
A Compression Method for STR

Nebras Gharbi (student)
Fred Hemery, Christophe Lecoutre, and Olivier Roussel (supervisors)

CRIL - CNRS UMR 8188,
Université Lille Nord de France, Artois,

rue de l’université, 62307 Lens cedex, France
{gharbi,hemery,lecoutre,roussel}@cril.fr

Abstract. Over the recent years, many filtering algorithms have been
developed for table constraints. Simple Tabular Reduction (STR) is an
effective approach to filter table constraints. It maintains dynamically
the list of supports in each constraint table during inference and search.
However, for some specific problems, the approach that consists in rep-
resenting tables in a compact way by means of multi-valued decision
diagrams (MDD) overcomes STR. In this paper, we study the possibility
of combining simple tabular reduction with tables compression based on
the detection of recurrent patterns in tuples.

1 Introduction

Table constraints, which are defined in extension by listing allowed tuples (or
those that are disallowed), are important for modelling many problems in con-
straint programming. In some cases, representing such constraints is unfortu-
nately not possible due to the memory space required. In fact, the spatial com-
plexity to represent all tuples grows exponentially with the arity of the con-
straints. In order to reduce the space complexity, different approaches have been
proposed. Some of them are compact data structures based approaches, such as
tries [2], MDDs [1], compressed tables [3] or the deterministic finite automata
(DFA [7]). Other recent developments have been presented in [6, 9].

The most effective filtering algorithms for table constraints are those based
on MDDs, and those based on STR. Most notably, the variants STR2 [4] and
STR3 [5] of the algorithm STR1 [10] are competitive on many classes of prob-
lems. Except for problems where the compression with the use of MDDS is very
effective, the STR approach is more effective. We propose an approach combin-
ing STR with a form of compression which is different from the ones described
in [3] and [11] where a Cartesian product representation is used for compression.
The idea is to identify the recurrent patterns (sub-tuples) in the tuples of each
constraint, and replace theirs occurrences by references to a patterns table. The
filtering algorithm STR must be modified to take into consideration these pat-
terns appearing at different positions, thus a time stamp system is used to avoid
repeated validity tests.

In this paper, we describe our approach, giving some details about the fre-
quent patterns detection, and the used data structures. We present some exper-
imental results before concluding.

2 Compression method

Definition 1. A table constraint is a constraint which lists explicitly a set of
tuples. A tuple τ represents a combination of values for the variables in the
constraint scope. These tuples are allowed in case of a positive constraint and
disallowed in case of a negative one. A tuple is said valid when its values are
present in the current domains of the corresponding variables.

Definition 2. A pattern µ is a sequence of consecutive values in a tuple τ of a
table constraint. We note |µ| the length of a pattern µ, and nbOcc(µ) the number
of occurrences of the pattern all over the tuples of a given constraint.

In order to reduce the spatial complexity of every table constraint, we detect
the most frequent patterns and replace every occurrence of a pattern by a unique
symbol. Therefore, the longer the patterns and the more frequent they are, the
smaller the table constraint representation will be. It is important to note that
we consider that the patterns extracted in our approach are independent from
their position in the tuple. According to that, a pattern does not correspond
necessarily to the assignment of the same values to the same variables, but
rather the same sequence of values. This choice was made to hopefully maximize
the frequency of possible patterns, and, thus, to obtain a better compression.

To identify the relevant patterns, we first create a trie from the various tuples
of a given table constraint. A trie contains all the existing sequences of values
and their number of occurrences. To guarantee a certain level of compression
efficiency, the minimal length of patterns is fixed in our approach to 3, and
the maximal length to the constraint arity minus 1. Secondly, it is necessary to
identify the most relevant patterns for the compression process. To do that, we
introduce the notion of score of a pattern µ as follows:

score(µ) = |µ| × nbOcc(µ)

A selection threshold is fixed, and only the patterns having a score that is
greater than this threshold are retained in the compression algorithm and stored
in the patterns table. For efficiency reasons, the total number of retained patterns
is limited by a second parameter in order to control the compression time.

After detecting the most relevant patterns, iterating over the constraint tu-
ples is necessary to detect such patterns and establish references towards the
patterns table. If in a tuple, several patterns overlap, the compression algorithm
chooses first and foremost the pattern having the best score.

