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Abstract

This last decade, propositional reasoning and search has
been one of the hottest topics of research in the A.I. com-
munity, as the Boolean framework has been recognized as
a powerful setting for many reasoning paradigms thanks
to dramatic improvements of the efficiency of satisfiability
checking procedures. SAT, namely checking whether a set
of propositional clauses is satisfiable or not, is the techni-
cal core of this framework. In the paper, a new linear-time
pre-treatment of SAT instances is introduced. Interestingly,
it allows us to discover a new polynomial-time fragment of
SAT that can be recognized in linear-time, and show that
some benchmarks from international SAT competitions that
were believed to be difficult ones, are actually polynomial-
time and thus easy-to-solve ones.

1 Introduction

These last decade, propositional reasoning and search
has been one of the hottest topics of research in the A.I.
community, as the Boolean framework has been recognized
as a powerful setting for many reasoning paradigms thanks
to dramatic improvements of the efficiency of satisfiabil-
ity checking procedures. SAT, namely checking whether a
set of propositional clauses is satisfiable or not, is the tech-
nical core of this framework. In the paper, a new linear-
time pre-treatment of SAT instances is introduced. Inter-
estingly, it allows us to discover a new polynomial-time
fragment of SAT that can be recognized in linear-time, and
show that some benchmarks from international SAT com-
petitions that were believed to be difficult ones, are actu-
ally polynomial-time and thus easy-to-solve ones. Many ap-
proaches have been proposed to solve hard SAT instances.
Direct approaches have focused on the development of -
logically complete or not- algorithms. Local-search tech-
niques (e.g. [21]) and elaborate variants of the Davis-

Loveland-Logemann’s DPLL procedure [8] (e.g. [18, 12])
allow many families of difficult instances to be solved. In-
direct approaches aim at solving instances, using either ap-
proximation or compilation techniques (see e.g. [7, 3, 20]).
In particular, compilation techniques, which were devel-
oped in the more general framework of propositional de-
duction, aim at transforming the set of Boolean clauses
into a deductively equivalent form that belongs to a poly-
nomial fragment, making use of a -possibly exponential-
transformation schema and by ensuring that the compiled
form remains tractable in size. Finally, other approaches
have concentrated on discovering and studying fragments
of SAT that can be recognized and solved in polynomial
time (see e.g. [10, 5, 2, 4]). The contribution of this pa-
per pertains to these three families of approaches. A new
pre-treatment of SAT instances is introduced: it can be per-
formed before some direct approaches are run. It can be
interpreted as an attempt to compile the SAT instance into
an easier-to-solve one. However, contrary to usual com-
pilation techniques, the transformation process remains a
polynomial-time one, and no guarantee is provided that the
resulting set of clauses belongs to a polynomial fragment.
However, this pre-treatment can prove valuable in showing
that some instances are actually polynomial ones or in mak-
ing the further solving step become more efficient. Finally,
a new polynomial fragment of SAT, called U-Horn SAT
(Horn modulo Unit propagation), is put in light. Interest-
ingly, it can be recognized using the proposed polynomial-
time pre-treatment. In other words, SAT instances that can
be mapped to Horn SAT using our approach belong to the
U-Horn SAT fragment. Roughly, this pre-treatment is as
follows. The focus is on the unit propagation mechanism
(in short UP), which is a linear-time deductive mechanism.
Given a polynomial fragment (e.g. the Horn one), any SAT
instance can be divided into two subsets of clauses: the first
one contains clauses that belong to the targeted polynomial
fragment whereas the second cone contains clauses that do
not belong to it. For each of these latter clauses, we at-



tempt to discover one sub-clause belonging to the polyno-
mial fragment, using UP. In case of success, this sub-clause
can replace the initial one, and increase the size of the poly-
nomial subset. In case of failure, we also check whether the
clause itself is an UP consequence of the instance or not.
The paper is organized as follows. In the next section, the
basic formal background is provided, together with the de-
scription of propositional fragments that will be mentioned
in the paper. Then, the pre-treatment is described, before
extensive experimental studies are reported and analyzed.
Then, it is shown how this approach extends some previous
related works and other SAT-related approaches exploiting
the unit propagation mechanism.

