problem.

2) The second case (Fig. 2(b)) represents an idle worker
(Worker S2) requesting work to the master. The mas-
ter puts the requesting worker on hold and contacts an
active worker (Worker S1) to divide its search space.
The latter contacts the requesting worker, transmits
a guiding path and sends the clauses that can be
applied to the search space. After acknowledgment
from the receiver of this information, both workers
send a ready message to the master. When both ready
messages are received, the master finally sends a start
message to both workers.

3) The third case (Fig. 2(c)) depicts a worker having
ended its search with an unsatisfiable answer. The
master acknowledges the answer and may tell the
worker that a new work request can be made as the
solution for the complete problem has not been found
yet.

4) The fourth case (Fig. 2(d)) represents a worker that
finds a satisfiable answer to the problem. This worker
gets in contact with the master to warn it that there
is no need to continue the overall search. The master
sends a stop message (not depicted in Fig. 2(d)) to
every worker in order to stop them.

In our implementation, a slave can refuse to divide its load
only if one of these conditions occurs:

1) the slave has just found a model to the CNF, so there
is no use to continue the search

2) the slave has just proved its subproblem is inconsis-
tent, and has actually become idle

3) the slave is only working for a very few time (in
practice < x seconds, where x can be specified. By
default, x = 2.5)

4) the slave is already dividing its task with another idle
slave

In addition, when a slave becomes idle and contacts the
master, this last one has to choose an active slave to ask
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(b) Work Stealing
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UNSAT (1)

ack (+continue)(2)

(c) UNSAT answer

Master Worker S1

SAT + solution (1)

ack (2)

(d) SAT answer

Fig. 2. Network Communication at different steps of Dolius

him to divide its load. Different criteria can be considered
to choose this active slave. We propose the following work-
stealing scheduling strategy: in Dolius, the list of active
slaves are stored in a FIFO data structure, and when work
is asked, the master chooses the first slave in this FIFO to
get in touch with it. This choice has been made to avoid
contacting the same active slave several times in a row in case
of simultaneous requests for work to the master if more than
one worker is active. Moreover, as some of our guiding path
heuristics rely on VSIDS (see next Section), it is desirable
to let the solver works with the CNF a certain amount of
time to initialize the counters used by VSIDS. Indeed, the
different counters within a CDCL-based worker need some
time to provide conflicting variables, and this time is needed
to make a more ”accurate” division and to avoid one of the
pathological cases depicted in Example 1.

B. Generation of Guiding Paths

When a work request has been sent, the way a slave divides
its task is an essential factor for the general efficiency of a
D&C algorithm. Such algorithms generally rely on the concept
of guiding path for load balancing.

In most current implementations of D&C for SAT, the
guiding path is reduced to a single variable. So, the active slave
assigns (for itself) one the variables occuring in the CNF, and
sends the opposite of this variable to the idle slave [15], [16].
Finding the best possible variable is actually both important
and difficult.

This problem is the same than choosing a variable to branch
in the sequential case, since it is about partitioning the search
space to explore it in the best possible way. Unfortunately,
it is well-known that picking the best variable to branch (in
order to reduce as much as possible the subsequent search
subspace) is NP-hard. Accordingly, guiding paths have to rely
on some heuristical choices. However, these choices are much
more important than in the sequential case. Indeed, as depicted
by Example 1, one has to be careful while generating the
guiding path: there exists different pathological cases that not
only duplicate the load for several workers, but can also slow
down the whole solving process.

Accordingly, we propose a new heuristical technique to
choose the best variable for the guiding path. First, each worker
is added with a counter for each variable of the considered
formula. The counter of each variable, initially set to 0, is
incremented whenever the variable is assigned in the partial
assignation to the opposite value to its previous assignation.
This enables to keep track of variables whose interpretation
value very often changes, during the search.