We give now an illustration of the whole process from patterns detection to
table compression. Table 1 represents a positive table constraint of arity 5, in-
volving variables x1, x2, . . . , x5. We can notice that several patterns are repeated

among tuples such as cbc, aab and abb as patterns of length 3 and aabb, acbc and
cbca as patterns of length 4. Through visiting all tuples of our constraint, we can
build the trie illustrated in Figure 1, where for simplicity reasons, the number
of occurrences is only given for leaves. Every leaf identifies a path µ (going from
the root to the leaf) associated with the nbOcc(µ) counter.

x1 x2 x3 x4 x5
τ1 (c, b, c, a, c)
τ2 (a, a, b, b, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (a, c, b, c, b)
τ7 (a, c, a, c, a)

Table 1. Table constraint Cx1,x2,x3,x4,x5

The compression algorithm allows us to have a compressed version of the
table constraint; its logical representation is given in Figure 2(a) whereas the
patterns table is given in Figure 2(b). Tuples τ1, τ3, τ4, τ5 of the compressed
table respectively reference the pattern µ3 at positions 1, 2, 3 and 2, and tuples
τ2, τ6 respectively reference the pattern µ2 at positions 1 and 2. This mechanism
of compression can entail an important reduction of the space occupied by the
table. This is illustrated by the physical view given in Figure 2(c).

2

b

a

2

b

b

2

a

3

b

c

a

1

a

1

c

a

1

a

b

2

a

1

b

c

b

2

c

a

4

c

b

c

Fig. 1. The trie for patterns of size 3 built from the constraint given in Table 1

2.1 Filtering algorithm

During the filtering of a table constraint, it is necessary to check the validity
of tuples, which implies to verify the validity of the patterns. When a pattern

x1 x2 x3 x4 x5
τ1 µ3 a c
τ2 µ2 b a
τ3 a µ3 a
τ4 b a µ3

τ5 b µ2 b
τ6 a µ3 b
τ7 a c a c a

(a) Compressed table
(logical view)

µ1 ...

µ2 a,a,b

µ3 c,b,c

... ...

(b) Patterns table

τ1 µ3 a c
τ2 µ2 b a
τ3 a µ3 a
τ4 b a µ3

τ5 b µ2 b
τ6 a µ3 b
τ7 a c a c a

(c) Compressed table
(physical view)

Fig. 2. The process of compression

appears several times in the table at the same position, we wish to test the
validity of the pattern only once, which allows us to speed up the filtering.

To do this, we use a counter time which is incremented every time we filter
the table constraint and a set of timestamps stamps[µi, j]. For a pattern µi

which applies from a position j, stamps[µi, j] gives the result of the last test of
validity (µi, j) (field stamps [µi, j].valid) as well as the value stamps [µi, j].time
of the counter time when this test was made. Every time the validity of (µi, j)
must be tested, we verify first if stamps [µi, j].time is equal to the current value
of time. If it is the case, the validity was already tested in the current step of
filtering and, thus, stamps[µi, j].valid supplies directly the answer, which avoids
useless calculations. Otherwise, it is necessary to test the validity of (µi, j) and
to save the result in stamps[µi, j].

position
1 2 3

µ2 0, ? 0, ? 0, ?

µ3 0, ? 0, ? 0, ?

(a) Initialisation
(time = 0)

position
1 2 3

µ2 1, F 1, T 0, ?

µ3 1, F 1, T 1, F

(b) At the end of
time = 1

Fig. 3. Evolution of the stamps structure

Figure 3 presents an example of the evolution of the structure stamps. First,
all elements are initialized at time = 0 and the field valid remains unassigned
(see Figure 3(a)). During the first filtering of the table, the global counter time
is set to 1. To determine whether tuple τ3 (for example) is valid, it is necessary
to ensure that µ3 at position j = 2 is valid. As stamps[µ3, 2].time is not equal
to the current value of time, we know that this test was not already made in
the current filtering step. Thus, we verify whether c, b and c are still present in
the domains of x2, x3 and x4 respectively. We suppose here that the result is

positive. Hence, we store (1, T) in stamps[µ3, 2]. Later, when we test the validity
of tuple τ5, we notice immediately (our assumption) that the validity of µ3 was
tested during the current filtering and it is enough to use the result saved in
stamps[µ3, 2].valid. Assuming that µ2 and µ3 are both invalid at position 1,
valid at position 2 and that µ3 is not valid at position 3, we obtain at the end
of the filtering the result presented in Figure 3(b).

