
Eliminating redundant clauses in SAT instances

Olivier Fourdrinoy Éric Grégoire Bertrand Mazure Lakhdar Saı̈s

CRIL CNRS & IRCICA
Université d’Artois

Rue Jean Souvraz SP18
F-62307 Lens Cedex France

{fourdrinoy, gregoire, mazure, sais}@cril.fr

Abstract. In this paper, we investigate to which extent the elimination of a class
of redundant clauses in SAT instances could improve the efficiency of modern
satisfiability provers. Since testing whether a SAT instance does not contain any
redundant clause is NP-complete, a logically incomplete but polynomial-time
procedure to remove redundant clauses is proposed as a pre-treatment of SAT
solvers. It relies on the use of the linear-time unit propagation technique and often
allows for significant performance improvements of the subsequent satisfiability
checking procedure for really difficult real-world instances.

1 Introduction

The SAT problem, namely the issue of checking whether a set ofBoolean clauses is
satisfiable or not, is a central issue in many computer science and artificial intelligence
domains, like e.g. theorem proving, planning, non-monotonic reasoning, VLSI correct-
ness checking and knowledge-bases verification and validation. These last two decades,
many approaches have been proposed to solve hard SAT instances, based on -logically
complete or not- algorithms. Both local-search techniques(e.g. [1]) and elaborate vari-
ants of the Davis-Putnam-Loveland-Logemann’s DPLL procedure [2] (e.g. [3, 4]) can
now solve many families of hard huge SAT instances from real-world applications.

Recently, several authors have focused on detecting possible hidden structural infor-
mation inside real-world SAT instances (e.g backbones [5],backdoors [6], equivalences
[7] and functional dependencies [8]), allowing to explain and improve the efficiency
of SAT solvers on large real-world hard instances. Especially, the conjunctive normal
form (CNF) encoding can conduct the structural informationof the initial problem to
be hidden [8]. More generally, it appears that many real-world SAT instances contain
redundant information that can be safely removed in the sense that equivalent but easier
to solve instances could be generated.

In this paper, we investigate to which extent the elimination of a class of redundant
clauses in real-world SAT instances could improve the efficiency of modern satisfia-
bility provers. A redundant clause is a clause that can be removed from the instance
while keeping the ability to derive it from the remaining part of the instance. Since test-
ing whether a SAT instance does not contain any redundant clause is NP-complete [7],
an incomplete but polynomial-time procedure to remove redundant clauses is proposed

as a pre-treatment of SAT solvers. It relies on the use of the linear time unit propaga-
tion technique. Interestingly, we show that it often allowsfor significant performance
improvements of the subsequent satisfiability checking procedure for hard real-world
instances.

The rest of the paper is organized as follows. After basic logical and SAT-related
concepts are provided in Section 2, Section 3 focuses on redundancy in SAT instances,
and the concept of redundancy modulo unit propagation is developed. In Section 4,
our experimental studies are presented and analyzed. Related works are discussed in
Section 5 before conclusive remarks and prospective futureresearch works are given in
the last Section.

2 Technical background

Let L be a standard Boolean logical language built on a finite set ofBoolean variables,
denotedx, y, etc. Formulas will be denoted using letters such asc. Sets of formulas will
be represented using Greek letters likeΓ or Σ. An interpretation is a truth assignment
function that assigns values from{true, false} to every Boolean variable. A formula
is consistent or satisfiable when there is at least one interpretation that satisfies it, i.e.
that makes it becometrue. Such an interpretation is called a model of the instance.
An interpretation will be denoted by upper-case letters like I and will be represented
by the set of literals that it satisfies. Actually, any formula in L can be represented
(while preserving satisfiability) using a set (interpretedas a conjunction) of clauses,
where a clause is a finite disjunction of literals, where a literal is a Boolean variable
that can be negated. A clause will also be represented by the set formed with its literals.
Accordingly, the size of a clausec is given by the number of literals that it contains, and
is noted|c|.

SAT is the NP-complete problem [9] that consists in checkingwhether a finite set
of Boolean clauses ofL is satisfiable or not, i.e. whether there exists an interpretation
that satisfies all clauses in the set or not.

Logical entailment will be noted using the|= symbol: letc be a clause ofL, Σ |= c
iff c is true in all models ofΣ. The empty clause will represent inconsistency and is
noted⊥.

In the following, we often refer to the binary and Horn fragments ofL for which
the SAT issue can be solved in polynomial time [10–12]. A binary clause is a clause
formed with at most two literals whereas a Horn clause is a clause containing at most
one positive literal. A unit clause is a single literal clause.

In this paper, theUnit Propagation algorithm (in short UP) plays a central role.
UP recursively simplifies a SAT instance by propagating -throughout the instance- the
truth-value of unit clauses whose variables have been already assigned, as shown in the
algorithm 1.

We define entailment modulo Unit Propagation, noted|=UP , the entailment rela-
tionship|= restricted to the Unit Propagation technique.