When a worker is asked to divide its load, it uses this
counter to select the 1% of the variables whose counters exhibit
the highest values. To tie break those promising variables, we
propose to use a so-called ”look ahead” technique [17], [18].
By denoting UP(Σ∧ l) the number of literals that can be unit-
propagated once the literal l is assigned, the selected variable
to balance load is the one the maximize a function f (with
a ∈ V ar(Σ)) defined such that:

f(a) = 1024×UP(Σ∧a)×UP(Σ∧¬a)+UP(Σ∧a)+UP(Σ∧¬a)

This function aims at selecting the variable whose as-
signment causes the most unit propagations, leading to the
smaller possible subproblems to solve. Moreover, we choose
this heuristic because it also enables to select a variable that
tends to obtain subproblems of similar sizes, and hopefully
with similar difficulty to solve. Indeed, let Σ be a CNF,
i, j, k ∈ Var(Σ), and the following number of propagations:

• UP(Σ ∧ i) = 4 UP(Σ ∧ ¬i) = 10

• UP(Σ ∧ j) = 11 UP(Σ ∧ ¬j) = 7

• UP(Σ ∧ k) = 31 UP(Σ ∧ ¬k) = 2

In front of this situation, one could argue that the most
promising variable is k, since 31 unit propagations are trig-
gered after its positive assignment. However, when assigned
negatively, only 2 literals are propagated. The disequilibrium
between the two branches (positive and negative) may very
likely causes a ping-pong effect, since one worker deals with a
much easier subproblem than the other one, that has to solve a
subproblem similar in size to the original one. Hence, variables
like k then has to be avoided to be used as guiding path.

In the opposite, variables i and j exhibit a better balance
(w.r.t. propagated literals) after their positive and negative
assignments. Using the look ahead heuristic, the different
scores are f(i) = 40974, f(j) = 78866 and f(k) = 63521.
In such a situation, j would be chosen as a guiding path.
The intuition behind this choice is the need for a variable
whose assignment produces two (preferably well-balanced)
subproblems, much easier to solve.
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V. EMPIRICAL EVALUATION

We have experimentally tested Dolius, wherein each
slave uses a modified version of the well known CDCL solver
minisat [19]. The experimentations of this paper have been
conducted on different computing units that exhibit the exact
same features: dual socket Intel XEON X5550 quad-core
2.66 GHz with 8 MB of cache and a RAM limit of 32GB,
under Linux CentOS 6 (kernel 2.6.32). All machines are
linked through a HP ProCurve 4108gl switch using a gigabit
connection, allowing each node to communicate with any other
node with a maximum speed of 1Gbps.

We did not perform any comparison with any other parallel
solver for different reasons. First, we were not able to obtain
any other distributed divide and conquer independent from the
underlying architecture. Second, no comparison were made
against portfolio solvers since they are mostly thread based,
communicating through shared memory without using any
locks.

The timeout is set to 1200 seconds wall clock (WC) for
each instance. If no answer is delivered within this amount of
time, the instance is considered unsolved. We use the instances
from the application track of the 2011 SAT Competition. The
measured time comes from the moment the master was started
up to the moment that the last node receives a stop signal. Each
test is performed five times.

Over the 300 instances, 141 were solved at least once. The
obtained results can be divided in three categories. The first,
about 54% (39 SAT, 38 UNSAT), consists of instances where a
speedup can be observed. Out of this categorie are the instance
depicted in Figure 3.
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Fig. 3. Instance: UCG-15-10p1. Number of variables: 200003, number of
clauses: 1019221, SAT

The first element that we have to point out for instance
depicted at Fig. 3 is that using less than 4 workers, no answer is
found under 1200 seconds. The acceleration for eight workers
compared to four is 68%, 71% using sixteen workers. As
for the network, with eight workers, we use 5.26 times more
network than with four workers. With sixteen workers, we use
1.68 times more than with eight workers.

The second category consists of about 31% (29 SAT, 15
UNSAT). For those instance, generally solved quite fast, our
approach does not provide any speedup. This can be explained
by the fact that time is needed in order to activate every node,

read the instance file, split the work, etc. However, as we are
trying to provide a new framework to solve difficult instances,
this category is not the most important to us.

The last category is where the problems are. They are about
14% (9 SAT, 11 UNSAT). Instances within this category tend
to take more time as the number of resources increases. This
is partially due to the fact that on this set of instances ping
pong effects are still observed.

Table I provides some information about the 141 solved
instances. It shows for each number of worker (#w column),
how many instances are solved 0, 1, 2, 3, 4 or 5 times. The
most significant evolution is the number of instance unsolved.
Using only 1 worker, there are 48 of such instances. However,
using 16 workers there are only nine instances of the 141
that are unsolved. This result shows clearly that dividing the
instance is really beneficial as we were able to solve instances
that are not solved using only one worker.

