Rust

https://rust-lang.org/

1. Pourquoi rust ?
Toute premiére version en 2006, projet personnel de Graydon Hoare, chez Mozilla. Premiére version
stable (1.0) en 2015.

Maintenant géré par la Rust Foundation, fondée et financée par Mozilla, Huawei, Google, AWS,
Microsoft.

Commence a sérieusement étre considéré comme une alternative a C/C++ : noyau Linux,
composants windows, navigateurs, infrastructure web, etc.

Mais aussi dans des systémes embarqués critiques : automobile, aviation, spatial,

Plusieurs agences gouvernementales US poussent aussi a 'adoption en masse du langage. En France,
PANSSI (Agence Nationale de Sécurité des Systemes d’Information) s’intéresse aussi de trés prés au

langage.

Pourquoi ? Rust résoud enfin le dilemme entre langages de bas niveau (efficaces mais dangereux) et
langages de haut niveau (plus stirs mais moins performants).

C’est un langage de bas niveau, méme s’il dispose de nombreuses abstractions qui permettent de
garantir la sécurité des programmes sur plusieurs aspects.

Mais le langage est trés complexe.

2. La mémoire

2.1. La mémoire statique
Ce sont des variables ou des constantes globales, définies directement dans le binaire de 'exécutable.
Elles sont créées et accessibles (théoriquement) pour toute la durée de vie du programme.

Typiquement, ce seront soit les variables déclarées static en C/C++ (et quelques autres langages),
soit les tableaux et chaines de caracteres littérales.

static int TAILLE = 100; // TAILLE est une variable statique

int main(int argc, char* argv[]) {
printf("Entrez votre nom");
char nom[TAILLE];
fgets(nom, TAILLE, stdin);
printf("Hello, %s\n", nom);

}
Dans le programme ci-dessus, sont statiques :

— la variable TAILLE
- la chaine littérale "Entrez votre nom"
— la chaine littérale "Hello, %s\n"

2.2. La pile (stack)

Sur la pile, on met les données dont la taille est connue a la compilation.

int main(int argc, char* argv[]) {
if (argc == 1) {
printf("pas d'argument passé\n");
}
int x = argc * 2;
int y = argc * x + 2;
f(); // Une autre fonction qui prend du temps a s'exécuter
return 0;

}

Ici, quand main est appelée (au début du programme), I’OS réserver de la place pour 3 entiers (argc,
x et y) et un pointeur (argv). Cet espace mémoire sera utilisé jusqu’a la fin du programme (enfin,
jusqu’a la fin de main).

Quand une fonction est appelée, on lui alloue la place nécessaire sur la pile. L’espace est ensuite
libéré automatiquement, aussitot que la fonction se termine, et sera réutilisé lorsqu’une autre
fonction sera appelée.

int main(int argc, char* argv[]) {

// On utilise de 1'espace pour argc, argv et x, défini plus bas.

// Cet espace sera utilisé jusqu'a la fin du programme.

f1(); // fl va utiliser de 1l'espace sur la pile. Puis, une fois la fonction
terminée, cet espace sera libéré.

int x = f2(); // f2 va réutiliser 1l'espace qui a été libéré par fl.

}

Evidemment, une fonction peut elle-méme appeler une autre fonction (ou elle-méme,
récursivement), dans ce cas l'espace utilisé sur la pile augmente encore.

void f1() {
int x = f2();

f3(x);
}

int f2() {
return fib(3);

int fib(int n)
if (n < 2) {
return 1;
} else {
return fib(n-1) + fib(n-2);

{

void f3(int x) {
printf("sd\n", x);
}

Attention aux appels récursifs trop nombreux : si on appelle 1000 fois la méme fonction
récursivement, alors on allouera sur la pile 1000 fois 'espace nécessaire. Au bout d'un moment, un
stack overflow (débordement de pile) se produit et le programme s’arréte aussitot.

Quand on appelle une fonction, ses parametres sont copiés sur la pile. Pareil pour le return: sa
valeur est copiée sur la pile, on peut soit I'ignorer soit I'utiliser.

Et si on veut modifier une variable ? Alors il va falloir passer ’adresse de la variable en question.

int main(int argc, char* argv[]) {
int a = 42;
int b = 0;
swap(&a, &b);
printf("a=%d, b=%d\n", a, b);

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

Lorsqu’une fonction est appelée, on doit copier ses parameétres sur la pile lors de 'appel, pour que la
fonction puisse savoir ce qu’elle doit lire. Pour les types simples (entier, booléen, etc.) c’est facile : on
peut copier les données. Mais pour les types plus volumineux, ou dont la taille peut varier (les
tableaux, typiquement), c’est différent : on ne vaut pas copier intégralement les données. On va
plutét donner ’adresse du début des données sur la pile, et le nombre d’élements.

const int TAILLE = 10;

int main(int argc, char* argv[]) {

int tab[TAILLE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // La taille est connue a la
compilation

opposer(tab, TAILLE);
}

void opposer(int *tab, int n) {
for (int 1 = 0; i < n ; i++) {

tab[i] = -tab[il;
}
}

Cette fonction fonctionne pour toutes les tailles de tableau, et ne nécessite pas de copier toutes ses
valeurs lors de ’appel.

2.2.1. Références invalides et durée de vie
Quand la fonction se termine, ses variables ne sont plus accessibles : attention aux références vers
quelque chose qui est dans la pile !

Imaginons : plut6t que de modifier les données d’origine, je veux avoir une copie. Imaginons (pour
simplifier) que je sais que les données sont de taille N.

int* oppose(int* tab) {
int result[TAILLE];
for (int i = 0; i < TAILLE; i++) {
result[i] = -tab[il];
}

return result; // Oh non !

}

On a un probléme de durée de vie : 1a référence vit plus longtemps que la variable référencée elle-
méme : la variable “meurt” a la sortie de la fonction, tandis que la référence lui survit. Ce n’est pas
possible, seul I'inverse est possible :

La référence doit vivre aussi longtemps, ou moins longtemps que ce qui est référencé.

2.2.2. Avantages de la pile
Facile de s’y retrouver, pas de mémoire a allouer / désallouer a la main.

2.2.3. Inconvénients de la pile
On doit connaitre a I’avance la taille des objets que I'on gere : quid des listes de taille dynamique ?
Comment créer des objets a la volée, au moment ol on en a besoin et pas avant ?

2.3. Le tas (heap)

On y met les données dont la taille n’est pas connue a la compilation. Par exemple, les listes
dynamiques. Si j’ai une liste qui peut contenir 3 valeurs, ou 10, ou 1000, avec la pile, je suis embété :
je dois déterminer quelle est la taille maximale, et réserver tout ’espace nécessaire. Si je dis que la
taille maximale est de 1000, alors je ne pourrai pas stocker plus de 1000 éléments dans ma liste, et si
en réalité je n’en utilise que 3 ou 10, alors I'espace supplémentaire est perdu.

Avec le tas, je peux dire “j’ai besoin de x éléments”, et alors seul 'espace nécessaire (ou un peu plus,
pour des raisons pratiques) sera réservé.

Mais sa manipulation est plus compliquée : on doit allouer de la mémoire explicitement, le moment
venu, en indiquant la quantité nécessaire. On récupére une référence vers la zone allouée. Une fois
que la zone ne sera plus utilisée, il faudra trouver un moyen de la désallouer.

int *f() {
int *valeurs = (int*) malloc(10*sizeof(int));

return valeurs;

int main(int argc, char* argv[]) {
int *vals = f();

free(vals);

}

Il faut penser a libérer la mémoire a un moment, sinon fuite mémoire.

int f2() {
int *U = f();
ajouter_valeur
ajouter valeur
ajouter valeur
return moyenne

&, 1);
&, 2);
&, 3);
&l);

—_~ o~ o~ o~

}

// 0ops, je suis sorti de la fonction.

// 1 n'existe plus, mais je n'ai pas désalloué la mémoire.

// Elle est a tout jamais perdue !

// Chaque fois que j'appellerai f2(), je consommerai de la mémoire en plus.
// Si le programme tourne longtemps, il finira par planter, faute de mémoire
disponible.

Autre probléme (plus grave encore) : il ne faut pas continuer a utiliser la mémoire qui a été libérée.

int f3() {
int *1 = f();
int *12 = 1; // Oh, qu'est-ce que je fais ?
free(l);

ajouter valeur(&l2, 1); // oh non !
}

Ici, ce qui n’est pas clair, c’est : & qui appartenaient les données ? A 1 ? Ou a 12 ? Sur des
programmes complexes, c’est parfois tres difficile a savoir.

Quand plusieurs références pointent vers la méme ressource (aliasing), des tas de problemes se
posent :

- qui est responsable de la libération de cette zone ?
- qui a le droit d’écrire ou de lire les données ?
- comment s’assurer que deux threads n’écrivent pas en méme temps ?