2 Technical background

Let L be a standard Boolean logical language built on a
finite set of Boolean variables, noted a, b, c, etc. Formu-
las will be noted using upper-case letters such as C. Sets
of formulas will be represented using Greek letters like Γ
or Σ. An interpretation is a truth assignment function that
assigns values from {true, false} to every Boolean variable.
A formula is consistent or satisfiable when there is at least
one interpretation that satisfies it, i.e. that makes it become
true. An interpretation will be noted by upper-case letters
like I and will be represented by the set of literals that it sat-
isfies. Actually, any formula in L can be represented (while
preserving satisfiability) using a set (interpreted as a con-
junction) of clauses, where a clause is a finite disjunction of
literals, where a literal is Boolean variable that can negated.
Clauses will be represented by the set of literals that they
contain. For example, the clause C = a ∨ b ∨ ¬c ∨ ¬d will
be represented by the set {a, b,¬c,¬d}. A clause is said to
be positive (resp. negative) if it contains no negative (resp.
positive) literal. The size of a clause is the number of lit-
erals in it. Unit clauses contain exactly one literal whereas
binary ones contain at most two literals. The empty clause
is denoted by ⊥. A clause C is a sub-clause of a clause D
iff C ⊆ D. For example, the resolvent of C1 = (p∨α) and
C2 = (¬p∨β) is defined as Res(C1, C2) = (α∨β) (Reso-
lution rule); it is a logical consequence of C1 and C2. SAT is
the NP-complete problem that consists in checking whether
a set of Boolean clauses (also called CNF) is satisfiable or
not, i.e. whether there exists an interpretation that satisfies
all clauses in the set or not. A central deductive mechanism
in this paper is the unit propagation mechanism (in short
UP). UP is a linear time process that recursively simplifies
a SAT instance by propagating the constraints expressed by
unit clauses. Let Σ be a SAT instance, UP (Σ) is defined
as the formula obtained by unit propagation. A clause C is
a UP consequence of Σ; noted Σ |=∗ C, iff UP (Σ ∧ ¬C)
allows to derive the empty clause. A clause C ′ is called a
sub-clause of C if C ′ ⊂ C. A sub-clause C ′ of C is called

maximal if |C| − |C ′| = 1. Some fragments of L exhibit
polynomial-time algorithms for SAT. Among them, let us
mention the Horn fragment, which is made of Horn clauses
only. A Horn (resp. reverse Horn) clause contains at most
one positive (resp. negative) literal. Binary and renam-
able Horn clauses also form polynomial fragments: renam-
able Horn clauses are clauses that can be transformed into
Horn ones by systematically replacing some negative liter-
als by new Boolean variables. Let us also mention Dalal and
Etherington’s hierarchy of classes [5] and the class of Q-
Horn [2] formulas, which strictly contains all binary, Horn
reverse, and renamable-Horn clauses. All of them can be
recognized and solved in polynomial time. A polynomial
fragment of L of special interest in this paper is Quad, in-
troduced by Dalal [4]. Quad is based on a tractable frag-
ment called Root. A formula Σ is in class Root, if either
(1) Σ contains the empty clause, or (2) Σ contains no pos-
itive clause, or (3) Σ contains no negative clause, or (4) all
clauses of Σ are binary. A formula Σ is in class Quad[4] if
either (1) UP (Σ) belongs to Root, or (2) for the first max
sub-clause C ′ of the first clause C ∈ UP (Σ) for which
UP (Σ ∧ ¬C ′) is in class Root: (a) either UP (Σ ∧ ¬C ′)
is unsatisfiable, or (b) the formula (Σ \ {C}) ∪ {C ′} is in
class Quad. As mentioned by Dalal, Quad depends on the
considered ordering of clauses. Different orderings might
lead to different Quad classes.

