Eliminating redundant clauses in SAT instances

Olivier Fourdrinoy EricGr’egoire Bertrand Mazure Lakhdar Sais

CRIL CNRS & IRCICA
Université d’Artois
Rue Jean Souvraz SP18
F-62307 Lens Cedex France
{fourdrinoy, gregoire, mazure, sa@cril.fr

Abstract. In this paper, we investigate to which extent the elimimatba class
of redundant clauses in SAT instances could improve theiaffiy of modern
satisfiability provers. Since testing whether a SAT instatioes not contain any
redundant clause is NP-complete, a logically incompletegmlynomial-time
procedure to remove redundant clauses is proposed as eeptawent of SAT
solvers. It relies on the use of the linear-time unit propiagaechnique and often
allows for significant performance improvements of the sgoent satisfiability
checking procedure for really difficult real-world instasc

1 Introduction

The SAT problem, namely the issue of checking whether a sBoofean clauses is
satisfiable or not, is a central issue in many computer seiand artificial intelligence
domains, like e.g. theorem proving, planning, non-monicteeasoning, VLSI correct-
ness checking and knowledge-bases verification and viaiddthese last two decades,
many approaches have been proposed to solve hard SAT iastdased on -logically
complete or not- algorithms. Both local-search technideas [1]) and elaborate vari-
ants of the Davis-Putnam-Loveland-Logemann’s DPLL proced2] (e.g. [3,4]) can
now solve many families of hard huge SAT instances from vaald applications.

Recently, several authors have focused on detecting pessiien structural infor-
mation inside real-world SAT instances (e.g backbonesdkdoors [6], equivalences
[7] and functional dependencies [8]), allowing to explaimdamprove the efficiency
of SAT solvers on large real-world hard instances. Esplgcidlde conjunctive normal
form (CNF) encoding can conduct the structural informatidthe initial problem to
be hidden [8]. More generally, it appears that many realldvBAT instances contain
redundant information that can be safely removed in theestivad equivalent but easier
to solve instances could be generated.

In this paper, we investigate to which extent the eliminattba class of redundant
clauses in real-world SAT instances could improve the efficy of modern satisfia-
bility provers. A redundant clause is a clause that can bevedhfrom the instance
while keeping the ability to derive it from the remaining pafrthe instance. Since test-
ing whether a SAT instance does not contain any redundamelis NP-complete [7],
an incomplete but polynomial-time procedure to remove neldnt clauses is proposed

as a pre-treatment of SAT solvers. It relies on the use ofitieat time unit propaga-
tion technique. Interestingly, we show that it often alldies significant performance
improvements of the subsequent satisfiability checkinggdare for hard real-world
instances.

The rest of the paper is organized as follows. After basieckdgand SAT-related
concepts are provided in Section 2, Section 3 focuses omdzahey in SAT instances,
and the concept of redundancy modulo unit propagation igldped. In Section 4,
our experimental studies are presented and analyzed.elelairks are discussed in
Section 5 before conclusive remarks and prospective fuasearch works are given in
the last Section.

2 Technical background

Let £ be a standard Boolean logical language built on a finite sBbofean variables,
denoted, y, etc. Formulas will be denoted using letters such &ets of formulas will
be represented using Greek letters lik@r 3. An interpretation is a truth assignment
function that assigns values froftrue, false} to every Boolean variable. A formula
is consistent or satisfiable when there is at least one irg&on that satisfies it, i.e.
that makes it becom&-ue. Such an interpretation is called a model of the instance.
An interpretation will be denoted by upper-case letters fikand will be represented
by the set of literals that it satisfies. Actually, any forauh £ can be represented
(while preserving satisfiability) using a set (interpretexia conjunction) of clauses,
where a clause is a finite disjunction of literals, where exdit is a Boolean variable
that can be negated. A clause will also be represented btliermed with its literals.
Accordingly, the size of a claugds given by the number of literals that it contains, and
is noted|c]|.

SAT is the NP-complete problem [9] that consists in checkitgther a finite set
of Boolean clauses of is satisfiable or not, i.e. whether there exists an integpicet
that satisfies all clauses in the set or not.

Logical entailment will be noted using tite symbol: letc be a clause of, X = ¢
iff cis true in all models ofX. The empty clause will represent inconsistency and is
noted.L.

In the following, we often refer to the binary and Horn fragrteeof £ for which
the SAT issue can be solved in polynomial time [10-12]. A bindause is a clause
formed with at most two literals whereas a Horn clause is asglaontaining at most
one positive literal. A unit clause is a single literal claus

In this paper, théJnit Propagation algorithm (in short UP) plays a central role.
UP recursively simplifies a SAT instance by propagatingotighout the instance- the
truth-value of unit clauses whose variables have beendjrassigned, as shown in the
algorithm 1.

We define entailment modulo Unit Propagation, notedp, the entailment rela-
tionship= restricted to the Unit Propagation technique.

Definition 1. Let X' bea SAT instance and ¢ bea clause of £, X =y p cif and only if
Y AN—clEyplifandonlyif UP(X A —c) contains an empty clause.