2.4. Le garbage collector
La gestion du tas est complexe et source de nombreux bugs et vulnérabilités graves. Solution : le GC
(garbage collector).

Le GC s’occupe de surveiller quels sont les objets du tas qui ne sont plus référéncés par personne, et
de les désallouer automatiquement. En d’autres termes, on fait juste le malloc, il s’occupe lui-méme
du free!

2.4.1. Le compteur de références

Tres simple dans le principe :

- quand on alloue, on indique aussi qu’il y a une référence qui pointe vers l'objet,

- quand une nouvelle référence souhaite pointer vers I'objet, on incrémente le compteur,
- quand une référence cesse de pointer vers I'objet, on décrémente le compteur,

- quand le compteur arrive a 0, on désalloue I’espace mémoire.

Avantages:

- déterministe (on sait & quel moment il est appelé : quand on référence ou déréférence une zone
mémoire),

— efficace (c’est juste un compteur a incrémenter ou décrémenter),

— facile a implémenter.

Inconvénient principal : ne détecte pas les cycles.
Les versions de python jusqu’a récemment utilisaient un compteur de références.

1 =1[1, 2, 3] # une référence pointe sur cette liste qui vient d'étre créée
12 =1 # Deux références

13 =12 # Trois références

1 = None # Deux références. Le créateur ne la référence plus mais on s'en
fiche !

13 = None # Une référence

12 = None # Zéro référence : la liste [1, 2, 3] est désallouée ici

Ce genre de comportement serait difficile a écrire en C correct.

C’est trés élégant pour désallouer une liste chainée ou un arbre, ou méme un DAG.

MAIS...

Quid d’une liste doublement chainée ? D’un tourniquet ? D’un graphe ?

Malgré leur défaut, les compteurs de référence sont trés utiles : simples, efficaces et déterministes.

En C++ :le shared pointer utilise un compteur de références. En rust, on les utilisera aussi parfois,
via le type Rc<T>.

2.4.2. Les GC plus complexes
Les langages de haut niveau (ceux qui gérent automatiquement la mémoire, comme python, java,
javascript, etc.) utilisent un GC plus évolué (récent pour python).

Ces GC sont trés complexes (c’est un domaine de recherche en soi), ils gérent parfaitement les
cycles. IIs offrent beaucoup de garanties et résolvent les problémes évoqués plus haut.

2.4.3. Inconvénients des GC hors compteurs de références

IIs sont non-déterministes : on ne sait pas quand ils s’exécuteront, on sait que la mémoire sera
libérée a un moment, mais quand ? Pas forcément avant la fin de I’exécution du programme, en tout
cas. Dans certains cas, s’ils s’exécutent trop rarement, cela veut dire que 'on peut se retrouver sans
mémoire disponible alors que beaucoup de zones auraient pu étre libérées. Mais s’ils s’exécutent trop
souvent, alors ils consomment trop de temps CPU, et le programme passe plus de temps a gérer sa
mémoire qu’a faire son travail.

“Stop the world” : de temps en temps, le programme principal et tous les threads sont mis en pause
pour laisser le GC s’exécuter sans interférence. Dans les bons GC, ces pauses sont limitées dans le
temps (par exemple : on garantit qu’elle ne durera pas plus de 100 ms d’affilée). Mais dans certains
cas, C’est inacceptable : systémes embarqués temps réel par exemple, ou 'on a besoin de s’assurer
que telle ou telle fonction ne prendra pas plus de x ms a s’exécuter. Ou bien, dans un jeu, la pause
sera perceptible et nuira a '’expérience.

Temps CPU : le GC consomme des cycles CPU pour effectuer son travail. C’est une surcharge pour
le programme, qui n’est pas toujours nécessaire et peut nuire aux performances.

Espace mémoire : le GC consomme de 1’espace mémoire pour assurer son propre fonctionnement.
Dans ’embarqué, ou chaque kilooctet est compté, on ne peut pas toujours se le permettre.

C’est presque un programme a l’'intérieur du programme, en fait.

2.5. Le beurre et I’argent du beurre

Et si on pouvait avoir les garanties offertes par les GC (gestion sans faille de la mémoire) sans en
payer le cotit ? On pourrait avoir des programmes efficaces, sans surcharge, et qui serait
invulnérables a la plupart des failles cotiteuses des programmes C/C++.

C’est une des promesses de rust.

Mais le langage est trés complexe.

3. Mutabilité et concurrence

3.1. Alias

Une variable est (en général) une zone mémoire dont la valeur peut varier (sic) au cours de
Iexécution du programme.

Il est possible de référencer une autre variable (ou une zone mémoire du tas) via une référence (sic)
ou pointeur.

Plusieurs références peuvent donc référencer la méme zone de mémoire. On parle d’aliasing : une
zone mémoire a plusieurs noms (ou alias).

Probléme : qui posséde quoi ? Si b référence a, et que a est modifié, alors b est aussi modifié. Est-ce
toujours acceptable ?

Si 11 et 12 sont des listes, et que j'ajoute un élément a 11, alors j’ai ajouté un élément a 12. Est-ce
forcément ce que 'on voulait faire ?

Exemple :
J’ai la liste des notes que j’ai obtenues ce semestre. On part du principe que la liste n’est pas vide.

J ai deux fonctions, calculer médiane qui me donne la médiane d’une liste de notes, et
calculer pente qui me permet de savoir si les notes que j'obtiens sont en progrés ou non.

def calculer médiane(notes: 'list[int]') -> int:
notes.sort()
return notes[int(len(notes)/2)]

pente = X((xi - X)(yi - y)) / Z((xi - X)?)
def calculer pente(notes: 'list[int]') -> float:

n = len(notes)

y = notes

moyenne X = (n-1) / 2
moyenne_ y = sum(y) / n

numerateur = sum((x[i] - moyenne x) * (y[i] - moyenne_y) for i in range(n))
denominateur = sum((x[i] - moyenne x) ** 2 for i in range(n))
return numerateur / denominateur

notes = [17, 12, 16, 10, 8, 9, 5, 7, 3]
print(calculer pente(notes))
print(calculer médiane(notes))
print(calculer pentes(notes)) # QUOI 7

Ici, calculer médiane modifie son parameétre. Solutions ?

3.1.1. Cloner
A chaque fois, tout cloner (mais peut étre cotiteux) :
notes = [17, 12, 16, 10, 8, 9, 5, 7, 3]

print(calculer pente(notes[:]1))
print(calculer médiane(notes[:1))

print(calculer pentes(notes[:])) # Tellement de copies @

On fait beaucoup de copies, par sécurité. Certaines sont inutiles : calculer_pente ne modifie pas
son parametre. Mais comment le savoir a ’avance ?

A l'inverse, on pourrait dire que c’est la responsabilité de calculer médiane de faire la copie. Mais
le risque, c’est de faire la copie deux fois (une avant appel, une dans la fonction), par sécurité.

3.1.2. Structures non-mutables
Le probléme vient de la mutabilité : si on choisit des structures non-mutables, le probléme est résolu.

def calculer médiane(notes: 'tuple[int]') -> int:
notes = sorted(notes) # On ne peut pas utiliser sort() avec des tuples
return notes[int(len(notes)/2)]

pente = Z((xi - X)(yi - y)) / Z((xi - x)?)
def calculer pente(notes: 'tuple[int]') -> float:
n len(notes)
X tuple(range(n))
y = notes
moyenne_X = sum(x) / n
moyenne_y = sum(y) / n
numerateur = sum((x[i] - moyenne x) * (y[i] - moyenne y) for i in range(n))
denominateur = sum((x[i] - moyenne x) ** 2 for i in range(n))
return numerateur / denominateur

notes = [7, 12, 10, 8, 15, 17, 13]
print(calculer pente(notes))
print(calculer médiane(notes))
print(calculer pentes(notes))

Ici, on a la garantie que calculer_médiane ne modifiera pas son parameétre, étant donné qu’un tuple
n’est pas mutable.

3.1.3. La solution ultime : la programmation fonctionnelle

En Haskell et dans les autres langages fonctionnels purs, on a la garantie que toutes les valeurs
(listes, tuples, dictionnaires et autre structures de données) sont non-mutables. L’aliasing n’est donc
jamais un probléme.

Mais les langages fonctionnels purs sont tres difficiles a manipuler pour certaines taches
habituellement triviales.

En outre, les langages fonctionnels poussent a faire énormément de copies de données et a créer
énormément d’objets sur le tas. IIs nécessitent I'utilisation d’un GC.

Donc ce n’est pas si ultime que ¢a. En fait, on voudrait un moyen de dire “toi tu peux modifier tel
parameétre, toi tu ne peux pas’.

3.2. Parallélisme

Quand on a plusieurs threads qui s’exécutent en parallele et manipulent en méme temps les méme
données, les problémes sont démultipliés. En outre, les comportements deviennent non-
déterministes et les bugs d’autant plus difficiles a résoudre.