# w 0 time 1 time 2 times 3 times 4 times 5 times

1 48 1 4 1 0 87
2 35 5 4 5 8 84
4 26 8 6 5 7 89
8 22 9 6 6 8 90

16 9 6 12 8 20 86

TABLE I. NUMBER OF SOLVED INSTANCES W.R.T. NUMBER OF

WORKERS

Finally, Table II provides some details for representing
instances. For different number of workers it gives the av-
erage running time (or ”—” if timeout is reached for all 5
runs) and the average number of work divisions. The first
four instances come from the category where a speedup
is observed. Note for example that vmpc instance can be
solved only using 16 workers. In such instances, using only
2 workers leads to too few work divisions, here the divide
and conquer approach seems to be the good choice. The
instance rand_net60-30-1.shuffled is a typical too
easy instance: there are no division. The last instance provides
an example where increasing the number of workers leads
to increase the running time. Note that with only 1 worker
the instance is solved in 37 seconds and (of course) without
divisions and adding workers increases (obviously) the number
of divisions but decreases the running time. We suppose that
this is a typical ping-pong effect.

VI. RELATED WORKS

Different divide and conquer algorithms have been pro-
posed in the past to solve SAT.

First, the SAT@HOME project [20] initiated in 2010, relies
on the open source system for grid computing BOINC [21]
to achieve a massive divide and conquer solving. This work
inherits of the architecture of the famous SETI@HOME project,
which aims at distribute to volunteers the computation resulting
from the analysis of radio signals, searching for signs of extra
terrestrial intelligence. SAT@HOME is based on a static load
balance, namely the instance is divided before the actual search
starts, and cannot be modified latter.

There also exists other divide and conquer implementations
for SAT. For instance, Feldman et al. [22] propose such an
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instance SAT ? 1 worker 2 worker 4 worker 8 worker 16 worker

time div time div time div time div time div

AProVE07-21 UNSAT 415 0 213 3 127 11 84 28 65 47
md5_48_3 SAT 931 0 471 1 294 3 220 9 219 19
rand_net60-40-10.shuffled UNSAT — — 753 6 301 22 146 47 101 97
vmpc_36.renamed-as.sat05-1922 SAT — — — — — — 668 13 214 40

rand_net60-30-1.shuffled UNSAT 26 0 26 0 26 0 27 0 27 0

hsat_vc12062 UNSAT 37 0 62 7 139 55 176 145 218 348

TABLE II. AVERAGE RUNNING TIME IN SECONDS ON 5 RUNS FOR A SELECTION OF INSTANCES, WITH AN INCREASING NUMBER OF WORKERS

implementation, that is able to share nogoods between the
different slaves. However, this nogood sharing is done in a
central memory that must be common to all slaves, making this
implementation impossible to distribute to different computers.

Let us also cite the GridSat [23] portal. Initiated in
2000, it aims at providing a public easy-to-use interface to
perform SAT solving using widely distributed and possibly
heterogeneous resources. This ambitious portal is unfortunately
old, and does not exploit recent advances in SAT solving.
Indeed, it is based on Chaff, the solver that first introduced
watched literals. However, this solver is not representative of
state-of-the-art solvers anymore.

Finally, Schulz and Blochinger [24] have proposed an
original approach to distribute SAT. Indeed, in contrast to most
other distributed techniques where a central point (often called
master) is needed, their contribution consists in proposing a
full peer-to-peer (P2P) system, where all workers play exactly
the same role, without any need of centralization. The resulting
P2P system is called SatCiety [24].

VII. CONCLUSION

In this paper, we have proposed an all new framework for
solving SAT using divide and conquer techniques. We have
illustrated the empirical interest of such an approach with
intensive experiments.

In future works, we plan to make Dolius even more
generic, and to propose an API to enable any solver to be
used in our framework with only few minor changes, provided
that it is able to divide its task. We also plan to use some
so-called ”formula caching” methods to improve again the
practical behavior our framework. Some of them have been
proposed recently (see e.g. [25]), and we believe that such
techniques make sense in the divide and conquer framework.
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