Definition 1. Let Σ be a SAT instance and c be a clause of L, Σ |=UP c if and only if
Σ ∧ ¬c |=UP⊥ if and only if UP (Σ ∧ ¬c) contains an empty clause.

Algorithm 1 : Unit Propagation
Input : a SAT instanceΣ
Output : an UP-irredundant SAT instanceΓ equivalent toΣ w.r.t. satisfiability s.t.Γ does

not contain any unit clause
begin1

if Σ contains an empty clause then return Σ;2

else3

if Σ contains a unit clause c = {l} then4

remove all clauses containingl from Σ;5

foreach c ∈ Σ s.t. ¬l ∈ c do6

c←− c \ {¬l}7

return Unit Propagation(Σ);8

else9

return Σ;10

end11

Clearly, |=UP is logically incomplete. It can be checked in polynomial time since
UP is a linear-time process. Letc1 andc2 be two clauses ofL. Whenc1 ⊆ c2, we have
thatc1 |= c2 andc1 (resp.c2) is said to subsume (resp. be subsumed by)c2 (resp.c1).
A clausec1 ∈ Σ is subsumed inΣ iff there existsc2 ∈ Σ s.t.c1 6= c2 andc2 subsumes
c1. Σ is closed under subsumption iff for allc ∈ Σ, c is not subsumed inΣ.

3 Redundancy in SAT instances

Intuitively, a SAT instance is redundant if it contains parts that can be logically inferred
from it. Removing redundant parts of SAT instances in order to improve the satisfiability
checking process entails at least two fundamental issues.

– First, it is not clear whether removing such parts will make satisfiability checking
easier, or not. Some redundant information can actually improve the efficiency of
SAT solvers.

– It is well-known that checking whether a SAT instance is irredundant or not is itself
NP-complete [7]. It is thus as hard as solving the SAT instance itself.

In order to address these issues, we consider an incomplete algorithm that allows
some redundant clauses to be detected and that remains polynomial. Intuitively, we
should not aim at removing all kinds of redundant clauses. Some types of clauses are
expected to facilitate the satisfiability testing since they belong to polynomial fragments
of SAT, especially the binary and the Horn ones. Accordingly, we propose an approach
that appears to be a two-levels trade-off: on the one hand, werun a redundancy de-
tection and removal algorithm that is both fast and incomplete. On the other hand, we
investigate whether it proves useful to eliminate redundant binary and Horn clauses or
not.

Algorithm 2 : Compute an UP-irredundant formula
Input : a SAT instanceΣ
Output : an UP-irredundant SAT instanceΓ equivalent toΣ w.r.t. satisfiability
begin1

Γ ←− Σ ;2

forall clauses c = {l1, . . . , ln} ∈ Σ sorted according to their decreasing sizes do3

if UP (Γ \ {c} ∪ {¬l1} ∪ . . . ∪ {¬ln}) contains an empty clause then4

Γ ←− Γ \ {c} ;5

return Γ ;6

end7

Definition 2.
Let Σ be a SAT instance and let c ∈ Σ, c is redundant in Σ if and only if Σ \ {c} |= c.

Clearly, redundancy can be checked using a refutation procedure. Namely,c is re-
dundant inΣ iff Σ \ {c} ∪ {¬c} |=⊥. We thus strengthen this refutation procedure by
replacing|= by |=UP in order to get an incomplete but polynomial-time redundancy
checking approach.

Definition 3.
Let Σ be a SAT instance and let c ∈ Σ, c is UP-redundant in Σ if and only if Σ \
{c} |=UP c.

Accordingly, checking the UP-redundancy ofc in Σ amounts to propagate the op-
posite of every literal ofc throughoutΣ \ {c}.

Let us consider Example 1, as depicted below. In this example, it is easy to show
thatw∨x is UP-redundant inΣ, while it is not subsumed inΣ. Let us considerΣ\{w∨
x}∧¬w∧¬x. Clearly,w∨¬y andx∨¬z reduce to¬y∧¬z, respectively. Propagating
these two literals generates a contradiction, showing thatw ∨ x is UP-redundant inΣ.
On the other hand,w ∨ x is clearly not subsumed inΣ since there is no other clause
c′ ∈ Σ s.t.c′ ⊆ c.

Example 1.

Σ =























w ∨ x
y ∨ z
w ∨ ¬y
x ∨ ¬z
. . .

Accordingly, in Algorithm 2, a (basic) UP pre-treatment is described and can be
motivated as follows. In the general case, there exists a possibly exponential number of
different sets of irredundant formulas that can be extracted from the initial instance. In-
deed, irredundancy and minimally inconsistency coincide on unsatisfiable formulas [7].
Clearly, the specific resulting simplified instance delivered by the Algorithm 1 depends
on the order according to which clauses fromΓ are considered. As small-size clauses

allow one to reduce the search space in a more dramatic mannerthan longer ones, we
have implemented a policy that checks longer clauses for redundancy, first. Accord-
ingly, this amounts to considering the clauses ofΓ set according to their decreasing
sizes.