3.3. Le beurre, ’argent du beurre et le sourire de la crémiere

Rust offre aussi des garanties dans ce domaine : le compilateur s’assure toujours quun méme objet
ne peut pas étre accessible en écriture plusieurs fois en méme temps, ni qu’une référence en lecture
ne soit utilisée en méme temps qu’une référence en écriture.

Sans étre un langage fonctionnel, rust part du principe que, par défaut, les variables et références
sont non-mutables : la mutabilité doit étre I'’exception, pas la norme.

4. Rust

Un langage qui permet d’assurer a la fois la fiabilité (et méme plus) des langages de haut niveau, tout
en étant aussi efficace et déterministe que les langages de bas niveau.

Le langage est complexe, mais il émerge peu a peu et commence a conquérir des domaines que 'on
pensait chasse gardée de C : noyau linux, systémes embarqués, navigateurs web et d’autres.

4.1. Hello, world!

fn main() {
println! ("Hello, world!"); // println! se termine par un point d'exclamation car
c'est une macro

}

fn main() {

let name = "toto";

println! ("Hello, {}", name); // les {} représentent les paramétres. Le compilateur
s'assure que l'on en a le bon nombre.

println!("Hello, {name}"); // on peut aussi faire comme avec les f-strings en
python, mais pour les variables uniquement, pas les expressions.

}
4.2. Variables

Définies a 'aide du mot-clé let. On peut les typer, mais en général le compilateur détermine
automatiquement leur type (inférence de type). Elles sont non-mutables par défaut.

fn main() {
let a = 3;
let b = 2;
let ¢ = a + b;
println!("{a} + {b} = {c}");
c += 1; // Erreur de compilation

}

error[E0384]: cannot assign twice to immutable variable "¢’
--> src/main.rs:6:5

4 let ¢ = a + b;

- first assignment to "¢’
5 println!("{a} + {b} = {c}");
6 c += 1;

ANAAAN cannot assign twice to immutable variable

4 let mut ¢ = a + b;

I
I
I
I
I
I
help: consider making this binding mutable
I
I
| +++

Notez que le compilateur nous aide beaucoup. Pour qu’une variable soit mutable, on doit la définir a
l'aide de let mut.

4.3. Types de données

4.3.1. Les entiers

Comme on se destine a la programmation de bas niveau, il n’y a pas de type entier par défaut, mais
uniquement des types définis en fonction de leur taille, signés ou non : u8, i8, ul6, 116, u32, 132, u64,
164, u128, 1128. Le type inféré par défaut est i32. On rencontre aussi souvent usize qui est le type

pour représenter les tailles, notamment la taille d’un pointeur (64 bits sur ma machine). isize existe
aussi, on le rencontre moins.

4.3.2. Les flottants

On utilise les types 32 et f64. Le premier est plus compact, le second plus précis. En général on
utilise 64, c’est celui inféré par défaut. Mais 32 peut étre pratique quand on manipule beaucoup de
flottants (matrices par exemple, pour le machine learning).

4.3.3. Les booléens

Type bool, valeurs true et false. On ne peut pas interpréter un booléen comme un entier et vice
versa (contrairement a python ou C).

4.3.4. Les caracteéres

On dispose du type char. Il est suffisamment grand pour contenir n’importe quel caractére encodé
en UTF-8 (4 octets). On met les caractéres entre quotes simples '.

let premier: char = 'a‘';
let dernier = 'z';

4.3.5. Aparté concernant les caracteres et UTF-8
Autrefois, le monde informatique était dominé par les anglophones.

Il n’y a pas d’accent sur les lettres, un octet c’est largement suffisant pour représenter tous les
caractéres (ASCII). Une chaine = un tableau d’octets, une chaine de 23 octets = une chaine de 23
caracteres.

Avec Internet et le développement mondial de I'informatique, il a fallu intégrer les accents et tous les
caractéres non-latins, et pourquoi pas des symboles rigolos (emojis) puisqu’on a la place : standard
Unicode.

Probléme : il y a des centaines de milliers de caractéres différents en fin de compte, il faut donc 4

octets pour les représenter tous ®.

Deux solutions :

4.3.5.1. UTF-32
Tous les caractéres font 4 octets.

Avantage : indexer une chaine reste simple, le iéme caractére de la chaine est a la position 4*i.

Inconvénient : les chaines deviennent tres volumineuses, et le standard n’est pas compatible avec
ASCIL, il faut donc passer par des phases de conversion inutiles.

4.3.5.2. UTF-8

On veut garder la compatibilité avec ASCII (toute chaine ASCII est aussi une chaine UTF-8) et
optimiser I'utilisation de I’espace. On est prét a perdre les facilités d’indexation : on stocke / affiche
des chaines bien plus souvent qu’on ne les indexe.

Solution : la taille des caractéres est variable, les caractéres qui sont dans ASCII continuent d’étre
représentés sur un octet, d’autres caractéres nécessitent deux octets, ou bien trois, voire quatre.

Une chaine en UTF-8 est en général bien plus compacte qu’'une chaine en UTF-32, par contre on
perd la possibilité d’indexer une chaine : ou est le 12éme caractére d’'une chaine quand tous les
caracteéres ne font pas la méme taille ? Il faut parcourir la chaine du début pour le trouver.

Conclusions :

- en UTF-8, une chaine de caractére n’est pas un tableau de caractéres,
- en UTF-8, tous les caractéres ne font pas la méme taille, et ils peuvent faire jusqu’a 4 octets.

En rust, les caractéres individuels sont donc stockés sur 4 caractéres, et un tableau de caractéres sera
plus volumineux que la chaine équivalente.

Les chaines de caractéres sont un type étonnamment complexe, on les verra un peu plus tard.

4.3.6. Les tuples
Comme en haskell et, d’'une certaine maniére, en python, on dispose d’un type tuple, qui permet
d’associer des valeurs de types différents.

fn main() {

let t: (char, 132, f64) = ('="', 17, 3.14);

println!("{:?}", t); // On ne peut pas afficher un tuple facilement : il faut
utiliser le mode Debug

}
On accéde aux éléments d’un tuple en utilisant la notation pointée et en indiquant I'indice désiré.

fn main() {

let t = ('=', 17, 3.14); // Inférence de type
let pi = t.2; // Inférence ici aussi
printin! ("{}", pi); // On *peut* afficher un flottant

}

4.3.7. Les tableaux
Ils sont déclarés sur la pilet et sont donc de taille fixe, et contiennent un certain nombre d’éléments
d’un type donné.

let tab: [132; 5] = [1, 2, 3, 4, 5]; // Type : tableau de cing 132

let tab2 = ['a', 'b', 'c'l; // Type inféré : [char; 3]

let tab3: [i32; 10] = [0; 10]; // 10 fois la valeur 0.

Les tableaux sont faciles a manipuler (ils sont sur la pile) mais rigides (taille fixe et connue a la
compilation : ils sont sur la pile). On verra plus tard comment manipuler des tableaux dynamiques,
alloués sur le tas (vecteurs).

4.4. Les fonctions
On utilise le mot-clé fn. Les paramétres doivent étre typés (pas d’inférence de type).

fn add two (x: 132) -> 132 {
return x + 2;

}

fn main() {
let a = 5;
let b = add two(a);
println!("{a} + 2 = {b}");
}

Astuce rust que 'on verra souvent : quand la derniére expression d’une fonction n’a pas de point-
virgule, on considere qu’il y a un return implicite. Cette syntaxe vient des langages fonctionnels.

fn add two(x: 132) -> 132 {
X + 2

}

Si je mets le point-virgule sans le return ¢a ne marche pas :

fn add two(x: 132) -> 132 {
X + 2;

}

error[EQ308]: mismatched types
--> src/main.rs:1:23

1 | fn add two(x: 132) -> 132 {

| ------- ~~ expected “i32°, found T ()

I I

| implicitly returns " ()" as its body has no tail or “return’ expression
2 | X + 2;

I

- help: remove this semicolon to return this value
Notez que, une fois encore, le compilateur nous donne la solution.

Notez aussi au passage qu’on considere qu’une fonction qui ne renvoie pas de résultat renvoie le
type unit ().

4.5. Les conditionnelles et les boucles
On utilise if un peu comme en C, sauf que la condition n’a pas besoin d’étre entourée de
parentheses et les accolades sont obligatoires.

fn affiche mention(note: 132) {

if note < 10 {
println!("échec");

} else if note < 12 {
println!("passable");

} else if note < 14 {
println!("assez bien");

} else if note < 16 {
println! ("bien");

} else {
println!("tres bien");

}

On peut utiliser le if dans une expression, comme en programmation fonctionnelle a condition de
ne pas mettre de ; dedans.