3 A new pre-treatment

The central idea is to reduce the non-polynomial frag-
ment of the SAT instance Σ through the use of UP. Σ can be
divided in two parts. The first one is formed by polynomial-
time detectable clauses w.r.t. a given polynomial fragment,
like Horn, reverse-Horn or strictly positive formulas, etc.
The second one contains the remaining clauses. When the
second part is empty, Σ is polynomial. Different forms of
sub-clause deduction can be defined depending on the tar-
geted polynomial class. For example, if binary clauses are
considered then sub-clause deduction of binary clauses will
concern clauses whose length is larger than two. In the fol-
lowing, we instantiate this general approach by selecting the
Horn fragment as the polynomial target. First, let us intro-
duce some necessary definitions.

Definition 1 (U-Horn clause)
Let C = {¬n1, . . . ,¬nn, p1, . . . , pp}, with n ≥ 0 and p >
1 a clause of Σ. C is called a U-Horn clause of Σ iff ∃C ′ =
{¬n1, . . . ,¬nn, pi} a sub-clause of C, s.t. Σ |=∗ C ′ or
Σ |=∗ {¬n1, . . . ,¬nn}.

Property 1 If C ∈ Σ is a U-Horn clause and C ′ ⊂ C is a
Horn clause s.t. Σ |=∗ C ′ then Σ is satisfiable if and only if
(Σ \ {C}) ∪ {C ′} is satisfiable.



The above property states that when a clause C of Σ is U-
Horn, it can be replaced in Σ by a Horn clause without any
change in the satisfiability status of Σ.

Definition 2 (U-redundant [13])
A clause C of Σ is called U-redundant iff Σ \ {C} |=∗ C .

Property 2 If C ∈ Σ is a U-redundant clause then Σ is
satisfiable iff Σ \ {C} is satisfiable.

Thus, U-redundant clauses can be safely removed from Σ.
Let us now introduce two properties, leading to the intro-
duction of two new additional reduction operators, namely
U -NRes and U -PRes, respectively.

Property 3 Let C = {¬n1, . . . ,¬nn, p1, . . . , pp} be a
clause of Σ. If Σ |=∗ {¬n1, . . . ,¬nn} or ∃pi ∈
C s.t. Σ |=∗ {¬n1, . . . ,¬nn, pi} and Σ |=∗

{¬n1, . . . ,¬nn,¬pi}, then Σ |= {¬n1, . . . ,¬nn}.

Definition 3 (U-NRes)
When a clause C = {¬n1, . . . ,¬nn, p1, . . . , pp} of Σ satis-
fies Property 3, U -NRes(C) is defined as {¬n1, . . . ,¬nn}.

Property 4 Let C = {¬n1, . . . ,¬nn, p1, . . . , pp} be
a clause of Σ. If ∃pi ∈ C s.t. Σ 6|=∗

{¬n1, . . . ,¬nn, pi} and Σ |=∗ {¬n1, . . . ,¬nn,¬pi}, then
Σ |=∗ {¬n1, . . . ,¬nn, p1, . . . , pi−1, pi+1, . . . , pp}.

Definition 4 (U-PRes)
When a clause C = {¬n1, . . . ,¬nn, p1, . . . , pp} of Σ sat-
isfies Property 4 w.r.t. the literals pi to pj , U -PRes(C) is
defined as {¬n1, . . . ,¬nn, p1, . . . , pi−1, pj+1, . . . , pp}.

Based on the previous properties, a new tractable class
called U-Horn SAT is extracted. Algorithm 1 describes how
this class can be recognized.