Algorithm 1 : Unit_Propagation

Input: a SAT instance?
Output: an UP-irredundant SAT instandéequivalent ta¥’ w.r.t. satisfiability s.tI” does
not contain any unit clause

1 begin

2 if X7 contains an empty clause then return X
3 else

4 if X contains a unit clause ¢ = {I} then
5 remove all clauses containiigrom X;
6 foreachc € X' st. -l € cdo

7 L c+—c\ {~l}

8 return Unit_Propagationf);

9 else

10 | retun 3

11 end

Clearly, =y p is logically incomplete. It can be checked in polynomialeisince
UP is a linear-time process. Let andcs be two clauses of. Whene; C ¢, we have
thate;, | ce andey (resp.cz) is said to subsume (resp. be subsumeddayyesp.c;).
A clausec; € X is subsumed itk iff there existscs € X' s.t.c; # ¢ andes subsumes
c1. X is closed under subsumption iff for alle X, ¢ is not subsumed ity

3 Redundancy in SAT instances

Intuitively, a SAT instance is redundant if it contains gahat can be logically inferred
from it. Removing redundant parts of SAT instances in ord@njprove the satisfiability
checking process entails at least two fundamental issues.

— First, it is not clear whether removing such parts will ma&#siiability checking
easier, or not. Some redundant information can actuallyawgthe efficiency of
SAT solvers.

— Itis well-known that checking whether a SAT instance isdredant or not is itself
NP-complete [7]. It is thus as hard as solving the SAT ingatself.

In order to address these issues, we consider an incomidetétlam that allows
some redundant clauses to be detected and that remainsopoinintuitively, we
should not aim at removing all kinds of redundant clausemétypes of clauses are
expected to facilitate the satisfiability testing sincejthelong to polynomial fragments
of SAT, especially the binary and the Horn ones. Accordingly propose an approach
that appears to be a two-levels trade-off: on the one handuwe redundancy de-
tection and removal algorithm that is both fast and inconepl®n the other hand, we
investigate whether it proves useful to eliminate reduntarary and Horn clauses or
not.

Algorithm 2 : Compute an UP-irredundant formula

Input: a SAT instance?
Output: an UP-irredundant SAT instandéequivalent ta¥’ w.r.t. satisfiability

1 begin
2 I«——X;
3 forall clausesc = {l1,...,l,} € X sorted according to their decreasing sizes do
4 if UP(I'\ {c} U{=l1} U...U{~l,}) contains an empty clause then
5 L I — F\{C} X
6 return I°;
7 end
Definition 2.

Let X bea SAT instanceand let ¢ € X, cisredundantin X' if and only if X'\ {c} |= c.

Clearly, redundancy can be checked using a refutation droee Namelye is re-
dundantiny iff X\ {c} U {—c} =L. We thus strengthen this refutation procedure by
replacing= by =y p in order to get an incomplete but polynomial-time redunganc
checking approach.

Definition 3.
Let X be a SAT instance and let ¢ € X, ¢ is UP-redundant in X' if and only if X'\

{e} Fup e

Accordingly, checking the UP-redundancywih X' amounts to propagate the op-
posite of every literal of throughout™ \ {c}.

Let us consider Example 1, as depicted below. In this exantgkeeasy to show
thatwV z is UP-redundant iz, while it is not subsumed i Let us conside£\ {wV
x} A—w A —z. Clearly,w V —y andz V -z reduce to-y A -z, respectively. Propagating
these two literals generates a contradiction, showingithatr is UP-redundant irt.
On the other handy V z is clearly not subsumed &' since there is no other clause
cdeXstcd Ce

Example 1.
wV T
yVz
Y=qwV-y
TV -z

Accordingly, in Algorithm 2, a (basic) UP pre-treatment issdribed and can be
motivated as follows. In the general case, there exists silpigexponential number of
different sets of irredundant formulas that can be exthfrtam the initial instance. In-
deed, irredundancy and minimally inconsistency coincidemsatisfiable formulas [7].
Clearly, the specific resulting simplified instance deladtby the Algorithm 1 depends
on the order according to which clauses fréimare considered. As small-size clauses

allow one to reduce the search space in a more dramatic mdrarelonger ones, we
have implemented a policy that checks longer clauses farn@ahcy, first. Accord-
ingly, this amounts to considering the clausedb$et according to their decreasing
sizes.

Example 2. Let X be the following SAT instance:

wVax
wVaxVyVz
wV Yy
TV —z

P—

— not considering clauses according to their decreasing,skag starting with the
w V z clause, the resulting UP-irredundant set of formulas wbetd

wVaVyVz
In=<¢wVv-y
TV -z

— whereas Algorithm 1, which considexsv x V y V z first, delivers for this example
a different -but same size- final sBf of clauses.

wVzx
In=<qwV-y
xV -z

Starting with larger size clauses allows to obtain the sesall in terms of number
of clauses and also in terms of number of literals. We aretbateall subsumed clauses
are removed in this way and only the subsuming clauses aseqer because the
larger ones are first tested. As this example illustratdssismed clauses are removed,
leading to shorter clauses iy, which is thus more constrained and, to some extent,
easier to solve.

Property 1. Let X be a CNF formula. I’ is a formula obtained fronX’ by applying
Algorithm 2 thenX” is closed under subsumption.