J’ai une valeur entiere, je veux la mettre a 0 si elle est négative.

let val2 = if val < 0 {
0

} else {
val

};
// ou

let val2 = if val < 0 { 0 } else { val };

C’est ’équivalent de I'opérateur ?: en C :

int val2 = val <0 ? 0 : val; // Syntaxe équivalente en C, ceci n'est pas du rust
Le while fonctionne comme en C, sans les parenthéses mais accolades obligatoires.

Le for itére sur un itérateur (sic) : for elt in iter.

Comme en python, donc.

Un itérateur est quelque chose qui produit une nouvelle valeur chaque fois qu’on lui demande,
jusqu’a ce qu’il soit vide (éventuellement).

Afficher les nombres de 0 a 10:

for i in 0..10 { // 0..10 est un itérateur, c'est 1'équivalent python de range(10)

println!("{i}");
}

// Oh non ! J'ai oublié le 10

for i in 0..11 {
println!("{i}");
}

for i in 0..=10 {
println!("{i}");
}

// Maintenant, je veux faire la méme chose mais dans l'autre sens

for i in (0..=10).rev() {
println! ("{i}");
}

5. Ownership (propriété)

Concept fondamental et innovant en rust.

On sait en permanence qui est propriétaire d’une ressource, et donc (notamment) qui est responsable
de sa destruction le cas échéant.

C’est un concept unique a rust (en tout cas ils ont été les premiers a le développer dans un langage
grand public) et assez difficile a comprendre totalement. On se bat assez souvent avec le borrow
checker, outil qui, a la compilation, vérifie les régles draconiennes de rust. Il peut parfois refuser des
programmes corrects mais dangereux.

Le borrow checker donne des garanties de siireté mais permet aussi de faire certaines optimisations a
la compilation, étant donné les garanties qu’il offre. Optimisations qui ne seraient pas possibles en C.

On emprunte (borrow) une variable en y faisant référence.

5.1. Les références
Quand on passe un parametre entier, ou flottant, ou booléen, ou un caractére a une fonction, on peut
copier directement sa valeur sur la pile : ces types ne prennent pas beaucoup de place en mémoire.

Mais pour des types plus gros (chaines de caractéres, tableaux, etc.) ce n’est pas vrai. Copier une
chaine de 10000 caractéres prendrait du temps et occuperait inutilement de la place en mémoire.
Pour ces types, on va donc plutot utiliser une référence (passage par référence) / un pointeur.

On utilise le caractére & pour référencer une variable ainsi que pour définir les types référence.
Quand on référence quelque chose, on 'emprunte (borrow).

Exemple : une fonction qui renvoie la sommee d’un tableau d’entiers.

// t est une référence vers un tableau de i32.
// NB : on ne connait pas la taille de ce tableau.
fn sum of (t: &[132]) -> 132 {
let mut sum = 0;
for i in 0..t.len() {
sum += t[i];
+

sum

fn main() {
let t: [i32; 5] = [5, 1, 3, -2, 0O];
let s = sum of (&t);
println!("sum of ({:?}) = {s}", t);
}

t est un tableau litéral, il existera pendant toute la durée de vie de la fonction main. t posséde les
données.

&t est une référence vers t. On emprunte temporairement 1’adresse de t. Ce n’est pas un probleme,
puisque la fonction se termine avant que t ne soit détruit.

En outre, ni t ni &t ne sont mutables, on n’aura donc pas de mauvaise surprise.
Revenons a notre calcul sur les notes.

fn calculer médiane(notes: &[i32]) -> i32 {
let mut notes2 = notes.to vec(); // On crée un clone
notes2.sort();
notes2[notes2.len()/2]

fn calculer pente(notes: &[132]) -> f64 {
let n = notes.len();
let moyenne x = (n - 1) as f64 / 2.0;
let somme y: 132 = sum of(notes);
let moyenne y = somme_y as f64 / n as f64;
let mut numerateur = 0.0;
let mut denominateur = 0.0;
for i in 0..n {
let xi = i as f64;
let yi = notes[i] as f64;
let diff x = xi - moyenne Xx;
let diff y = yi - moyenne y;
numerateur += diff x * diff_y;
denominateur += diff x * diff x;

}

numerateur / denominateur

fn main() {
let notes = [17, 12, 16, 10, 8, 9, 5, 7, 3];
println! ("{}", calculer pente(¬es));
println! ("{}", calculer médiane(¬es));
println!("{}", calculer pentes(¬es))

}

Ici, on sait que ni calculer pente ni calculer médiane ne peuvent modifier les données qui leur
sont prétées. D’ailleurs, comment le pourraient-ils: notes n’est pas mutable non plus.

On évite les copies inutiles, et on a les avantages de la programmation fonctionnelle seulement 1a ou
c’est pertinent.

Et si on voulait pouvoir modifier la liste ? Par exemple, on veut harmoniser les notes, on veut
qu’elles soient toutes comprises entre 0 et 20.

fn harmo(note: i132) -> i32 {
if note < 0 {
0
} else if note > 20 {
20
} else {
note

fn harmoniser(notes: &mut [132]) {
for i in 0..notes.len() {
notes[i] = harmo(notes[i]);
}
}

fn main() {
let mut notes = [-1, 20, 25, 0]; // mut : on doit pouvoir modifier !
harmoniser(&mut notes); // On voit que notes peut étre modifié
println!("{}", calculer pente(¬es)); // Pas de modif ici

println!("{}", calculer médiane(¬es)); // Ici non plus

}

Dans tous les cas ci-dessus, la propriété des données appartient a notes. Les fonctions ne font
qu’emprunter ces données (borrow) via des références (mutables ou non). Ces références ne vivent
pas plus longtemps (lifetime) que les données, donc le compilateur est satisfait.

Ici aussi c’est bon :

fn main() {
let mut fibs: [i32; 20] = [1; 20]1; // 20 fois la valeur 1
for 1 in 2..fibs.len() {
fibs[i] = fibs[i-1] + fibs[i-2];
}
for 1 in 0..fibs.len() {
// let x = fibs[i]; On ferait ca en principe
let r = &fibs[i]; // On prend une référence juste pour 1l'exemple
println! ("fib({i}) {}", *r);
println! ("fib({i}) {}", r); // C'est pareil : la déréférence est implicite

}
}

La référence r ne vit que le temps de la boucle. Elle est libérée apres. Sa durée de vie est donc plus
courte que celle de fibs (qui vit toute la fonction). Donc c’est bon.

MAIS..

fn main() {
let mut r: &i32;
for i in 0..10 {
r =4&i;
}
println! ("{}", *r);
}

error[E0597]: “i" does not live long enough
--> src/main.rs:5:13

4 | for i in 1..10 {
| - binding “i® declared here
5| r=4&1;
| ~" borrowed value does not live long enough
6 | I
| - "i" dropped here while still borrowed
7 |
8 | printtn! ("{}", *r);
I

- borrow later used here

Ca ne marchera pas : i vit moins longtemps que la référence r. Quelle pourrait étre la valeur de *r a
la sortie de la boucle ? 9 ? Pitié, on n’est pas chez python ici

5.2. Les regles d’emprunt

On peut emprunter autant de fois que ’on veut de maniére non-mutable une variable non-mutable :

let a = 42;
let rl = &a;
let r2 = &a;

println!("{}", a + rl + r2);
println! ("{}", a + *rl + *r2); // C'est pareil

Ca ne pose pas de probléme, la variable est non-mutable, les références aussi, la vie est belle.
MAIS..

Quand une variable est empruntée, on ne peut plus modifier sa valeur (sinon, cela reviendrait a dire

qu’une variable non-mutable voit son contenu muter ®

let mut a = 42;
let rl = &a;
println!("Jusqu'ici tout va bien : {rl}");

Mais

let mut a = 42;

let rl = &a;

a += 1;

println!("Quelle est la valeur de r1 ? {rl1}");

error[E0506]: cannot assign to “a’ because it is borrowed
--> src/main.rs:4:5

3 | let rl = &a;
| -- "a’ 1is borrowed here
4 | a += 1;
| ANAANN T3t is assigned to here but it was already borrowed
5 | println!("Quelle est la valeur de rl1 ? {rl}")
| -- borrow later used here
Ou encore :

fn main() {
let mut a = 42;

let rl1 = &mut a;
let r2 = &a;

*rl += 1;
println! ("{r2}")

error[E0502]: cannot borrow “a’ as immutable because it is also borrowed as mutable
--> src/main.rs:4:14

3 let r1 = &mut a;

I mutable borrow occurs here
4 | let r2 = &a;

| ~~ immutable borrow occurs here
5| *rl = 3;

I

------- mutable borrow later used here

En fait, la régle est la suivante : quand on emprunte de maniére mutable, personne d’autre ne
peut emprunter en méme temps.

Cela permet d’éviter les data races et autres comportements imprévisibles (comme une référence
non-mutable qui est soudainement mutée).