After all Horn clauses have been recorded in Σ′, all re-
maining clauses C are tested successively (line 3). Ac-
cording to Property 3, when the negative part of C is UP-
derivable from Σ, this negative part is considered as an addi-
tional Horn clause and recorded in Σ′ (lines 5 and 6). Else,
the second part of Property 3 is implemented in lines 10 to
12. The tests of lines 10 and 15 translate Property 4. In
order to obtain U -PRes(C), the tests in lines 17 to 19 al-
low the insertion within Σ′ of the smallest clause (w.r.t. its
number of positive literals). In line 20, a call is made to a
procedure described in [13] to get rid of redundant clauses
modulo PU. Finally, the initial formula Σ is U-Horn if and
only if the simplified formula Σ′ is Horn.

4 Experimental results

In order to assess the practical interest of this pre-
treatment, a variant of Algorithm 1 (without line 16) has

Algorithm 1: isU-Horn
Input: a SAT instance Σ
Output: true if Σ is U-Horn; false otherwise
begin1

Σ′ ← {C|C ∈ Σ s.t. isHorn(C)};2

forall C ∈ Σ s.t. C = {¬n1, . . . ,¬nn, p1, . . . , pp},3

with n ≥ 0 and p > 1 do4

if Σ |=∗ {¬n1, . . . ,¬nn} then5

Σ′ ← Σ′ ∪ {{¬n1, . . . ,¬nn}};6

else7

Σ′′ ← ∅ ; C ′ ← C;8

forall pi ∈ C do9

if Σ |=∗ {¬n1, . . . ,¬nn, pi} then10

if Σ |=∗{¬n1, . . . ,¬nn,¬pi} then11

Σ′ ← Σ′ ∪ {{¬n1, . . . ,¬nn}} ;12

else13

Σ′′←Σ′′∪{{¬n1, . . . ,¬nn, pi}};14

else ifΣ|=∗{¬n1, . . . ,¬nn,¬pi}then15

C ′ ← C ′ \ {pi};16

if {¬n1, . . . ,¬nn} 6⊂ Σ′ then17

if Σ′′ = ∅ then Σ′ ← Σ′ ∪ {C ′};18

else Σ′ ← Σ′ ∪ Σ′′;19

Σ′ ← redundancyUP (Σ′);20

return isHorn(Σ′);21

end22

been implemented and experimented. Due to computational
reasons, it does not manipulate two CNF (Σ and Σ′) as
shown in Algorithm 1 but makes use of a same CNF Σ.
Consequently, the reduced CNF depends on the order ac-
cording to which the clauses are considered, and running
the program once does not guarantee that all possible sim-
plifications are made, whereas Algorithm 1 ensures this
last point. To perform all possible simplifications, the pro-
gram must be iterated until no new Horn clause is produced.
The program has been run on various benchmarks from the
DIMACS depository [9] and from the last SAT competi-
tions (www.satcompetition.org). All experimenta-
tions have been conducted on an Intel(R) Xeon(TM) CPU
3.00GHz with 2Go of memory under Linux CentOS release
4.1. Interestingly enough, some instances were reduced to
polynomial-time ones, running the program just once. In
Table 1, all instances belonging to the U-Horn class are
given: 99 instances belonging to U-Horn class have been
found within (almost) 1600 tested instances. For each in-
stance, its name, its size (#var. and #cla.), the number of
propagations (#UP) and the time spent in seconds to reduce
the instance to U-Horn are given. When the program is it-
erated until no new Horn clause is produced, 28 additional