Proof. Suppose that there exist two clausemdc’ of X’ such that’ subsumes. We
can deduce that’| < |c|. As the clauses aE' checked for UP-redundancy are ordered
according to their decreasing sizes, we deducedhstUP-redundant. Consequently,
c ¢ 3, which contradicts the hypothesis. O

The converse of Property 1 is false. Indeed, the formuta I, U{(yVe), (zV—-e)}
is closed under subsumption but is not UP-irredundant.

Clearly, in the best cases, the pre-treatment could allowo et rid of all non-
polynomial clauses, and reduce the instance into a polyaldraigment. Since the size
of the instances can be huge, we investigate whether poliahfnagments ofC should
be protected from redundancy checking or not. As a compastady, several possi-
ble fragments have been considered for UP-redundancy iciteekamely’, all non

T T T T
10000 | + o+ + ++ H;*// _
4 +
+ . o #{#* *
+ w{ +
0 5
g 1000 . N . + b
k) + o +,
< ++ e
£ R A
3 * + A
5 .
8 100 ¢ * F 3]
c + 4 S
9
2 + %,fr +
12 + ,j‘+
g + ﬁ,ﬁ +
'E #
- A m
10 by
¥ t+ . +
+ 4+
A
A+ o+
T + + +
1 < 1 1 1 1
1 10 100 1000 10000

Time in seconds for simplifying and solving (logscale)

Fig. 1. Results for ther00 tested instances

Horn clauses front, all non-binary clauses fro®y, and all non-Horn and non-binary
clauses from>.

Also, we have experimented an approach trying to maximigatimber of UP trig-
gerings. The intuition is as follows. A clause that contditesals that occur in many
binary clauses will lead to a cascade of UP steps. For exaiepte= = vV y vV z. When
x occurs in several binary clauses and when we check whettseredundant using
UP, each such binary clause will be simplified into a unit slguecursively leading
to other UP steps. Accordingly, we define a weighassociated to a clause noted
w(c) as the sum of the weights of each literal @fwhere the weight of a literal is
given by the number of binary clauses to which it belongs.usnote that in order
for a UP propagation step to occur when a clagse X' is checked for redundancy
using UP, there must be another clause X' s.t.|c; — {¢1 Nc2}| = 1. Clearly, when
|ca — {e1 Nee}| = 0, ¢q is UP-redundant. Since computing and recording this neces-
sary condition can be resource-consuming, we have impl&demmore restrictive and
easier-to-compute criterion based on the aforementiorgghis. Wherr; is a binary
clause, the previous condition is satisfied if and onlyif(to be checked for redun-
dancy) contains a literal froms,. Accordingly, whenw(c) = 0, ¢ is not checked for
redundancy. This weight-heuristic has been mixed with &palllowing clauses from
polynomial classes (binary, Horn, binary and Horn) to betgmted from redundancy
checking.

4 Experimental results

We have experimented the aforementioned UP-based pitearatiextensively on the
last SAT competitions benchmarkis ¢ p: / / www. sat conpet i ti on. or g). We have
tested more thaf00 SAT instances that stem from various domains (industréad; r
dom, hand-made, graph-coloring, etc.). Three of the wiméthe last three compe-
titions, namely ZChaff, Minisat and SatElite have beendekt as SAT solvers. All
experiments have been conducted on Pentium 1V, 3Ghz umler fiedora Core 4. The
complete list of our experimental data and results are avigilat:

http://wwmv. cril.fr/~fourdrinoy/elimnatingredundant cl auses. htmnl

First, we have run the three SAT solvers on all benchmarkiating their com-
puting times to solve each instance. A time-out was set touBshdhen, we have run
the UP pre-treatment on those benchmarks and collectedthetsimplification run-
times and the subsequent run-times spent by each of theradatmned solvers on the
simplified instances. More precisely, we have experimeatseries of different forms
of UP pre-treament. In the first one, we have applied the WRwdancy removing
technique on all clauses. In the other ones, non-binary,Hhamm clauses have been
targeted, successively. We have also targeted clausearthatither Horn nor binary.
Finally, all those experimentations have been replayedgusie additional triggering
heuristicw(c) > 0.

In Fig.1, we show the gain on &@lh0 tested instances. On theaxis, we represent
the time for simplifying and solving an instance with its bpslicy. On they-axis the
best time for solving the initial -not yet simplified- instanis given. Accordingly, the
line of centers represents the borderline of actual gastahtes that are above the line
of centers benefit from the simplification policy. Clearhistfigure shows that our tech-
nique is best employed for difficult instances requiringggaamounts of CPU-time to
solve them. Indeed, for those instances we obtain signtfigains most often. In par-
ticular, all the dots horizontally aligned &0000 seconds on thg-axis represent SAT
instances that can not be solved -by current solvers- witb®diredundant simplifica-
tion.