Ce sont des régles assez draconiennes, le compilateur nous embétera souvent avec ¢a. Mais c’est
pour la bonne cause !

6. Le tas et le type Vec<T>

Pour I'instant on sait créer des tableaux sur la pile, mais ils sont contraignants : on doit connaitre
leur taille a la compilation, et on ne peut pas ajouter d’éléments pour agrandir le tableau une fois
qu’il est plein.

Heureusement, il est possible de créer des tableaux dynamiques (des vecteurs) via le type Vec<T>.

C’est un type générique : on peut I'instancier pour n’importe quel type, on peut par exemple créer
un Vec<i32>.

let mut v = Vec::new();
v.push(42);

println! ("{}", v.len()); // 1
println! ("{:?}", v); // [42]

Un Vec, C’est trois valeurs : un pointeur vers le début des données, la taille actuelle, et la capacité. La
capacité, c’est 'espace total qui a été réservé. Tant que la capacité n’est pas atteinte, c’est facile
d’ajouter de nouvelles données. Une fois qu’elle est atteinte, il faut allouer une nouvelle zone
mémoire. C’est simple pour ['utilisateur : tout est transparent.

NB : pour créer un Vec, il faut allouer de la mémoire sur le tas. Il faut donc aussi la désallouer a la
fin ! Or, il n’y a pas de GC en rust. Mais ici c’est transparent : on part du principe que les données
sont possédées par v (ownership), on sait donc que c’est v qui devra la désallouer au moment ou il
“mourra” (quand il sortira du scope). Le compilateur ajoute automatiquement pour nous I’appel a
free() (en fait, en rust, 'appel a drop()) quand la variable qui posséde les données sort du scope.
C’est pour ¢a qu’il est primordial de savoir qui posséde telle ou telle variable !

fn main() {

let mut vl = Vec::new();

for i in 0..10 {
let mut v2 = Vec::new();
vl.push(i);
v2.push(i);
printin! ("{:?}", vl1);
printtn!("{:?}", v2);
// Ici, a chaque itération, v2 meurt.
// Appel implicite a la fin de 1'itération:
// free(v2);
// En rust, free s'appelle drop, donc en fait on fait
// drop(v2);

}
// Ici, vl meurt. Appel implicite :
// drop(vl);

}

Ici, v1 est créé au début de la fonction, il n’est pas retourné en fin de fonction, il sera donc désalloué
en sortie. Quant a v2, il est créé au début de chaque itération de la boucle, il est détruit a la fin de
litération, il sera donc désalloué a chaque fois a ce moment-la.

C’est trés rigoureux et transparent pour l'utilisateur qui n’a pas a s’en occuper mais sait que les
données seront forcément désallouées a ce moment précis. Ni avant, ni apres.

Et si on veut désallouer plus tét ? On peut, en appelant explicitement drop. Evidemment, une fois
qu’on a dropped une variable, on n’y a plus acces.

fn main() {
let mut v: Vec<i32> = Vec::new();

drop(v);
println! ("{:?}", v);
}

error[E0382]: borrow of moved value: “v°
--> src/main.rs:4:20

I
2 | let mut v: Vec<i32> = Vec::new();

| - move occurs because “v' has type "Vec<i32>", which does not implement
the “Copy’ trait
3 | drop(v);

| - value moved here

| printtn!("{:?}", v);

| ~ value borrowed here after move

N

Je dis “évidemment”, mais ce n’est pas évident pour quelqu’un qui a I’habitude de C et qui ne
s’étonnera pas que le programme suivant compile :

int *c = (int*) malloc(sizeof(int));
free(c);
printf("c est supprimé mais yolo: %d\n", *c);

Si on veut créer un Vec prérempli avec des valeurs prédéfinies, on peut utiliser la macro vec!.

let v = vec![1, 2, 31; // Sur le tas
println! ("{}", v.len()); // 3
println! ("{:?}", v); // [1, 2, 3]

C’est un peu plus lourd que :

let tab = [1, 2, 31; // Sur la pile
printtn! ("{}", v.len());
printin! ("{:?}", v);

C’est plus lourd parce qu’a I'exécution, il faut allouer des données pour v sur le tas, et qu’elles seront
désallouées au moment du drop (). En outre, un Vec<T> nécessite aussi d’avoir un entier pour la
taille et un autre pour la capacité.

Alors quels intérét ? Si v est mutable, alors on pourra lui ajouter des données, en supprimer, etc.
Mais si on ne prévoit pas de faire ¢a, alors c’est inutile. En fait, la bonne pratique est la suivante :

On n’alloue sur le tas que si on ne peut pas déclarer sur la pile.

On peut référencer un Vec : dans ce cas, la référence sera semblable a une référence vers un tableau.
On parle de slice (tranche) pour ce type &[T].

fn afficher len(t: &[132]) {
println!("La longueur de {:?} est {}", t, t.len());
}

fn main() {
let v = vec![1, 2, 3];
let tab = [1, 2, 31;
afficher len(&v);
afficher len(&tab);

}

Ici encore, utiliser un Vec ou un [132] ne fait pas de différence. Comme la taille est connue et fixe
dans les deux cas, il vaudrait mieux utiliser un tableau : c’est plus efficace (pas d’allocation /
désallocation)

On peut les rendre mutables, évidemment :

fn opposer(t: &mut [132]) {
for i in 0..t.len() {
tli] = -tl[il;
}
}

fn main() {

let mut v = vec![1, 2, 3];

let mut tab = [4, 5, 6];

opposer(&mut v);

opposer(&mut tab);

printtn!("{:?} {:?}", v, tab); // [-1, -2, -3] [-4, -5, -6]
}

Alors dans quels cas utiliser un Vec vu que c’est plus lourd a I'exécution ? Eh bien, déja, on peut
retourner un Vec en fin de fonction : on n’a pas besoin de connaitre sa taille a ’avance.

fn jours dans mois(année: i32) -> [132; 12] {
if est bisextile(année) {
[31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
} else {
[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
}
}

fn jours dans mois vec(année: i32) -> Vec<i32> {
if est bisextile(année) {
vec![31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
} else {
vec![31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
¥
}

Ici, les deux fonctionnent, et utiliser un [132; 12] est préférable : c’est plus efficace (méme si on doit
copier toutes les données chaque fois qu’on l'utilise dans une autre fonction). Bon, en vrai, la
différence est négligeable.

Mais il serait impossible d’écrire la fonction suivante avec un tableau, puisque les tableaux ont des
tailles fixes :

fn les lundis du mois(mois: 132, année: 132) -> Vec<i32> {
// Renvoie le numéro de tous les lundis d'un mois donnée
// Il peut y en avoir 4 ou 5

}

Impossible d’écrire cette fonction avec un tableau : doit-on renvoyer un [i32; 4] ouun [i32; 5] ?

Mais est-ce qu’on ne pourrait pas renvoyer un &[i32] pour régler ce probléme ? Non ! Car alors il y
a un probléme de durée de vie.

fn jours dans mois(année: 1i32) -> &[i32] {
if est bisextile(année) {
&[31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
} else {
&[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
}
}

fn jours dans mois vec(année: i32) -> &[i32] {
if est bisextile(année) {
&vec![31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
} else {
&vec![31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
}
}

error[EQ106]: missing lifetime specifier
--> src/lib.rs:1:35
I
1 | fn jours dans mois(année: i32) -> &[i32] {
| ~ expected named lifetime parameter
I

help: this function's return type contains a borrowed value, but there is no
value for it to be borrowed from
help: consider using the " 'static® lifetime, but this is uncommon unless you're
returning a borrowed value from a “const’™ or a “static®
I
1 | fn jours dans mois(année: 132) -> &'static [132] {
| +++++++
help: instead, you are more likely to want to change the argument to be borrowed...
I
1 | fn jours dans mois(année: &i32) -> &[i32] {
| +
help: ...or alternatively, you might want to return an owned value
I
1 - fn jours dans mois(année: 132) -> &[i32] {
1 + fn jours dans mois(année: i32) -> Vec<i32> {

error[EQ106]: missing lifetime specifier
--> src/lib.rs:9:39
I
9 | fn jours dans mois vec(année: i32) -> &[i32] {
| ~ expected named lifetime parameter
I

help: this function's return type contains a borrowed value, but there is no
value for it to be borrowed from
help: consider using the " 'static® lifetime, but this is uncommon unless you're
returning a borrowed value from a “const™ or a “static®
I
9 | fn jours dans mois vec(année: i32) -> &'static [132] {
| +++++++
help: instead, you are more likely to want to change the argument to be borrowed...
I
9 | fn jours dans mois vec(année: &i32) -> &[i32] {
| +
help: ...or alternatively, you might want to return an owned value
I
9 - fn jours dans mois vec(année: i32) -> &[i32] {
9 + fn jours dans mois vec(année: i32) -> Vec<i32> {

C’est un probléeme de lifetime : on renvoie une référence vers une valeur qui est détruite a la fin de la
fonction. N’oubliez pas le drop () automatique a la fin.