Example 2. Let Σ be the following SAT instance:

Σ =















w ∨ x
w ∨ x ∨ y ∨ z
w ∨ ¬y
x ∨ ¬z

– not considering clauses according to their decreasing sizes, but starting with the
w ∨ x clause, the resulting UP-irredundant set of formulas wouldbe:

Γ1 =







w ∨ x ∨ y ∨ z
w ∨ ¬y
x ∨ ¬z

– whereas Algorithm 1, which considersw∨x∨ y∨ z first, delivers for this example
a different -but same size- final setΓ2 of clauses.

Γ2 =







w ∨ x
w ∨ ¬y
x ∨ ¬z

Starting with larger size clauses allows to obtain the smallestΓ in terms of number
of clauses and also in terms of number of literals. We are surethat all subsumed clauses
are removed in this way and only the subsuming clauses are preserved because the
larger ones are first tested. As this example illustrates, subsumed clauses are removed,
leading to shorter clauses inΓ2, which is thus more constrained and, to some extent,
easier to solve.

Property 1. Let Σ be a CNF formula. IfΣ′ is a formula obtained fromΣ by applying
Algorithm 2 thenΣ′ is closed under subsumption.

Proof. Suppose that there exist two clausesc andc′ of Σ′ such thatc′ subsumesc. We
can deduce that|c′| ≤ |c|. As the clauses ofΣ checked for UP-redundancy are ordered
according to their decreasing sizes, we deduce thatc is UP-redundant. Consequently,
c /∈ Σ′, which contradicts the hypothesis. �

The converse of Property 1 is false. Indeed, the formulaΣ = Γ2∪{(y∨e), (z∨¬e)}
is closed under subsumption but is not UP-irredundant.

Clearly, in the best cases, the pre-treatment could allow usto get rid of all non-
polynomial clauses, and reduce the instance into a polynomial fragment. Since the size
of the instances can be huge, we investigate whether polynomial fragments ofL should
be protected from redundancy checking or not. As a comparison study, several possi-
ble fragments have been considered for UP-redundancy checking: namelyΣ, all non

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

T
im

e
in

 s
ec

on
ds

 fo
r

so
lv

in
g

(lo
gs

ca
le

)

Time in seconds for simplifying and solving (logscale)

Fig. 1. Results for the700 tested instances

Horn clauses fromΣ, all non-binary clauses fromΣ, and all non-Horn and non-binary
clauses fromΣ.

Also, we have experimented an approach trying to maximize the number of UP trig-
gerings. The intuition is as follows. A clause that containsliterals that occur in many
binary clauses will lead to a cascade of UP steps. For example, let c = x∨ y ∨ z. When
x occurs in several binary clauses and when we check whetherc is redundant using
UP, each such binary clause will be simplified into a unit clause, recursively leading
to other UP steps. Accordingly, we define a weightw associated to a clausec, noted
w(c) as the sum of the weights of each literal ofc, where the weight of a literal is
given by the number of binary clauses to which it belongs. Letus note that in order
for a UP propagation step to occur when a clausec1 ∈ Σ is checked for redundancy
using UP, there must be another clausec2 ∈ Σ s.t. |c2 − {c1 ∩ c2}| = 1. Clearly, when
|c2 − {c1 ∩ c2}| = 0, c1 is UP-redundant. Since computing and recording this neces-
sary condition can be resource-consuming, we have implemented a more restrictive and
easier-to-compute criterion based on the aforementioned weights. Whenc2 is a binary
clause, the previous condition is satisfied if and only ifc1 (to be checked for redun-
dancy) contains a literal fromc2. Accordingly, whenw(c) = 0, c is not checked for
redundancy. This weight-heuristic has been mixed with a policy allowing clauses from
polynomial classes (binary, Horn, binary and Horn) to be protected from redundancy
checking.

4 Experimental results

We have experimented the aforementioned UP-based pre-treatment extensively on the
last SAT competitions benchmarks (http://www.satcompetition.org). We have
tested more than700 SAT instances that stem from various domains (industrial, ran-
dom, hand-made, graph-coloring, etc.). Three of the winners of the last three compe-
titions, namely ZChaff, Minisat and SatElite have been selected as SAT solvers. All
experiments have been conducted on Pentium IV, 3Ghz under linux Fedora Core 4. The
complete list of our experimental data and results are available at:
http://www.cril.fr/∼fourdrinoy/eliminating redundant clauses.html

First, we have run the three SAT solvers on all benchmarks, collecting their com-
puting times to solve each instance. A time-out was set to 3 hours. Then, we have run
the UP pre-treatment on those benchmarks and collected boththe simplification run-
times and the subsequent run-times spent by each of the aforementioned solvers on the
simplified instances. More precisely, we have experimenteda series of different forms
of UP pre-treament. In the first one, we have applied the UP-redundancy removing
technique on all clauses. In the other ones, non-binary, nonHorn clauses have been
targeted, successively. We have also targeted clauses thatare neither Horn nor binary.
Finally, all those experimentations have been replayed using the additional triggering
heuristicw(c) > 0.