Instances short name| #C #V
gensys-icl004.shuffled-as.sat05-3825.cnf gensys 15960 | 2401
rand net60-30-5.miter.shuffled.cnf randnet 10681 | 3000
f3-b25-s0-10.cnf f3-b25 12677 | 2125
ip50.shuffled-as.sat03-434.cnf ip50 214786 | 66131
f2clk_40.shuffled-as.sat03-424.cnf f2clk 80439 | 27568
f15-b3-s3-0.cnf f15-b3 469519 | 132555
IBM _FV_2004rule batch23 SAT_dat.k45.cnf | IBM _k45 381355 | 92106
IBM _FV_2004 rule batch22 SAT dat.k70.cnf | IBM_k70 327635 | 63923
f15-b2-s2-0.cnf f15-b2 425316 | 120367
IBM _FV_2004rule batch22 SAT dat.k75.cnf | IBM_k75 979230 | 246053
okgen-c2000-v400-s553070738-553070738.¢cnbkgen 2000 400

Table 1. Some typical instances

Not surprisingly, our experiments show us that applyingdimeplification method
on all clauses is often more time-consuming than focusingampolynomial clauses
only and delivers the smallest simplified instances. Howetiés gain in size does not
lead to a systematic run-time gain in solving the instantegduding the simplifica-
tion time. Indeed, these polynomial clauses might allowféinient resolution of these
instances.

Globally, our experiments show us that the best policy ciash applying the
weight-based heuristic on all clauses.

In Tables 1 to 5, a more detailed typical sample of size-rédnof instances by
the several aforementioned methods is provided. In Tableelprovide for each in-
stance its numbers of clauseg) and variables#V’) and a short name to facili-
tate the presentation of results. In Table 2, the CPU timesgosds ;) needed to
simplify the instance is given, together with the obtainze seduction, expressed in
number of clauses#c,) and expressed in percents. In the second column results are
given for a policy that considers all clauses for simplificat In the next one$forn,
Bin, Horn& Bin represent the classes that are protected from simplificatioe last
columns provide the results for the same policies augmemitedhe weight heuristics.

In Tables 3 to 5, satisfiability checking run-times are pded for the same in-
stances, using Zchaff, Minisat and SatElite, respectivigly means “time-out”. In the
first column,T}, is the CPU-time to solve the initial instance. In the subseqaolumns,
the CPU-time to solve the simplified instan@@) is given together with the efficiency
gains with respect to satisfiability checkirfg;, and %, being the gains without and
with taking the simplification run-time into account.

5 Related work

Introducing a fast -polynomial time- pre-processing stegide logically complete SAT
solvers is not a new idea by itself. Mainly, C-SAT [13] was yaded with a pre-
processor that made use a form of bounded resolution proeemtumputing all re-
solvents whose size are smaller than the size of their paréantthat time C-SAT
was the most powerful solver to solve rand@rRSAT instances. Satz uses the same
technique, but with a resolvent size limited to three [14écBntly, Niklas Eén and
Armin Biere have introduced a variable elimination techugqvith subsumption, self-
subsuming resolution and variable elimination by subtitu[15] as a pre-processing
step for modern SAT solvers, extending a previous pre-smreNiVER by [16]. In
[17], an algorithm is described that maintains a subsumgiiee CNF clauses database
by efficiently detecting and removing subsumption as thasga are being added. An
interesting path for future research would consist in cammgaour approach with those
other pre-processors from both theoretical and experiahpotnts of view .

Due to its linear-time character, the unit propagationathm has been exploited in
several ways in the context of SAT, in addition to being a keyponent of DPLL-like
procedures. For example, C-SAT and Satz used a local treatihagng important steps
of the exploration of the search space, based on UP, to derpled literals and detect
local inconsistencies, and guide the selection of the remxable to be assigned [13, 14].
In [18], a double UP schema is explored in the context of SAVisg. In [19, 8], UP

No Restriction Horn Binary Horn& Binary
instances | T #c,-(%) Ty #c,. (%) T, #c,-(%) Ty #c,.(%)
gensys 1.26 2861(17.92) 1.18 2208(13.83)1.21 2560(16.04)1.13 2171(13.60)
randnet | 1.80 608(5.69) | 0.62 178(1.66)| 0.62 0(0) 0.30 0(0)
3-b25 1.66 1502(11.84) 1.04 926(7.30)| 1.64 1502(11.84)1.03 926(7.30)
ip50 65.06 1823(0.84)| 22.02 504(0.23)|14.11 194(0.09)| 9.10 110(0.05)
f2clk 6.39 344(0.42) | 2.08 119(0.14)| 1.29 77(0.09) | 0.75 54(0.06)
f15-b3 359.52 55816(11.88)116.73 14167(3.01$5.38 1010(0.21)37.62 640(0.13)
IBM_k45 |53.26 32796(8.59) 10.33 2122(0.55) 6.22 717(0.18)| 5.03 715(0.18)
IBM k70 |36.68 22720(6.93) 5.36 4628(1.41) 3.81 0(0) 2.78 0(0)
f15-b2 306.06 50717(11.92)100.14 12909(3.0347.74 979(0.23)|34.00 609(0.14)
IBM k75 |172.47 116841(11.98)10.14 5597(0.57)24.64 3912(0.39)22.34 3911(0.39)
okgen 0.00 0(0) 0.00 0(0) 0.00 0(0) 0.00 0(0)