Mais le compilateur nous aide : quand on veut renvoyer un &[i321], en fait, ce qu’on veut sans doute
faire, dans 90% des cas, c’est renvoyer un Vec<i32>. Oui, cela cofite une allocation et plus tard une
désallocation, mais souvent, on peut se le permettre.

6.1. Sémantique de mouvement
Copier un entier, un booléen, ou méme un tableau “brut”, on voit comment ¢a marche : on fait une
simple copie bit a bit.

Mais copier une liste, un Vec, ¢a veut dire quoi ? Si je fais ¢a, qu’est-ce qui est censé se passer ?

let mut vl
let mut v2
vl.push(42);

println! ("{}", v2.len());

vec![1, 2, 31;
vl;

Qu’est-ce que j’attends comme résultat ? En python ou en java, v2 sera modifié par la modification
de v1. Mais est-ce que c’est vraiment ce que je veux ? Pas toujours. Et surtout, dans ce cas : qui
posséde les données ? Qui sera responsable de leur destruction ? Ce n’est pas clair. Et comme ce
n’est pas clair, ce sera refusé par le compilateur.

error[E0382]: borrow of moved value: “vl1°
--> src/main.rs:4:5

I
2 | let mut vl = vec![1l, 2, 31;
I move occurs because “v1' has type "Vec<i32>", which does not
implement the “Copy’ trait
3| let mut v2 = vl;
-- value moved here

4 vl.push(42);

~» value borrowed here after move

3 let mut v2 = vl.clone();

I
I
I
I
help: consider cloning the value if the performance cost is acceptable
I
I
| ++++++++

Intéressant ! Il nous dit que Vec n’implémente pas Copy, ¢a veut dire qu’on ne peut pas le copier (bit
a bit), contrairement aux types basiques : la sémantique associée a la copie d’un pointeur n’est pas
évidente.

Il dit aussi qu’on peut cloner le Vec si on veut une copie (c’est-a-dire, deux vecteurs identiques mais
indépendants I'un de ’autre). Il rappelle que cela a un coft : il faut allouer a nouveau, copier toutes
les données, utiliser deux fois plus de mémoire, et désallouer a la fin.

Et surtout, il dit que la valeur a été déplacée (move). En fait, on a transféré la responsabilité des
données a v2 : on les lui a en quelque sorte offertes.

C’est v2 maintenant qui posséde les données, qui peut les utiliser comme il le souhaite, et qui les
détruira lorsqu’il sortira du scope. Et v1 maintenant n’est plus valide : on ne peut plus 'utiliser.

Ah oui, mais si je veux vraiment que v1 et v2 référencent la méme liste sous-jacente, et
potentiellement les modifier toutes les deux ? Alors 14, c’est plus compliqué, on aura besoin d’utiliser
des types plus avancés pour gérer a la fois la propriété partagée et la mutabilité partagée.

6.2. Les chaines de caractéres
Ce sont en quelque sorte des tableaux spécialisés, mais pas tout a fait (a cause d’utf-8). De la méme
maniére qu’il y a deux types de tableaux (par exemple, &[132] et Vec<i32>), il y a deux types de

chaines de caracteéres : &str pour décrire les chaines statiques ou les fragments de chaines, et String
pour les chaines dynamiques que I'on veut pouvoir modifier.

let s: &str = "Hello, world";
let mut s2: String = s.to string(); // On alloue et on copie
s2.push('!"); // On ajoute un caractere, peut-étre une réallocation a été nécessaire

String est vraiment le pendant de Vec<T> et &str est le pendant de &[T]. Mais attention: ce n’est pas
tout a fait un tableau de caractéres, rappelez-vous : en UTF-8, tous les caracteres ne font pas la méme
taille. Un caractere utf-8 va occuper en mémoire entre 1 et 4 octets. Un char, lui occupe 4 octets
(pour pouvoir contenir n’importe quel caractére, y compris les plus gros).

C’est un peu pénible en pratique d’avoir deux types pour les chaines de caractéres. Souvent, on se
voit obligé de passer de I'un a ’autre. On en arrive a écrire des choses bizarre du genre
"toto".to string() parce que "toto" est de type &str alors qu’on a besoin d’un String.

7. Les énumeérations et les types somme

7.1. Types énumérés de base
On peut faire un type énuméré.

#[derive(Debug, Copy, Clone)]
enum Jour {

Lundi,

Mardi,

Mercredi,

Jeudi,

Vendredi,

Samedi,

Dimanche,

}

fn main() {

let j = Jour::Lundi;

let j2 = j;

printin! ("{:?}", 3, j2);
}

C’est quoi ces #[derive(Debug, Copy, Clone)] au début ? Ce sont des directives qui indiquent que
Pon peut copier bit a bit (faire (j = j1 ici)), cloner (faire un j.clone() par exemple, ce qui, ici,
reviendrait a faire une copie bit a bit), et afficher en mode Debug les valeurs de type Jour. Les types
Copy, Clone et Debug sont des traits, on verra plus tard de quoi il s’agit exactement.

Pour tester les valeurs d’une énumération, on utilisera le pattern matching. En gros, match, c’est
I'équivalent de switch dans d’autres langages, mais un switch boosté aux hormones (on verra plus
tard pourquoi).

fn est weekend(j: Jour) -> bool {
match j {
Jour::Samedi => true,
Jour::Dimanche => true,
_ => false
}
}

L’avantage du match, c’est qu’on doit tester tous les cas. Si on en oublie, le compilateur refusera le
programme.

fn fonction bizarre(j: Jour) -> 132 {

match j {
Jour: :Lundi => 16,
Jour: :Mercredi => 21,
Jour::Jeudi = 11,
Jour::Vendredi => 17,
Jour: :Samedi => 23,
Jour: :Dimanche => 36

}

}

error[EQ004]: non-exhaustive patterns: “Jour::Mardi® not covered
--> src/lib.rs:13:9

I
13 | match j {

| ~ pattern “Jour::Mardi® not covered

note: “Jour” defined here
--> src/lib.rs:2:6

2 | enum Jour {

AAAA

I
3| Lundi,
4 | Mardi,
| ----- not covered
= note: the matched value is of type “Jour’
help: ensure that all possible cases are being handled by adding a match arm with a
wildcard pattern or an explicit pattern as shown

I
19 ~ Jour::Dimanche => 36,
20 + Jour::Mardi => todo! ()

Le compilateur nous dit que nous n’avons pas traité le cas Mardi, et nous suggére, faute de mieux,
d’utiliser la macro todo! () qui paniquera a I’exécution si on I’atteint.

7.1.1. if let

Parfois, je ne veux traiter qu’une seule valeur possible de I’énumération : si la valeur est X, alors je
fais quelque chose, dans tous les autres cas... eh bien, je n’ai rien de particulier a faire.

Par exemple, je veux mettre en place une sorte de rappel : le mardi, j’ai cours de Rust. Si on est
mardi, je veux donc que mon programme me le rappelle. Et c’est tout. Dans les autres cas, je ne veux
rien faire. En principe, je devrait faire ca.

let j = aujourdhui();
match j {
Jour::Mardi => {
println!("On est mardi : c'est jour de Rust !");
}
_ = {}
}

C’est un peu verbeux ! Moi je veux pouvoir dire “si on est Mardi, alors fais ceci”, je n’ai pas envie de
faire un gros matchde 6 lignes.

Dans ce cas (fréquent), on va utiliser la notation if let (insérer ici un jeu de mot désopilant sur les
tartiflettes) qui fait du pattern matching dans un if :

let j = aujourdhui();
if let Jour::Mardi = j {
println!("On est mardi : c'est jour de Rust !");

}

7.2. Les types somme

Avec les enums, on peut aussi faire des types somme, c’est-a-dire des énumérations dont les
branches sont associées a des valeurs.

Exemple : je veux identifier des gens dans mon application. Mais il y a trois fagcons de faire :

- un prénom et un nom,
- un pseudo,
- ou bien simplement étre anonyme.

#[derive(Debug, Clone)]

enum Personne {
PrenomNom(String, String),
Pseudo(String),
Anonyme

}

fn personne to string(p: &Personne) -> String {
match p {
Personne: :PrenomNom(prenom, nom) => format!("{prenom} {nom}"),
Personne: :Pseudo(pseudo) => pseudo.clone(),
Personne: :Anonyme => "<anonyme>".to string(),

fn main() {
let t: [Personne; 5] = [
Personne: :Anonyme,
Personne: :Pseudo("toto".to string()),
Personne: :Pseudo("titi".to string()),
Personne: :Anonyme,
Personne: :PrenomNom("Fabien".to string(), "Delorme".to string()),
1;
for i in 0..t.len() {
println! ("{}", personne to string(&t[il]));
}
for p in t {
println! ("{}", personne to string(&p));
}
}

Note : ici, le type ne peut pas étre Copy parce qu’on utilise des String, et les String ne sont pas
Copy : ils sont alloués sur le tas.