In Fig.1, we show the gain on all700 tested instances. On thex-axis, we represent
the time for simplifying and solving an instance with its best policy. On they-axis the
best time for solving the initial -not yet simplified- instance is given. Accordingly, the
line of centers represents the borderline of actual gain. Instances that are above the line
of centers benefit from the simplification policy. Clearly, this figure shows that our tech-
nique is best employed for difficult instances requiring large amounts of CPU-time to
solve them. Indeed, for those instances we obtain significant gains most often. In par-
ticular, all the dots horizontally aligned at10000 seconds on they-axis represent SAT
instances that can not be solved -by current solvers- without UP-redundant simplifica-
tion.

Instances short name #C #V
gensys-icl004.shuffled-as.sat05-3825.cnf gensys 15960 2401
rand net60-30-5.miter.shuffled.cnf rand net 10681 3000
f3-b25-s0-10.cnf f3-b25 12677 2125
ip50.shuffled-as.sat03-434.cnf ip50 214786 66131
f2clk 40.shuffled-as.sat03-424.cnf f2clk 80439 27568
f15-b3-s3-0.cnf f15-b3 469519 132555
IBM FV 2004 rule batch23 SAT dat.k45.cnf IBM k45 381355 92106
IBM FV 2004 rule batch22 SAT dat.k70.cnf IBM k70 327635 63923
f15-b2-s2-0.cnf f15-b2 425316 120367
IBM FV 2004 rule batch22 SAT dat.k75.cnf IBM k75 979230 246053
okgen-c2000-v400-s553070738-553070738.cnfokgen 2000 400

Table 1.Some typical instances

Not surprisingly, our experiments show us that applying thesimplification method
on all clauses is often more time-consuming than focusing onnon-polynomial clauses
only and delivers the smallest simplified instances. However, this gain in size does not
lead to a systematic run-time gain in solving the instances,including the simplifica-
tion time. Indeed, these polynomial clauses might allow an efficient resolution of these
instances.

Globally, our experiments show us that the best policy consists in applying the
weight-based heuristic on all clauses.

In Tables 1 to 5, a more detailed typical sample of size-reduction of instances by
the several aforementioned methods is provided. In Table 1,we provide for each in-
stance its numbers of clauses (#C) and variables (#V) and a short name to facili-
tate the presentation of results. In Table 2, the CPU time in seconds (Ts) needed to
simplify the instance is given, together with the obtained size reduction, expressed in
number of clauses (#cr) and expressed in percents. In the second column results are
given for a policy that considers all clauses for simplification. In the next onesHorn,
Bin, Horn&Bin represent the classes that are protected from simplification. The last
columns provide the results for the same policies augmentedwith the weight heuristics.

In Tables 3 to 5, satisfiability checking run-times are provided for the same in-
stances, using Zchaff, Minisat and SatElite, respectively. TO means “time-out”. In the
first column,Tb is the CPU-time to solve the initial instance. In the subsequent columns,
the CPU-time to solve the simplified instance (Tr) is given together with the efficiency
gains with respect to satisfiability checking:%p and%g being the gains without and
with taking the simplification run-time into account.

5 Related work

Introducing a fast -polynomial time- pre-processing step inside logically complete SAT
solvers is not a new idea by itself. Mainly, C-SAT [13] was provided with a pre-
processor that made use a form of bounded resolution procedure computing all re-
solvents whose size are smaller than the size of their parents. At that time C-SAT
was the most powerful solver to solve randomk-SAT instances. Satz uses the same
technique, but with a resolvent size limited to three [14]. Recently, Niklas Eén and
Armin Biere have introduced a variable elimination technique with subsumption, self-
subsuming resolution and variable elimination by substitution [15] as a pre-processing
step for modern SAT solvers, extending a previous pre-processor NiVER by [16]. In
[17], an algorithm is described that maintains a subsumption-free CNF clauses database
by efficiently detecting and removing subsumption as the clauses are being added. An
interesting path for future research would consist in comparing our approach with those
other pre-processors from both theoretical and experimental points of view .

Due to its linear-time character, the unit propagation algorithm has been exploited in
several ways in the context of SAT, in addition to being a key component of DPLL-like
procedures. For example, C-SAT and Satz used a local treatment during important steps
of the exploration of the search space, based on UP, to deriveimplied literals and detect
local inconsistencies, and guide the selection of the next variable to be assigned [13, 14].
In [18], a double UP schema is explored in the context of SAT solving. In [19, 8], UP