For a constraint of arity r and a pattern µ, there at most r− |µ|+ 1 possible
pairs of (µ, j) (because 1≤ j≤ r-|µ|+ 1). So, the structure stamps has a size
O(m.r) where m is the number of detected patterns.

3 Experiments

In order to show the practical interest of our approach (STRc), we compared the
behavior of the algorithms STR1 [10], STR2 [4], STR3 [5] and STRc when they
are integrated into the search algorithm MAC (which maintains the property of
generalized arc consistency during search). To validate our approach, we made
some tests on instances of two distinct problems: the first one corresponds to
the series mdd introduced in [1] and the second one is nonograms [8]. The ex-
perimental results on representative instances are given in table 2; the heuristic
dom/ddeg is used to ensure the same search path.

On such instances, STRc allows a spatial reduction of at least 50 % compared
to STR1 and STR2, and a speed-up factor up to 4 compared to STR3. Resolution
times are given in a ”build+search” form where build indicates the time to build
the instance and search the necessary time to find a solution. When we consider
the time of search, it seems that STRc competes with STR1, but stay, however,
supplanted by STR2. It is likely that a better tuning of the parameters used for
STRc (in our experiment, 500 patterns allowed with a selection threshold equal
to 50) would allow us to better control the compression time.

Instance STR1 STR2 STR3 STRc

mdd-25-7-23 mem 147M 147M 384M 102M
CPU 2.3+26.3 2.3+13.7 2.7+50.0 11.4+30.6

mdd-23-15-1 mem 223M 238M 597M 127M
CPU 4.0+31.1 3.9+10.8 4.8+220 37.6+33.7

non-gp-65 mem 33M 33M 76M 21M
CPU 0.5+41.1 0.6+12.0 0.7+9.1 7.3+37.5

non-gp-130 mem 221M 230M 663M 129M
CPU 4.1+0.5 4.1+0.3 5.3+0.6 120+0.5

Table 2. Memory space and CPU time for some instances resolution with MAC

4 Conclusion and Future work

In this paper, we tried to combine both techniques of simple tabular reduction
and compression. Identifying recurring patterns in the set of tuples present in
different tables, allowed us to reduce memory space and also the CPU time
by avoiding redundant validity tests. From our preliminary tests, the STRc al-
gorithm we propose seems to be competitive with STR1 (in the search step)
but supplanted by STR2. We are considering various optimizations of this new
algorithm: a better tuning of parameters is necessary to identify the frequent
patterns.

In the future, we shall study other forms of compression, always in conjunc-
tion with STR algorithms.

Acknowledgments

This work has been supported by both CNRS and OSEO within the ISI project
’Pajero’.

References

1. K. Cheng and R. Yap. An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints,
15(2):265–304, 2010.

2. I.P. Gent, C. Jefferson, I. Miguel, and P. Nightingale. Data structures for gen-
eralised arc consistency for extensional constraints. In Proceedings of AAAI’07,
pages 191–197, 2007.

3. G. Katsirelos and T. Walsh. A compression algorithm for large arity extensional
constraints. In Proceedings of CP’07, pages 379–393, 2007.

4. C. Lecoutre. STR2: Optimized simple tabular reduction for table constraint. Con-
straints, 16(4):341–371, 2011.

5. C. Lecoutre, C. Likitvivatanavong, and R. Yap. A path-optimal GAC algorithm
for table constraints. In Proceedings of ECAI’12, pages 510–515, 2012.

6. J.-B. Mairy, P. Hentenryck, and Y. Deville. An optimal filtering algorithm for
table constraints. In Proceedings of CP’12, pages 496–511. 2012.

7. G. Pesant. A regular language membership constraint for finite sequences of vari-
ables. In Proceedings of CP’04, pages 482–495, 2004.

8. G. Pesant, C.-G. Quimper, and A. Zanarini. Counting-based search: Branching
heuristics for constraint satisfaction problems. Journal of Artificial Intelligence
Research, 43:173–210, 2012.

9. J-C. Régin. Improving the expressiveness of table constraints. In Proceedings of
the workshop ModRef’11 held with CP’11, 2011.

10. J.R. Ullmann. Partition search for non-binary constraint satisfaction. Information
Science, 177:3639–3678, 2007.

11. W. Xia and R. Yap. Optimizing STR algorithms with tuple compression. In
Proceedings of CP’13, 2013. To appear.