Allez, faisons un if let pour bien enfoncer le clou. Je veux compter le nombre de personnes qui ont
le prénom “Fabien” parmi tous mes utilisateurs :

fn compter fabien(lst: &[Personne]) -> usize {
let mut res = 0;
for p in lst {

if let Personne::PrenomNom(prenom,) = p &S prenom == "Fabien" {
res += 1;
}
}
res

}

7.3. Le type Option<T>

Je veux créer une liste d’utilisateurs. Je demande a 'utilisateur s’il souhaite ajouter un nouveau nom,
puis de saisir ledit nom. Une fois qu’il a saisi tous les noms, je cherche lequel est le plus long, et je
Paffiche. Comment faire ?

use std::io;
fn read names() -> Vec<String> {

let mut names: Vec<String> = Vec::new();
loop {

println! ("Souhaitez-vous ajouter un nom ? (o/n)");
let mut response = String::new();
io::stdin().read line(&mut response).expect("erreur de lecture");
response = response.trim().to string();
if response == "0" {
println! ("Entrez le nom");
let mut nom = String::new();
io::stdin().read line(&mut nom).expect("erreur de lecture");
nom = nom.trim().to string();
names.push(nom) ;
} else {
break;

names

fn nom le plus long(names: &[String]) -> String {
let mut max: &str = &names[0O];
let mut max_len: usize = max.len();
for name in names {
if name.len() > max_len {
max = name;
max_len = name.len();
}
}
max.to string()

}

fn main() {
let names = read names();
println!("Le nom le plus long est {}", nom le plus long(&names));

}

Pourquoi j’utilise names: &[String] et pas names: Vec<String> ? Si je faisais ca, alors ma fonction
recevrait la propriété des données. Méme si ¢a ne change rien ici, ce n’est pas ce que 'on veut faire.

fn nom le plus long(names: Vec<String>) -> String {
let mut max: &str = &names[O];
let mut max len: usize = max.len();
for name in names {
if name.len() > max_len {
max = name;
max_len = name.len();
}
}
max.to string()
// Fin de fonction : le paramétre names sort du scope.
// appel implicite :
// drop(names);

fn main() {
let names = read names();
println!("Le nom le plus long est {}", nom le plus long(names));

}

Ici ca marche parce qu’on ne réutilise plus names par la suite, mais si on le voulait, on ne le pourrait
pas!

Alors pourquoi ne pas fait &/ec<String> plutdt que &[String] ? Simplement parce que le second est
plus générique et fonctionne aussi sur des références vers des tableaux brut.

Et est-ce que je pourrais renvoyer un &str ? Oui, mais ce n’est pas simple, parce qu’il faut réussir a
convaincre le compilateur que la référence ne survit pas aux données d’origine. Mais ¢a c’est
compliqué, on verra plus tard.

Revenons a nos moutons. Notre fonction a un probléme : si je n’entre pas de nom, je vais avoir une
erreur. Quel est le nom le plus long d’une liste vide ? Il n’y en a aucun (none).

On doit pouvoir dire que certaines fonctions peuvent ne pas retourner de résultat : soit elle ne
retourne rien, soit elle retourne une valeur (laquelle ?)

Il existe un type pour ca : le type Option<T>. C’est I'équivalent du type Maybe en Haskell. Il a deux
valeurs possibles :

— None : pas de valeur,

— Some(x) :la valeur x, ou x est de type T.

fn nom le plus long(names: &[String]) -> Option<String> {
if names.len() == 0 {
return None;
}
let mut max: &str = &names[0];
let mut max_len: usize = 0;
for name in names {
if name.len() > max_len {
max = name;
max_len = name.len();
}
}
Some(max.to string())
// 0n ne peut pas juste renvoyer max.to string() : c'est une valeur de type String
pas Option<String>

}

Maintenant, la fonction renvoie un Option<String>, qui peut contenir soit None soit Some(s) ou s
est de type String. Pour récupérer cette valeur, ou traiter le cas None, on doit désormais faire du
pattern matching.

fn main() {
let names = read names();
match nom le plus long(&names) {
None => {
println! ("Il n'y a pas de nom !");
1
Some(name) => { // On a récupéré notre nom, enfin !
println!("Le nom le plus long est {}", name);
}
}
}

Le fait d’utiliser Option<T> nous oblige a traiter le cas None. On ne peut pas I'ignorer.

fn main() {
let names = read names();

let name: String = nom le plus long(&names);
println!("Le nom le plus long est {}", name);

}

error[EQ308]: mismatched types
--> src/main.rs:23:22

23 | let name: String = nom le plus long(&names);
| ______ ANANAANANANANNANNANNNNANNNNNNNNAN expected ‘String" found
‘Option<String>"

| expected due to this
I
= note: expected struct “String’
found enum “Option<String>"

Et quand on fait un match, il est nécessaire de traiter tous les cas :

fn main() {
let names = read names();
match nom le plus long(&names){
Some(name) => {
println!("Le nom le plus long est {}", name);

error[EQ004]: non-exhaustive patterns: “None® not covered
--> src/main.rs:23:9

I
23 | match nom le plus long(&names){

| ANAAAANANANANANNANNNNNNNNNNNNNAN pattern ‘None‘ nOt covered

C’est une trés bonne pratique qui évite bien des bugs !

En C/C++, on utiliserait sans doute un pointeur, qui serait nul s’il n’y a pas de valeur. En (mauvais)
Java, pareil, on renverrait sans doute null, et en python, None. Charge ensuite a I'utilisateur de bien
penser a vérifier s’il a obtenu une valeur ou non. Et s’il ne le fait pas ? Alors on aura une
NullPointerException ou quelque chose d’équivalent. Exception qui sera peut-étre levée bien plus
tard dans I’exécution du programme. Et si je mettais cette valeur nulle dans une liste qui s’attend a
ce qu’aucune valeur ne soit nulle ? Et si on ne lisait pas le contenu de cette liste avant plusieurs
heures ? Alors le bug mettrait des heures a étre découvert.

C’est un comportement trés cotiteux (cf I'article “The billion dollar mistake”). Les pointeurs nuls sont
considérés par certains comme un défaut majeur de conception dans un langage de programmation.

I n’y a pas de pointeur nul en rust.

7.3.1. Décapsuler un Option<T> qui n’est pas vide
Parfois, on est siir que la valeur de notre option est Some (x). On sait que ¢a ne peut pas étre None.
Dans ce cas, on peut utiliser unwrap () pour récupérer plus facilement la valeur.

fn main() {
let mut names = read names();
names.push("Toto".to string());
let name = nom le plus long(&names).unwrap();

println!("Le nom le plus long est {}", name);

}

Ici je sais qu’il y aura forcément un nom dans la liste. Je sais donc que le cas None ne peut pas se
produire. Faire un unwrap () m’évite toute la machinerie du match, ici inutile.

Mais évidemment, attention a ne pas en abuser ! Si je tombe sur un None qaund je fais un unwrap()
alors le programme va paniquer. Ce serait I’équivalent d'une NullPointerException, et on sait que
c’est grave. On ne veut pas de ca.

7.4. Les erreurs

Il y a un type qui ressemble a Option<T> et que I'on utilise trés souvent : le type Result<T,U>. Il est
utilisé pour indiquer qu’une fonction peut renvoyer soit un résultat normal, soit une erreur (si elle
échoue). Le premier type est le type de retour attendu, le second est un type d’erreur.

enum Result<T,U> {

0k(T),
Err(U),
}
fn division entiére(a: 132, b: i32) -> Result<i32,String> {
if b =0 {
Ok(a / b)
} else {
Err("division par zéro".to string())
}
}

fn division entiere mieux(a: i32, b: i32) -> Result<(i32,i32),String> {
if b =0 {
Ok((a / b, a % b))
} else {
Err("division par zéro".to string())
}
}

fn pgcd(a: 132, b: 132) -> Result<i32,String> {
let mut a = a; // Shadowing pour pouvoir modifier a : on oublie le a d'origine
let mut b b; // Idem
while a !'= 0 {
if a<b {
let tmp = b;
b = a;
a = tmp;
}
match division entiere mieux(a, b) {
Ok((_, nm)) == {
a =n;
b
Err(msg) => {
return Err(msg);

fn main() {
match pgcd(15,0) {
Ok(n) => {
println!("Le PGCD est {}", n);

3
Err(msg) => {

println! ("impossible de calculer le PGCD: {}", msg);
}

}

Ici, je gére l'erreur chaque fois qu’elle peut arriver. Le fait que division_entiére mieux renvoie un
Result m’oblige soit a traiter 'erreur localement, soit a la retourner a la fonction appelante. Je ne
peux pas I'ignorer. La encore, c’est une mesure de sécurité. En java / python, au mieux, on léverait
une exception et on laisserait le programme planter gentiment, parce que ’on aurait la flemme de
gérer I'exception. Ou bien, on la laisserait remonter la pile d’appels et on la traiterait tardivement, et
mal.