No Restriction Horn Binary Horn& Binary
instances Ts #cr (%) Ts #cr (%) Ts #cr (%) Ts #cr (%)
gensys 1.26 2861(17.92) 1.18 2208(13.83)1.21 2560(16.04)1.13 2171(13.60)
randnet 1.80 608(5.69) 0.62 178(1.66) 0.62 0(0) 0.30 0(0)
f3-b25 1.66 1502(11.84) 1.04 926(7.30) 1.64 1502(11.84)1.03 926(7.30)
ip50 65.06 1823(0.84) 22.02 504(0.23) 14.11 194(0.09) 9.10 110(0.05)
f2clk 6.39 344(0.42) 2.08 119(0.14) 1.29 77(0.09) 0.75 54(0.06)
f15-b3 359.52 55816(11.88)116.73 14167(3.01)55.38 1010(0.21)37.62 640(0.13)
IBM k45 53.26 32796(8.59) 10.33 2122(0.55) 6.22 717(0.18) 5.03 715(0.18)
IBM k70 36.68 22720(6.93) 5.36 4628(1.41) 3.81 0(0) 2.78 0(0)
f15-b2 306.06 50717(11.92)100.14 12909(3.03)47.74 979(0.23) 34.00 609(0.14)
IBM k75 172.47 116841(11.93)40.14 5597(0.57)24.64 3912(0.39)22.34 3911(0.39)
okgen 0.00 0(0) 0.00 0(0) 0.00 0(0) 0.00 0(0)

Weightingw(c) > 0
z }| {

No Restriction Horn Binary Horn & Binary
Ts #cr (%) Ts #cr (%) Ts #cr (%) Ts #cr (%)

gensys 0.65 2560(16.04) 0.63 2171(13.60)0.64 2560(16.04)0.64 2171(13.60)
randnet 1.66 514(4.81) 0.58 148(1.38) 0.62 0(0) 0.30 0(0)
f3-b25 0.21 60(0.47) 0.15 44(0.34) 0.21 60(0.47) 0.14 44(0.34)
ip50 53.95 1823(0.84) 19.43 504(0.23) 14.24 194(0.09) 9.21 110(0.05)
f2clk 6.06 267(0.33) 1.96 100(0.12) 1.30 77(0.09) 0.80 54(0.06)
f15-b3 229.84 24384(5.19) 83.46 6393(1.36)55.69 1010(0.21)37.72 640(0.13)
IBM k45 34.53 11049(2.89) 10.36 2122(0.55) 6.23 717(0.18) 4.98 715(0.18)
IBM k70 15.25 11464(3.49) 5.36 4616(1.40) 3.77 0(0) 2.77 0(0)
f15-b2 209.55 22217(5.22) 77.22 5709(1.34)51.04 979(0.23) 33.32 609(0.14)
IBM k75 125.26 39640(4.04) 38.15 5597(0.57)26.02 3912(0.39)22.32 3911(0.39)
okgen 0 0(0) 0.00 0(0) 0.00 0(0) 0.00 0(0)

Table 2.Simplification time and size reduction

has been used as an efficient tool to detect functional dependencies in SAT instances.
The UP technique has also been exploited in [20] in order to derive subclauses by using
the UP implication graph of the SAT instance, and speed up theresolution process.

Bailleux, Roussel and Boufkhad have studied how clauses redundancy affects the
resolution of randomk-sat instances [21]. However, their study is specific to random
instances and cannot be exported to real-world ones. Moreover, they have explored
redundancy and not UP-redundancy; their objective being tomeasure the redundancy
degree of random3-SAT instances at the crossover point. From a complexity point of
view, a full study of redundancy in the Boolean framework is given in [22].

To some extent, our approach is also close to compilation techniques [23–26] where
the goal is to transform the Boolean instances into equivalent albeiteasier ones to check
or to infer from. The idea is to allow much time to be spent in the pre-processing
step, transforming the instance into a polynomial-size newinstance made of clauses
belonging polynomial-time fragments ofL, only. Likewise, our approach aims to re-
duce the size of the non-polynomial fragments of the instances. However, it is a partial
reduction since all clauses belonging to non-polynomial fragments are not necessary
removed. Moreover, whereas compilation techniques allow apossibly exponential time
to be spent in the pre-processing step, we make sure that our pre-processing technique
remains a polynomial-time one.

No Restriction Horn Binary Horn & Binary
instances Tb Tr (%p,%g) Tr(%p,%g) Tr (%p,%g) Tr(%p,%g)
gensys (3418.17)2847.1(16.70,16.66) 3353.69(1.88,1.85) 1988.37(41.82,41.79) 3683.58(-7.76,-7.79)
randnet (1334.19)942.15(29.38,29.24)1067.01(20.02,19.97) 1334.19(0,-0.04) 1334.19(0,-0.02)
f3-b25 (790.96) 137.26(82.64,82.43) 155.32(80.36,80.23) 134.91(82.94,82.73) 157.44(80.09,79.96)
ip50 (2571.18) 675.11(73.74,71.21) 474.64(81.53,80.68) 1023.82(60.18,59.63) 1945.87(24.31,23.96)
f2clk (6447.19)4542.32(29.54,29.44)9457.25(-46.68,-46.72)3978.14(38.29,38.27) 3848.02(40.31,40.30)
f15-b3 (7627.95)5620.25(26.32,21.60)2926.38(61.63,60.10)10157.9(-33.16,-33.89) 2419.52(68.28,67.78)
IBM k45 (5962.46) 2833.1(52.48,51.59)3656.05(38.68,38.50) 3244.61(45.58,45.47) 4751.79(20.30,20.22)
IBM k70 (TO) 514.83(∞,∞) 5377.91(∞,∞) TO(–,–) TO(–,–)
f15-b2 (TO) 2287.73(∞,∞) 8891.1(∞,∞) TO(–,–) 3969.27(∞,∞)
IBM k75 (TO) TO(–,–) TO(–,–) TO(–,–) TO(–,–)
okgen (1309.66) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00)