CNF instances # var. # cla. #UP time (s.) CNF instances # var. # cla. #UP time (s.)
aim-100-1 6-yes1-4 100 160 179 0 IBM FV 2004 rule batch. . .
aim-100-2 0-yes1-2 100 200 456 0 IBM . . .04 SAT dat.k15 15300 65598 397812 0.25
aim-100-6 0-yes1-1 100 600 2502 0 IBM . . .05 SAT dat.k15 25128 134922 1708357 1.22
aim-100-6 0-yes1-2 100 600 2534 0 IBM . . .15 SAT dat.k100 226970 893496 2432156 2.46
aim-100-6 0-yes1-3 100 600 777 0 IBM . . .15 SAT dat.k15 30790 119911 184301 0.19
aim-100-6 0-yes1-4 100 600 568 0 IBM . . .15 SAT dat.k20 42330 165416 252596 0.26
aim-200-6 0-yes1-2 200 1200 6113 0.01 IBM . . .15 SAT dat.k25 53870 210921 329216 0.33
aim-200-6 0-yes1-4 200 1200 696 0 IBM . . .15 SAT dat.k30 65410 256426 413391 0.42
aim-50-2 0-yes1-2 50 100 218 0 IBM . . .15 SAT dat.k35 76950 301931 506031 0.5
aim-50-2 0-yes1-3 50 100 250 0 IBM . . .15 SAT dat.k40 88490 347436 606086 0.6
aim-50-2 0-yes1-4 50 100 156 0 IBM . . .15 SAT dat.k45 100030 392941 714746 0.71
aim-50-6 0-yes1-1 50 300 516 0 IBM . . .15 SAT dat.k50 111570 438446 830681 0.83
aim-50-6 0-yes1-2 50 300 692 0 IBM . . .15 SAT dat.k55 123110 483951 955361 0.99
aim-50-6 0-yes1-3 50 300 440 0 IBM . . .15 SAT dat.k60 134650 529456 1087176 1.07
aim-50-6 0-yes1-4 50 300 1621 0 IBM . . .15 SAT dat.k65 146190 574961 1227876 1.22
cnf-r1-b3-k1.2 660004 5281 56944 0.21 IBM . . .15 SAT dat.k70 157730 620466 1375571 1.38
cnf-r1-b4-k1.1 397893 7089 105048 0.18 IBM . . .15 SAT dat.k75 169270 665971 1532291 1.53
cnf-r1-b4-k1.2 922148 6818 60079 0.29 IBM . . .15 SAT dat.k80 180810 711476 1695866 1.69
cnf-r2-b2-k1.2 406052 6064 54402 0.15 IBM . . .15 SAT dat.k85 192350 756981 1868606 1.88
cnf-r2-b3-k1.2 668180 9169 100807 0.27 IBM . . .15 SAT dat.k90 203890 802486 2048061 2.06
cnf-r2-b4-k1.1 406052 12784 178182 0.25 IBM . . .15 SAT dat.k95 215430 847991 2236821 2.26
cnf-r2-b4-k1.2 930282 12464 175575 0.37 IBM . . .22 SAT dat.k10 18919 77414 596987 0.4
jnh10 100 850 6737 0.02 IBM . . .22 SAT dat.k15 29833 122814 1249118 0.96
jnh11 100 850 11187 0.02 IBM . . .22 SAT dat.k20 40753 168249 1845706 1.48
jnh12 100 850 5323 0.01 iso-brn005.shuffled 1130 9866 13572 0.02
jnh13 100 850 4940 0.01 f19-b21-s0-0 746 3517 23805 0.03
jnh14 100 850 3362 0.01 f27-b10-s0-0 193 1113 8268 0.01
jnh15 100 850 7544 0.01 f27-b1-s0-0 193 1113 9401 0.01
jnh18 100 850 16943 0.03 f27-b2-s0-0 193 1113 5614 0.01
jnh19 100 850 10836 0.02 f27-b3-s0-0 193 1113 8716 0.01
jnh202 100 800 4641 0.01 f27-b4-s0-0 193 1113 5992 0.01
jnh203 100 800 18563 0.03 f27-b5-s0-0 193 1113 5626 0.01
jnh208 100 800 16108 0.03 f27-b8-s0-0 193 1113 7702 0.01
jnh20 100 850 8478 0.02 f27-b9-s0-0 193 1113 8684 0.01
jnh211 100 800 3030 0.01 f83-b11-s0-0 1000 43900 318968 0.74
jnh214 100 800 12131 0.02 f83-b14-s0-0 1000 43540 811348 1.61
jnh215 100 800 10558 0.02 f83-b17-s0-0 1000 43900 180456 0.37
jnh216 100 800 12821 0.02 par8-1-c 64 254 5613 0
jnh2 100 850 2201 0 par8-1 350 1149 9224 0
jnh302 100 900 246 0 par8-2 350 1157 7641 0
jnh303 100 900 13452 0.03 par8-4-c 67 266 6216 0
jnh304 100 900 1720 0 par8-4 350 1155 10248 0.01
jnh305 100 900 5348 0.01 par8-5 350 1171 7978 0
jnh307 100 900 2211 0 pitch.boehm 1192 6361 656 0.01
jnh308 100 900 15155 0.03 qg5-10.shuffled 1000 43900 318968 0.69
jnh309 100 900 2460 0.01 qg6- 10.shuffled 1000 43540 811348 1.62
jnh310 100 900 3054 0.01 qg7-10.shuffled 1000 43900 180456 0.37
jnh4 100 850 5955 0.01 3col20 5 5.shuffled 40 176 774 0
jnh5 100 850 4151 0.01 3col20 5 6.shuffled 40 176 656 0
jnh8 100 850 4749 0.01 3col20 5 7.shuffled 40 176 903 0
jnh9 100 850 3099 0.01 3col20 5 9.shuffled 40 176 438 0