Weightingw(c) > 0

No Restriction Horn Binary Horn & Binary
T #e,. (%) Ts #c.(%) | Ts #c (%) | Ts #c (%)
gensys 0.65 2560(16.04) 0.63 2171(13.6()0.64 2560(16.04)0.64 2171(13.60)
randnet | 1.66 514(4.81) | 0.58 148(1.38)| 0.62 0(0) 0.30 0(0)
3-b25 0.21 60(0.47) | 0.15 44(0.34) | 0.21 60(0.47) | 0.14 44(0.34)
ip50 53.95 1823(0.84)| 19.43 504(0.23)|14.24 194(0.09)| 9.21 110(0.05)
f2clk 6.06 267(0.33) | 1.96 100(0.12)| 1.30 77(0.09) | 0.80 54(0.06)
f15-b3 229.84 24384(5.19) 83.46 6393(1.36)55.69 1010(0.21)37.72 640(0.13)
IBM_k45 |34.53 11049(2.89) 10.36 2122(0.55) 6.23 717(0.18)| 4.98 715(0.18)
IBM k70 | 15.25 11464(3.49) 5.36 4616(1.40) 3.77 0(0) 2.77 0(0)
f15-b2 209.55 22217(5.22) 77.22 5709(1.34)51.04 979(0.23)|33.32 609(0.14)
IBM k75 |125.26 39640(4.04) 38.15 5597(0.57)26.02 3912(0.39)22.32 3911(0.39)
okgen 0 0(0) 0.00 0(0) 0.00 0(0) 0.00 0(0)

Table 2. Simplification time and size reduction

has been used as an efficient tool to detect functional depeies in SAT instances.
The UP technique has also been exploited in [20] in order tivelsubclauses by using
the UP implication graph of the SAT instance, and speed upets@ution process.

Bailleux, Roussel and Boufkhad have studied how clausasdahcy affects the
resolution of randonk-sat instances [21]. However, their study is specific to cemd
instances and cannot be exported to real-world ones. Mergthey have explored
redundancy and not UP-redundancy; their objective beingeasure the redundancy
degree of randor8-SAT instances at the crossover point. From a complexitytpai
view, a full study of redundancy in the Boolean frameworkiiseg in [22].

To some extent, our approach is also close to compilatidmiqaes [23—26] where
the goal is to transform the Boolean instances into equitaleiteasier ones to check
or to infer from. The idea is to allow much time to be spent ie fire-processing
step, transforming the instance into a polynomial-size mestance made of clauses
belonging polynomial-time fragments af, only. Likewise, our approach aims to re-
duce the size of the non-polynomial fragments of the ingtanklowever, it is a partial
reduction since all clauses belonging to non-polynomidjfnents are not necessary
removed. Moreover, whereas compilation techniques allpassibly exponential time
to be spent in the pre-processing step, we make sure thateyarpcessing technique
remains a polynomial-time one.

No Restriction Horn Binary Horn & Binary
instances T, T (Y%op.%4) T (Yop.%4) T (Y%op.%4) T (%op.%04)
gensys (3418.17847.1(16.70,16.66) 3353.69(1.88,1.85)] 1988.37(41.82,41.79) 3683.58(-7.76,-7.79)
randnet (1334.19)942.15(29.38,29.24) 1067.01(20.02,19.97) 1334.19(0,-0.04) 1334.19(0,-0.02)
f3-b25 (790.96) 137.26(82.64,82.43) 155.32(80.36,80.23) 134.91(82.94,82.73) 157.44(80.09,79.96)
ip50 (2571.18) 675.11(73.74,71.21) 474.64(81.53,80.68) 1023.82(60.18,59.63) 1945.87(24.31,23.96)
f2clk (6447.19)4542.32(29.54,29.449457.25(-46.68,-46.72)3978.14(38.29,38.27) 3848.02(40.31,40.30)
f15-b3 (7627.95)5620.25(26.32,21.6pP926.38(61.63,60.10)10157.9(-33.16,-33.89) 2419.52(68.28,67.78)
IBM _k45 (5962.46) 2833.1(52.48,51.59) 3656.05(38.68,38.5() 3244.61(45.58,45.47) 4751.79(20.30,20.22)
IBM _k70 (TO)| 514.8360,00) 5377.9160,00) TO(--) TO(=-)
f15-b2 (TO) 2287.7360,00) 8891.160,00) TO(--) 3969.2760,00)
IBM k75 (TO) TO(--) TO(--) TO(--) TO(--)
okgen (1309.66) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00)

Weightingw(c) > 0

No Restriction Horn Binary Horn & Binary

T, (%, %) T, (% %) T, (% %) T, (% %)
gensys (3418.171986.98(41.87,41.853896.93(-14.00,-14.0P)1967.22(42.44,42.42) 3873.89(-13.33,-13.35)
randnet (1334.19)555.13(58.39,58.26) 614.75(53.92,53.87]) 1334.19(0,-0.04) 1334.19(0,-0.02)
f3-b25 (790.96) 839.54(-6.14,-6.16) 811.37(-2.58,-2.59)| 791.97(-0.12,-0.15)| 813.05(-2.79,-2.81)
ip50 (2571.18) 708.81(72.43,70.33) 465.13(81.90,81.15) 1091.54(57.54,56.99) 1958(23.84,23.48)
f2clk (6447.19)5196.02(19.40,19.3115766.78(10.55,10.52) 4042.8(37.29,37.27) 3965.68(38.48,38.47)
15-b3 (7627.95) TO(—o0,—o0) TO(—00,—0) 10024(-31.41,-32.14) 2448.27(67.90,67.40)
IBM _k45 (5962.46)4447.15(25.41,24.88)3698.1(37.97,37.80] 3283.2(44.93,44.83) 4925.58(17.39,17.30)
IBM _k70 (TO)| 4131.5860,00) 5564.560,00) TO(--) TO(=-)
f15-b2 (TOY 4456.2460,00) 2880.1560,00) TO(--) 4028.0460,00)
IBM k75 (TO) TO(--) TO(--) TO(--) TO(--)
okgen (1309.66) 1309.66(0,0) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00)