Weightingw(c) > 0
z }| {

No Restriction Horn Binary Horn & Binary
Tr (%p,%g) Tr(%p,%g) Tr (%p,%g) Tr(%p,%g)

gensys (3418.17)1986.98(41.87,41.85)3896.93(-14.00,-14.02)1967.22(42.44,42.42) 3873.89(-13.33,-13.35)
randnet (1334.19)555.13(58.39,58.26) 614.75(53.92,53.87) 1334.19(0,-0.04) 1334.19(0,-0.02)
f3-b25 (790.96) 839.54(-6.14,-6.16) 811.37(-2.58,-2.59) 791.97(-0.12,-0.15) 813.05(-2.79,-2.81)
ip50 (2571.18) 708.81(72.43,70.33) 465.13(81.90,81.15) 1091.54(57.54,56.99) 1958(23.84,23.48)
f2clk (6447.19)5196.02(19.40,19.31)5766.78(10.55,10.52) 4042.8(37.29,37.27) 3965.68(38.48,38.47)
15-b3 (7627.95) TO(−∞,−∞) TO(−∞,−∞) 10024(-31.41,-32.14) 2448.27(67.90,67.40)
IBM k45 (5962.46)4447.15(25.41,24.83)3698.1(37.97,37.80) 3283.2(44.93,44.83) 4925.58(17.39,17.30)
IBM k70 (TO) 4131.58(∞,∞) 5564.5(∞,∞) TO(–,–) TO(–,–)
f15-b2 (TO) 4456.24(∞,∞) 2880.15(∞,∞) TO(–,–) 4028.04(∞,∞)
IBM k75 (TO) TO(–,–) TO(–,–) TO(–,–) TO(–,–)
okgen (1309.66) 1309.66(0,0) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00)

Table 3.Zchaff results

No Restriction Horn Binary Horn & Binary
instances Tb Tr(%p,%g) Tr (%p,%g) Tr (%p,%g) Tr (%p,%g)
gensys (7543.42)4357.66(42.23,42.21) 7078.84(6.15,6.14) 4722.35(37.39,37.38) 7370.48(2.29,2.27)
randnet (41.15) 11.00(73.26,68.87) 35.12(14.66,13.14) 41.15(0,-1.52) 41.15(0,-0.73)
f3-b25 (755.90) 225.45(70.17,69.95) 246.97(67.32,67.18) 233.73(69.07,68.86) 243.39(67.80,67.66)
ip50 (88.43) 61.95(29.94,-43.62) 138.90(-57.06,-81.97) 64.47(27.09,11.13) 60.13(31.99,21.70)
f2clk (280.88) 290.41(-3.39,-5.66) 188.53(32.87,32.13) 325.87(-16.01,-16.48) 274.77(2.17,1.90)
15-b3 (875.37) 531.31(39.30,-1.76) 561.40(35.86,22.53) 759.43(13.24,6.91) 555.47(36.54,32.24)
IBM k45 (3940.82) 3729.01(5.37,4.02) 3568.43(9.44,9.18) 3625.13(8.01,7.85) 3541.57(10.13,10.00)
IBM k70 (643.67) 76.16(88.16,82.46) 527.58(18.03,17.20) 643.67(0,-0.59) 643.67(0,-0.43)
f15-b2 (516.36) 334.07(35.30,-23.96) 257.93(50.04,30.65) 452.94(12.28,3.03) 369.69(28.40,21.81)
IBM k75 (4035.72)5096.73(-26.29,-30.56)6324.08(-56.70,-57.69)5782.49(-43.28,-43.89)5534.54(-37.13,-37.69)
okgen (46.43) 46.43(0,-0.02) 46.43(0,-0.01) 46.43(0,-0.01) 46.43(0,-0.01)

Weightingw(c) > 0
z }| {

No Restriction Horn Binary Horn & Binary
Tr(%p,%g) Tr (%p,%g) Tr (%p,%g) Tr (%p,%g)