Table 1. U-Horn instances

instances are reduced to U-Horn. They are given in Table
2 where “removed cla” (resp. “removed var”) represents
the ratio (in percents) of clauses (resp. variables) removed
by the method and where “#lit” represents the total number
of litterals that have been removed. Even when this pre-
treatment does not conduct the instance to be reduced to a
polynomial-time one, the global size of the instance is often
decreased in a significant manner, whereas its polynomial
subpart is increased accordingly. Interestingly, this reduc-
tion appears valuable from a global problem-solving point
of view. In Table 3, the time required to solve instances us-
ing Minisat [12] with the time spent by a combination of the
pre-treatment with Minisat are compared. In this table, the
columns “Minisat” represent the time consumed by Minisat

to solve the original instance (“original”) and the simplified
one (“simplified”); and the columns “%profit” represents
the gain (in percents) obtained by the pre-treatment when
the simplification time is taken into account either together
with the satisfiability checking time (“total”) or not (“par-
tial”).

5 Related works

The U-Horn SAT class exhibits a limited similarity with
Dalal’s Quad fragment [4]. Indeed, both approaches make
use of a sub-clauses deduction procedure, using unit prop-
agation inference rules. However, the approach in this pa-
per differs from Dalal’s one in several ways. First, it re-



instance size removed
CNF Instances #var. #cla. cla var #lit. #UP time (s.)
een-tipb-sr06-par1 163647 484831 94% 95% 252004 68362283 38.98
ezfact16 10.shuffled 193 1113 26% 34% 335 5614 0.01
ezfact16 3.shuffled 193 1113 37% 44% 479 5992 0.01
f32-b2-s0-0 40 176 70% 69% 178 941 0
f32-b4-s0-0 40 176 85% 77% 163 919 0
f33-b9-s0-0 80 346 88% 80% 391 5867 0
f6-b2-s2-20 478 1007 95% 92% 532 14216 0
IBM FV 2004 rule batch 03 SAT dat.k30 29079 118925 44% 55% 31075 1393665 1.07
IBM FV 2004 rule batch 05 SAT dat.k10 15399 81447 87% 93% 33203 1252239 0.76
IBM FV 2004 rule batch 05 SAT dat.k20 34863 188452 74% 82% 72024 7798669 5.49
IBM FV 2004 rule batch 05 SAT dat.k25 44598 241982 67% 75% 86760 18851484 16.38
IBM FV 2004 rule batch 05 SAT dat.k30 54333 295512 60% 67% 99477 31503131 26.84
IBM FV 2004 rule batch 06 SAT dat.k15 17501 75616 43% 49% 18130 1278040 1.07
IBM FV 2004 rule batch 06 SAT dat.k20 23826 103226 71% 78% 41764 12961178 10.17
IBM FV 2004 rule batch 10 SAT dat.k15 40278 159501 33% 35% 26022 8285670 6.89
IBM FV 2004 rule batch 1 11 SAT dat.k10 28280 111519 47% 49% 25573 58410957 42.46
IBM FV 2004 rule batch 18 SAT dat.k10 17141 69989 48% 55% 19878 13050828 8.7
IBM FV 2004 rule batch 19 SAT dat.k10 21823 83902 24% 31% 13250 298260 0.26
IBM FV 2004 rule batch 19 SAT dat.k15 34697 134023 17% 22% 14917 508638 0.47
IBM FV 2004 rule batch 19 SAT dat.k20 47577 184178 17% 23% 23258 14607263 12.98
IBM FV 2004 rule batch 20 SAT dat.k10 17567 72087 36% 41% 14004 5226452 3.63
IBM FV 2004 rule batch 21 SAT dat.k10 15919 65180 35% 39% 11897 267966 0.21