Table 3.Zchaff results

No Restriction Horn Binary Horn & Binary
instances T, T (%op, % g) T (%, %4) T (Yop,%q) Tr(%op,%4)
gensys (7543.42)4357.66(42.23,42.21)) 7078.84(6.15,6.14)| 4722.35(37.39,37.39) 7370.48(2.29,2.27)
randnet (41.15) 11.00(73.26,68.87)| 35.12(14.66,13.14)| 41.15(0,-1.52) 41.15(0,-0.73)
3-b25 (755.90) 225.45(70.17,69.95) 246.97(67.32,67.18) 233.73(69.07,68.86) 243.39(67.80,67.66)
ip50 (88.43) 61.95(29.94,-43.62)| 138.90(-57.06,-81.97) 64.47(27.09,11.13)| 60.13(31.99,21.70)
f2clk (280.88) 290.41(-3.39,-5.66)| 188.53(32.87,32.13) 325.87(-16.01,-16.44) 274.77(2.17,1.90)
15-b3 (875.37) 531.31(39.30,-1.76)| 561.40(35.86,22.53) 759.43(13.24,6.91)| 555.47(36.54,32.24)
IBM _k45 (3940.82) 3729.01(5.37,4.02)| 3568.43(9.44,9.18)| 3625.13(8.01,7.85)| 3541.57(10.13,10.00)
IBM_k70 (643.67) 76.16(88.16,82.46)| 527.58(18.03,17.20 643.67(0,-0.59) 643.67(0,-0.43)
f15-b2 (516.36) 334.07(35.30,-23.96) 257.93(50.04,30.65) 452.94(12.28,3.03)| 369.69(28.40,21.81)
IBM _k75 (4035.72)5096.73(-26.29,-30.5(9324.08(-56.70,-57.699782.49(-43.28,-43.893534.54(-37.13,-37.69)
okgen (46.43) 46.43(0,-0.02) 46.43(0,-0.01) ? 46.43(0,-0.01) 46.43(0,-0.01)

Weightingw(c) > 0

No Restriction Horn Binary Horn & Binary

Tr(%pv%g) Tr(%pv%g) Tr(%pv%y) Tr(%pv%y)
gensys (7543.42)4742.55(37.12,37.12) 7434.11(1.44,1.44)| 4615.46(38.81,38.80) 7610.16(-0.88,-0.89)
randnet (41.15) 27.00(34.38,30.33)| 25.60(37.79,36.36)| 41.15(0,-1.52) 41.15(0,-0.73)
3-b25 (755.90) 745.80(1.33,1.30) | 738.83(2.25,2.23) | 773.19(-2.28,-2.31)| 779.37(-3.10,-3.12)
ip50 (88.43) 54.28(38.61,-22.39)| 138.28(-56.35,-78.33) 67.17(24.04,7.93) | 52.71(40.39,29.97)
f2clk (280.88) 224.82(19.95,17.79) 221.20(21.24,20.54) 299.23(-6.53,-6.99)| 289.93(-3.22,-3.50)
15-b3 (875.37) 543.86(37.87,11.61) 687.06(21.51,11.97) 751.79(14.11,7.75)| 498.80(43.01,38.70)
IBM_k45 (3940.82) 1826.6(53.64,52.77) 3324.82(15.63,15.36) 3637.35(7.70,7.54)| 3714.29(5.74,5.62)
IBM_k70 (643.67) 31.51(95.10,92.73)| 518.48(19.44,18.61 643.67(0,-0.58) 643.67(0,-0.43)
f15-b2 (516.36) 378.88(26.62,-13.95) 155.70(69.84,54.89) 483.39(6.38,-3.49) | 371.51(28.05,21.59)
IBM_k75 (4035.72) 4202.16(-4.12,-7.22) 5782.1(-43.27,-44.21)5927.94(-46.88,-47.585655.36(-40.13,-40.68)
okgen (46.43 46.43(0,0) 46.43(0,-0.00) 46.43(0,-0.00) 46.43(0,-0.00)