gensys (7543.42)4742.55(37.12,37.12) 7434.11(1.44,1.44) 4615.46(38.81,38.80) 7610.16(-0.88,-0.89)
randnet (41.15) 27.00(34.38,30.33) 25.60(37.79,36.36) 41.15(0,-1.52) 41.15(0,-0.73)
f3-b25 (755.90) 745.80(1.33,1.30) 738.83(2.25,2.23) 773.19(-2.28,-2.31) 779.37(-3.10,-3.12)
ip50 (88.43) 54.28(38.61,-22.39) 138.28(-56.35,-78.33) 67.17(24.04,7.93) 52.71(40.39,29.97)
f2clk (280.88) 224.82(19.95,17.79) 221.20(21.24,20.54) 299.23(-6.53,-6.99) 289.93(-3.22,-3.50)
15-b3 (875.37) 543.86(37.87,11.61) 687.06(21.51,11.97) 751.79(14.11,7.75) 498.80(43.01,38.70)
IBM k45 (3940.82) 1826.6(53.64,52.77) 3324.82(15.63,15.36) 3637.35(7.70,7.54) 3714.29(5.74,5.62)
IBM k70 (643.67) 31.51(95.10,92.73) 518.48(19.44,18.61) 643.67(0,-0.58) 643.67(0,-0.43)
f15-b2 (516.36) 378.88(26.62,-13.95) 155.70(69.84,54.89) 483.39(6.38,-3.49) 371.51(28.05,21.59)
IBM k75 (4035.72) 4202.16(-4.12,-7.22) 5782.1(-43.27,-44.21)5927.94(-46.88,-47.53)5655.36(-40.13,-40.68)
okgen (46.43) 46.43(0,0) 46.43(0,-0.00) 46.43(0,-0.00) 46.43(0,-0.00)

Table 4.Minisat results

No Restriction Horn Binary Horn & Binary
instances Tb Tr(%p,%g) Tr (%p,%g) Tr (%p,%g) Tr (%p,%g)
gensys (5181.22) 4672.43(9.81,9.79) 7879.9(-52.08,-52.10) 5146.42(0.67,0.64) 7964.11(-53.71,-53.73)
randnet (131.01) 173.97(-32.79,-34.16) 110.02(16.01,15.54) 131.01(0,-0.48) 131.01(0,-0.23)
f3-b25 (1664.94)2935.61(-76.31,-76.41)1926.54(-15.71,-15.77)2934.61(-76.25,-76.35)1924.24(-15.57,-15.63)
ip50 (79.45)110.37(-38.91,-120.79)143.30(-80.36,-108.08)150.33(-89.20,-106.97) 58.31(26.60,15.15)
f2clk (323.15) 270.61(16.25,14.28) 291.93(9.66,9.01) 453.03(-40.19,-40.59)518.12(-60.33,-60.56)
15-b3 (833.17) 244.23(70.68,27.53) 976.24(-17.17,-31.18) 281.31(66.23,59.58) 760.59(8.71,4.19)
IBM k45 (7829.02) 4111.24(47.48,46.80) 4382.78(44.01,43.88) 3457.46(55.83,55.75) 3314.55(57.66,57.59)
IBM k70 (712.10) 225.22(68.37,63.22) 757.96(-6.43,-7.19) 712.10(0,-0.53) 712.10(0,-0.39)
f15-b2 (794.85) 261.70(67.07,28.56) 575.30(27.62,15.02) 556.98(29.92,23.91) 441.52(44.45,40.17)
IBM k75 (2877.51)3714.45(-29.08,-35.07)4099.39(-42.46,-43.85)5505.93(-91.34,-92.20)3796.42(-31.93,-32.71)
okgen (323.06) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00)

Weightingw(c) > 0
z }| {

No Restriction Horn Binary Horn & Binary
Tr(%p,%g) Tr (%p,%g) Tr (%p,%g) Tr (%p,%g)

gensys (5181.22) 5052.73(2.47,2.46) 8046.2(-55.29,-55.30) 5163.37(0.34,0.33) 8231.05(-58.86,-58.87)
randnet (131.01) 63.00(51.91,50.63) 130.23(0.59,0.14) 131.01(0,-0.47) 131.01(0,-0.23)
f3-b25 (1664.94) 1701.57(-2.20,-2.21) 1698.4(-2.00,-2.01) 1745.22(-4.82,-4.83) 1723.25(-3.50,-3.51)
ip50 (79.45)113.38(-42.70,-110.61)136.52(-71.82,-96.28)146.68(-84.61,-102.54) 60.46(23.90,12.30)
f2clk (323.15) 313.56(2.96,1.09) 238.38(26.23,25.62) 466.84(-44.46,-44.86)503.75(-55.88,-56.13)
15-b3 (833.17) 675.88(18.87,-8.70) 1276.87(-53.25,-63.27)271.53(67.40,60.72) 733.52(11.96,7.43)
IBM k45 (7829.02) 5836.14(25.45,25.01) 4364.69(44.24,44.11) 3341(57.32,57.24) 3311.19(57.70,57.64)
IBM k70 (712.10) 406.32(42.94,40.79) 740.12(-3.93,-4.68) 712.10(0,-0.53) 712.10(0,-0.38)
f15-b2 (794.85) 316.32(60.20,33.83) 293.82(63.03,53.31) 549.23(30.90,24.47) 469.28(40.95,36.76)
IBM k75 (2877.51) 3121.35(-8.47,-12.82)4017.92(-39.63,-40.95)5170.69(-79.69,-80.59)3738.34(-29.91,-30.69)
okgen (323.06) 323.06(0,0) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00)