IBM FV 2004 rule batch 21 SAT dat.k15 25213 103881 25% 28% 13564 471438 0.39
IBM FV 2004 rule batch 21 SAT dat.k20 34513 142616 26% 30% 21454 9624852 7.38
IBM FV 2004 rule batch 22 SAT dat.k25 51673 213684 24% 27% 28739 30219471 22.32
IBM FV 2004 rule batch 23 SAT dat.k10 18612 76086 41% 48% 16035 69713 0.09
IBM FV 2004 rule batch 27 SAT dat.k10 6477 27070 62% 70% 10054 3826810 2.15
rip08.boehm 471 263 92% 59% 145 8728 0.01
x6dn.boehm 521 1255 86% 84% 1022 137818 0.07

Table 2. Reduction of SAT instances using several runs

mains independent from the considered literals ordering.
Secondly, a single polynomial fragment is considered in-
stead of several ones in Dalal’s work, which as a conse-
quence does not deliver a linear-time pre-treatment. Fi-
nally, the use of other treatments based on the removal of
redundant clauses [13] and of other reductions operations
in our pre-treatment makes the two classes incomparable
ones. Obviously enough, the idea of pre-treating SAT in-
stances is not a new one. Many modern SAT solvers include
some pre-treatment techniques. For instance, C-SAT [11]
made a restricted use of resolution as a polynomial-time
pre-treatment, and some DPLL algorithms start with local
search runs that, when they fail to prove consistency, are ex-
ploited in the further complete search [17]. More recently,
Satellite, which is the pre-treatment used in one of the state-
of-the-art satisfiability solver, simplifies the instance using
variable elimination [1]. Due to its linear-time character,
the unit propagation algorithm has been exploited in sev-
eral ways in the context of SAT, in addition to being a key
component of DPLL-like procedures. For example, C-SAT
and Satz used a local treatment during important steps of
the exploration of the search space, based on UP, to derive
implied literals and detect local inconsistencies, and guide
the selection of the next variable to be assigned [11, 16]. In
[15], a double UP schema is explored in the context of SAT
solving. In [19, 14], UP has been used as an efficient tool to
detect functional dependencies in SAT instances. The UP
technique has also been exploited in [6] in order to derive

subclauses by using the UP implication graph of the SAT
instance, and speed up the resolution process.

6 Conclusions and perspectives

In this paper, a new linear-time pre-treatment technique
for SAT instances has been introduced. It is based on the
efficiency of the unit propagation algorithm, which is ex-
ploited in order to attempt to increase the polynomial sub-
part of the targeted SAT instances. Interestingly enough,
benchmarks from the SAT competitions that were so far
believed to be hard-to-solve problems have been proved to
be polynomial SAT instances, and solved accordingly. As
such, the pre-treatment is also valuable in that it often in-
creases the efficiency of the satisfiability checking global
process. We plan to extend this technique w.r.t. other poly-
nomial fragments of SAT in the future.
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