Table 4. Minisat results

No Restriction Horn Binary Horn & Binary
instances T, T (%op, % g) T (%, %4) T (Yop,%q) Tr(%op,%4)
gensys (5181.22) 4672.43(9.81,9.79)[7879.9(-52.08,-52.10)) 5146.42(0.67,0.64)[7964.11(-53.71,-53.73)
randnet (131.01) 173.97(-32.79,-34.16) 110.02(16.01,15.54 131.01(0,-0.48) 131.01(0,-0.23)
f3-b25 (1664.94)2935.61(-76.31,-76.41)926.54(-15.71,-15.7Y2934.61(-76.25,-76.35)924.24(-15.57,-15.63)
ip50 (79.45)110.37(-38.91,-120.79)43.30(-80.36,-108.08)50.33(-89.20,-106.9}) 58.31(26.60,15.15)
f2clk (323.15) 270.61(16.25,14.28] 291.93(9.66,9.01) | 453.03(-40.19,-40.59)518.12(-60.33,-60.56)
15-b3 (833.17)) 244.23(70.68,27.53) 976.24(-17.17,-31.18) 281.31(66.23,59.58] 760.59(8.71,4.19)
IBM _k45 (7829.02) 4111.24(47.48,46.80) 4382.78(44.01,43.88) 3457.46(55.83,55.75) 3314.55(57.66,57.59)
IBM_k70 (712.10) 225.22(68.37,63.22) 757.96(-6.43,-7.19) 712.10(0,-0.53) 712.10(0,-0.39)
f15-b2 (794.85) 261.70(67.07,28.56) 575.30(27.62,15.02) 556.98(29.92,23.91) 441.52(44.45,40.17)
IBM k75 (2877.51)3714.45(-29.08,-35.03099.39(-42.46,-43.819505.93(-91.34,-92.203796.42(-31.93,-32.71)
okgen (323.06) 323.06(0,-0.00) r 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00)

Weightingw(c) > 0

No Restriction Horn Binary Horn & Binary

Tr(%pv%g) Tr(%pv%g) Tr(%pv%y) Tr(%pv%y)
gensys (5181.22) 5052.73(2.47,2.46)| 8046.2(-55.29,-55.3() 5163.37(0.34,0.33)|8231.05(-58.86,-58.87)
randnet (131.01) 63.00(51.91,50.63)| 130.23(0.59,0.14) 131.01(0,-0.47) 131.01(0,-0.23)
f3-b25 (1664.94) 1701.57(-2.20,-2.21) 1698.4(-2.00,-2.01)| 1745.22(-4.82,-4.83) 1723.25(-3.50,-3.51)
ip50 (79.45)113.38(-42.70,-110.6].136.52(-71.82,-96.28)146.68(-84.61,-102.54) 60.46(23.90,12.30)
f2clk (323.15) 313.56(2.96,1.09) | 238.38(26.23,25.62) 466.84(-44.46,-44.86)503.75(-55.88,-56.13)
15-b3 (833.17) 675.88(18.87,-8.70)|1276.87(-53.25,-63.2}) 271.53(67.40,60.72) 733.52(11.96,7.43)
IBM _k45 (7829.02) 5836.14(25.45,25.01)) 4364.69(44.24,44.11) 3341(57.32,57.24) | 3311.19(57.70,57.64)
IBM_k70 (712.10) 406.32(42.94,40.79) 740.12(-3.93,-4.68) 712.10(0,-0.53) 712.10(0,-0.38)
f15-b2 (794.85) 316.32(60.20,33.83) 293.82(63.03,53.31) 549.23(30.90,24.47) 469.28(40.95,36.76)
IBM k75 (2877.51) 3121.35(-8.47,-12.824017.92(-39.63,-40.95170.69(-79.69,-80.593738.34(-29.91,-30.69)
okgen (323.06) 323.06(0,0) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00)

Table 5. SatElite results

6 Conclusions

Eliminating redundant clauses in SAT instances during atyg@ment step in order
to speed up the subsequent satisfiability checking prosessiéelicate matter. Indeed,
redundancy checking is intractable in the worst case, antegedundant information
can actually help to solve the SAT instances more efficieftthis paper, we have
thus proposed and experimented a two-levels trade-off. &yean the efficiency al-
beit incomplete character of the unit propagation algaritb get a fast pre-treatment
that allows some -but not all- redundant clauses to be d=tete have shown from
an experimental point of view the efficiency of a powerful glgibased heuristics for
redundancy extraction under unit propagation. Such angarhent can be envisioned
as a compilation process that allows subsequent fasteatimes on the instances. In-
terestingly enough, the combined computing time spent loh supre-treatment and
the subsequent SAT checking often outperforms the SAT ¢hgctkme for the initial
instance on very difficult instances.

This piece of research opens other interesting perspsctivee example, such a
pre-processing step can play a useful role in the computationinimally inconsis-
tent subformulas (MUSes) [27]. Also, we have focused ontyimad Horn fragments
as polynomial fragments. Considering other fragmentsdilge the reverse Horn and
renamable Horn could be a fruitful path for future research.

Acknowledgments

This research has been supported in part by the EC under a §edd and by the
Région Nord/Pas-de-Calais.

References

1.

10.

11.

12.

13.

14.

15.