Table 5.SatElite results

6 Conclusions

Eliminating redundant clauses in SAT instances during a pre-treatment step in order
to speed up the subsequent satisfiability checking process is a delicate matter. Indeed,
redundancy checking is intractable in the worst case, and some redundant information
can actually help to solve the SAT instances more efficiently. In this paper, we have
thus proposed and experimented a two-levels trade-off. We rely on the efficiency al-
beit incomplete character of the unit propagation algorithm to get a fast pre-treatment
that allows some -but not all- redundant clauses to be detected. We have shown from
an experimental point of view the efficiency of a powerful weight-based heuristics for
redundancy extraction under unit propagation. Such a pre-treatment can be envisioned
as a compilation process that allows subsequent faster operations on the instances. In-
terestingly enough, the combined computing time spent by such a pre-treatment and
the subsequent SAT checking often outperforms the SAT checking time for the initial
instance on very difficult instances.

This piece of research opens other interesting perspectives. For example, such a
pre-processing step can play a useful role in the computation of minimally inconsis-
tent subformulas (MUSes) [27]. Also, we have focused on binary and Horn fragments
as polynomial fragments. Considering other fragments likee.g. the reverse Horn and
renamable Horn could be a fruitful path for future research.

Acknowledgments

This research has been supported in part by the EC under a Feder grant and by the
Région Nord/Pas-de-Calais.

References

1. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiabil-
ity problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI’92). (1992) 440–446

2. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of the ACM5(7) (1962) 394–397

3. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC’01).
(2001) 530–535

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the Sixth International
Conference on Theory and Applications of Satisfiability Testing (SAT’03). (2003) 502–518

5. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT
formulae. In: Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI’01). (2001) 248–253

6. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03).
(2003) 1173–1178

7. Liberatore, P.: The complexity of checking redundancy ofCNF propositional formulae. In:
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI’02). (2002)
262–266

8. Grégoire,́E., Ostrowski, R., Mazure, B., Saı̈s, L.: Automatic extraction of functional depen-
dencies. In: Proceedings of the Seventh International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT’04). (2004) 122–132

9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third
Annual ACM Symposium on Theory of Computing, New York (USA),Association for Com-
puting Machinery (1971) 151–158

10. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput.1 (1972)
146–160

11. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow
problems. SIAM J. Comput.5 (1976) 691–703

12. Dowling, W.H., Gallier, J.H.: Linear-time algorithms for testing satisfiability of propositional
horn formulae. Journal of Logic Programming (1984) 267–284

13. Dubois, O., André, P., Boufkhad, Y., Carlier, Y.: SAT vs. UNSAT. In: Second DIMACS im-
plementation challenge: cliques, coloring and satisfiability. Volume 26 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American Mathematical Society
(1996) 415–436

14. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’97). (1997) 366–371

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimina-
tion. In: Proceedings of the Eighth International Conference on Theory and Applications of
Satisfiability Testing (SAT’05). (2005) 61–75

16. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04). (2004) 276–291

17. Zhang, W.: Configuration landscape analysis and backbone guided local search: Part i: Sat-
isfiability and maximum satisfiability. Artificial Intelligence158(1) (2004) 1–26

18. Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proceedings of the
Workshop on Theory and Applications of Satisfiability Testing (SAT’01), Boston University,
Massachusetts, USA (2001)

19. Ostrowski, R., Mazure, B., Saı̈s, L., Grégoire,É.: Eliminating redundancies in SAT search
trees. In: Proceedings of the 15th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’2003), Sacramento (2003) 100–104

20. Darras, S., Dequen, G., Devendeville, L., Mazure, B., Ostrowski, R., Saı̈s, L.: Using Boolean
constraint propagation for sub-clauses deduction. In: Proceedings of the Eleventh Interna-
tional Conference on Principles and Practice of ConstraintProgramming (CP’05). (2005)
757–761

21. Boufkhad, Y., Roussel, O.: Redundancy in random SAT formulas. In: Proceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI’00). (2000) 273–278

22. Liberatore, P.: Redundancy in logic i: CNF propositional formulae. Artificial Intelligence
163(2) (2005) 203–232

23. Selman, B., Kautz, H.A.: Knowledge compilation using horn approximations. In: Proceed-
ings of the Ninth National Conference on Artificial Intelligence (AAAI’91). (1991) 904–909

24. del Val, A.: Tractable databases: How to make propositional unit resolution complete through
compilation. In: Proceedings of the 4th International Conference on Principles of Knowledge
Representation and Reasoning (KR’94). (1994) 551–561

25. Marquis, P.: Knowledge compilation using theory prime implicates. In: Proceedings of the
14th International Joint Conference on Artificial Intelligence (IJCAI’95), Montréal, Canada
(1995) 837–843

26. Mazure, B., Marquis, P.: Theory reasoning within implicant cover compilations. In: Proceed-
ings of the ECAI-96 Workshop on Advances in Propositional Deduction, Budapest, Hungary
(1996) 65–69

27. Grégoire,́E., Mazure, B., Piette, C.: Extracting MUSes. In: Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI’06), Trento, Italy (2006) 387–391