Selman, B., Levesque, H.J., Mitchell, D.G.: A new method dolving hard satisfiabil-
ity problems. In: Proceedings of the Tenth National Confeeson Atrtificial Intelligence
(AAAI'92). (1992) 440-446

. Davis, M., Logemann, G., Loveland, D.W.: A machine progifar theorem-proving. Com-

munications of the ACM(7) (1962) 394-397

. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Mal5.: Chaff: Engineering an

efficient SAT solver. In: Proceedings of the 38th Design Awdtion Conference (DAC'01).
(2001) 530-535

. Eén, N., Sorensson, N.: An extensible SAT-solver. locBedings of the Sixth International

Conference on Theory and Applications of Satisfiabilitytfes(SAT’03). (2003) 502-518

. Dubois, O., Dequen, G.: A backbone-search heuristic ffarient solving of hard 3-SAT

formulae. In: Proceedings of the Seventeenth Interndtidmiat Conference on Atrtificial
Intelligence (IJCAI'01). (2001) 248-253

. Williams, R., Gomes, C.P., Selman, B.: Backdoors to ipiase complexity. In: Proceed-

ings of the Eighteenth International Joint Conference dtifidial Intelligence (IJCAI'03).
(2003) 1173-1178

. Liberatore, P.: The complexity of checking redundancZif~ propositional formulae. In:

Proceedings of the 15th European Conference on Artifictelligence (ECAI'02). (2002)
262-266

. Gr’egoireE., Ostrowski, R., Mazure, B., Sais, L.: Automatic extiacof functional depen-

dencies. In: Proceedings of the Seventh International €@ente on Theory and Applica-
tions of Satisfiability Testing (SAT'04). (2004) 122—-132

. Cook, S.A.: The complexity of theorem-proving procedurén: Proceedings of the Third

Annual ACM Symposium on Theory of Computing, New York (USA¥sociation for Com-
puting Machinery (1971) 151-158

Tarjan, R.E.: Depth first search and linear graph algmst SIAM J. Computl (1972)
146-160

Even, S., Itai, A., Shamir, A.: On the complexity of tirmlele and multicommodity flow
problems. SIAM J. Compub (1976) 691703

Dowling, W.H., Gallier, J.H.: Linear-time algorithmarftesting satisfiability of propositional
horn formulae. Journal of Logic Programming (1984) 267—284

Dubois, O., André, P., Boufkhad, Y., Carlier, Y.: SAT WNSAT. In: Second DIMACS im-
plementation challenge: cliques, coloring and satisfighNolume 26 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Scienceerfsan Mathematical Society
(1996) 415-436

Li, C.M., Anbulagan: Heuristics based on unit propagafor satisfiability problems. In:
Proceedings of the Fifteenth International Joint Confeeean Atrtificial Intelligence (13-
CAI'97). (1997) 366-371

Eén, N., Biere, A.: Effective preprocessing in SAT tigh variable and clause elimina-
tion. In: Proceedings of the Eighth International Confeeenn Theory and Applications of
Satisfiability Testing (SAT'05). (2005) 61-75

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasargable elimination resolution for
preprocessing SAT instances. In: Proceedings of the Sevetdrnational Conference on
Theory and Applications of Satisfiability Testing (SAT'042004) 276—291

Zhang, W.: Configuration landscape analysis and baekgaided local search: Part i: Sat-
isfiability and maximum satisfiability. Artificial Intelligncel581) (2004) 1-26

Le Berre, D.: Exploiting the real power of unit propagatiookahead. In: Proceedings of the
Workshop on Theory and Applications of Satisfiability Tegt{SAT’01), Boston University,
Massachusetts, USA (2001)

Ostrowski, R., Mazure, B., Sais, L., Gréegoige, Eliminating redundancies in SAT search
trees. In: Proceedings of the 15th IEEE International Gemfee on Tools with Artificial
Intelligence (ICTAI’2003), Sacramento (2003) 100-104

Darras, S., Dequen, G., Devendeville, L., Mazure, Btr@®ski, R., Sais, L.: Using Boolean
constraint propagation for sub-clauses deduction. Inc&adings of the Eleventh Interna-
tional Conference on Principles and Practice of Constfamgramming (CP’05). (2005)
757-761

Boufkhad, Y., Roussel, O.: Redundancy in random SAT fdas1 In: Proceedings of the
Seventeenth National Conference on Artificial Intellige@AAI'00). (2000) 273-278
Liberatore, P.: Redundancy in logic i: CNF propositidieamulae. Artificial Intelligence
1632) (2005) 203-232

Selman, B., Kautz, H.A.: Knowledge compilation usingrhapproximations. In: Proceed-
ings of the Ninth National Conference on Artificial Intektigce (AAAI'91). (1991) 904-909
del Val, A.: Tractable databases: How to make propasitianit resolution complete through
compilation. In: Proceedings of the 4th International Goahce on Principles of Knowledge
Representation and Reasoning (KR'94). (1994) 551-561

Marquis, P.: Knowledge compilation using theory prirmplicates. In: Proceedings of the
14th International Joint Conference on Atrtificial Intetligce (IJCAI'95), Montréal, Canada
(1995) 837-843

Mazure, B., Marquis, P.: Theory reasoning within imatitcover compilations. In: Proceed-
ings of the ECAI-96 Workshop on Advances in Propositionadl@ion, Budapest, Hungary
(1996) 65-69

Gr'egoireE., Mazure, B., Piette, C.: Extracting MUSes. In: Procegsliof the 17th European
Conference on Atrtificial Intelligence (ECAI'06), Trentdaly (2006) 387—391