On a tendance a considérer que les erreurs sont exceptionnelles et ne font pas vraiment partie du
programme, mais sont simplement un truc qui nous embéte.

C’est faux, écrire un programme, c’est principalement gérer des erreurs potentielles. Dans certains
programmes, notamment ceux qui utilisent des données transmises par 'utilisateur, 'essentiel du
programme consiste a traiter des cas d’erreur. C’est une partie pénible et pas tres fun, mais il faut le
faire.

Result nous oblige donc a le faire. Mais la syntaxe est un peu lourde. Est-ce qu’on ne pourrait pas
alléger un peu tout ¢a ? Trés souvent, on veut juste renvoyer erreur a ’'appelant quand elle
survient. Comment faire ?

On peut utiliser la syntaxe ?

fn pgcd(a: 132, b: 132) -> Result<i32,String> {
let mut a = a; // Shadowing pour pouvoir modifier a : on oublie le a d'origine
let mut b = b; // Idem
while a !'= 0 {

ifa<b{
let tmp = b;
b = a;
a = tmp;

(, a) = division entiere mieux(a, b)?;

Ok(b)
}

Le ? est du sucre syntaxique qui simplifie énormément les écritures. Mais en arriere-plan, il fait la
méme chose que notre match.

L’avantage, c’est que 'on matérialise clairement les fonctions qui peuvent échouer, et les lignes au
sein de ces fonctions qui peuvent y échouer.

On peut les chainer. Imaginons qu’on veuille enchainer plusieurs actions dont chacune peut échouer.
On peut faire :

Utilisateur::new(name)?.ajouter score(10)?.donner les droits admin()?;

Ici on a trois méthodes qui peuvent échouer. Sans la syntaxe ?, il faudrait imbriquer trois match.

Evidemment, on ne peut utiliser le ? que dans les fonctions qui renvoient un Result<T,U>. Cela
n’aurait pas de sens ailleurs.

7.4.1. expect()
Parfois, quand une erreur survient, on ne sait pas quoi faire, et on souhaite simplement paniquer.

Cela arrive aussi quand on est encore en phase de développement et que ’on ne souhaite pas sortir
Partillerie lourde tout de suite. Il ne faut donc pas en abuser.

fn pgcd(a: 132, b: i32) -> 132 {
let mut a = a
let mut b = b;
while a !'= 0 {

’

if a<b {
let tmp = b;
b = a;
a = tmp;

(_, a) = division entiere mieux(a, b).expect("erreur de calcul du PGCD");

¥
b

fn main() {
println!("Le PGCD est {}", pgcd(15,0));

}

C’est plus léger, mais ce n’est a utiliser que dans les cas suivants :
- phase de prototypage, pas en prod,

- on ne sait pas quoi faire de cette erreur,

- erreur qui n’a que trés peu de chances de se produire.

7.4.2. Autres choses que ’on peut faire avec des Result<T,U> (et aussi des Option<T>)
Parfois, on sait que I'appel ne peut pas échouer. On ne veut donc pas s’embéter avec le retour
Err(U) : ¢a ne peut pas arriver. On va donc utiliser unwrap () pour récupérer la valeur attendue.

C’est la méme chose que expect (), mais sans le message d’erreur associé. Comme expect, ce n’est a
utiliser que lorsque I'on est siir que la valeur est 0Ok ou Some, et que 'on considére qu’il y aurait
forcément un bug quelque part dans le programme dans le cas contraire.

(_, a) = division entiere mieux(a, b).unwrap();

Parfois, on veut simplement récupérer une valeur par défaut en cas d’erreur. Dans ce cas on utilise
unwrap_or. Attention : parfois ¢a a un sens, parfois c’est incorrect. Dans notre cas, ce serait ridicule.

(, a) = division entiere mieux(a, b).unwrap or((0, 0));
// Ridicule : le PGCD de (15, 0) n'est pas 0 : il est indéfini. C'est forcément une
erreur !

7.4.3. panic! ()

Parfois, une erreur grave survient, tellement grave ou difficile a gérer que cela n’a pas de sens de
poursuivre ’exécution du programme. Dans ce cas, on va paniquer. Cela veut dire que ’on va faire
remonter une erreur que les fonctions n’ont pas a gérer. On le réserve aux cas vraiment
exceptionnels : il n’y a pas grand-chose d’autre a faire que de quitter proprement le programme.

Mais la plupart du temps, on va utiliser des Result<T,U> pour gérer les erreurs. Oui, c’est pénible a
gérer. C’est le prix a payer pour avoir des programmes robustes, corrects et efficaces.

8. Les structures de données
On peut rassembler des données dans une structure.

struct Joueur {
nom: String,
score: 132,
vies: 132,

fn afficher joueur(j: &Joueur) {
println!("{} a {} points et {} vies", j.nom, j.score, j.vies);

}

Par défaut, on ne peut ni copier, ni afficher (en mode debug), ni cloner un struct.
Faisons des essais qui vont échouer.

fn main() {
let j = Joueur {
score: 0O,
vies : 3,
}; // J'ai oublié de donner un nom

}

error[EQ063]: missing field "name’ in initializer of “Joueur’
--> src/main.rs:9:13

9 let j = Joueur {

I
| ANNANN missing Tname”

fn main() {
let j = Joueur {
score: 0,
vies : 3,
nom: "Toto", // "Toto" est de type &str, pas String
b
}

error[EQ308]: mismatched types
--> src/main.rs:12:14
I
12 | nom: “Toto",
| ~nannn expected “Stringt, found “&str’

help: try using a conversion method
I

12 | nom: "Toto".to string(),
| ++++++++

fn main() {
let j = Joueur {

score: 0O,
vies: 3,
nom: "Toto".to string(),

+
printtn! ("{:?}", j);

error[EQ277]: “Joueur’ doesn't implement ‘Debug’
--> src/main.rs:14:22
I
14 | printin! ("{:?}", j);
| ---- ~ “Joueur’ cannot be formatted using "{:?} because it
doesn't implement “Debug’
I I
| required by this formatting parameter
I
= help: the trait "Debug’ is not implemented for “Joueur’
note: add “#[derive(Debug)] ™ to “Joueur’ or manually “impl Debug for Joueur"
help: consider annotating “Joueur® with “#[derive(Debug)]1’
I
2 + #[derive(Debug)]
3 | struct Joueur {

Quoi ? C’est quoi cette histoire de Debug ?

En fait, pour pouvoir étre affiché avec {:?}, un type doit implémenter le trait Debug. C’est quoi un
trait ? On peut voir ¢a comme une interface Java. En gros, cela veut dire que le type concerné doit
implémenter certaines méthodes.

On peut aller au plus simple et appeler le débugger par défaut. Pour cela, au-dessus de la définition
du type, il faut ajouter les directives de compilation suivantes :

#[derive(Debug)]
struct Joueur {

Continuons a échouer.

fn main() {
let j1 = Joueur {score: 0, vies: 3, nom: "Toto".to string()};
let j2 = j1;
printin!("{:?}", j1);

}

error[E0382]: borrow of moved value: "j1°
--> src/main.rs:11:22

I

| let j1 = Joueur { score: 0, vies: 3, nom: "Toto".to string() };

| -- move occurs because “j1° has type “Joueur’, which does not implement
the “Copy’™ trait

9

10 | let j2 = j1;
| -- value moved here
11 | printtin! ("{:?}", j1);
| ~* value borrowed here after move
I
note: if “Joueur” implemented "Clone”, you could clone the value

Oh non ! En faisant j2 = j1,j’ai déplacé (move) j1 dans j2, donc maintenant, j1 n’est plus valide.
Mais moi, je voulais faire un clone. C’est vrai ¢a, le compilateur m’a donné une idée.

let j2 = jl.clone();

error[E0599]: no method named “clone” found for struct “Joueur’ in the current scope
--> src/main.rs:10:17

2 | struct Joueur {
| === method “clone” not found for this struct

10

| let j2 = jl.clone();

| ~ann method not found in “Joueur”

I

= help: items from traits can only be used if the trait is implemented and in
scope

= note: the following trait defines an item “clone’, perhaps you need to implement
it:

candidate #1: “Clone’
Méme probléme qu’avec Debug : pour pouvoir cloner un type, il doit implémenter Clone :

#[derive(Debug, Clone)]
struct Joueur {

Et 1a cela marchera.

8.1. Implémenter un type
On peut associer des méthodes a un type, et utiliser les grands principes de la programmation objet.

impl Joueur {
fn new(nom: &str) -> Joueur {
Joueur { nom: nom.to string(), score: 0, vies: 3 }

}

fn get score(&self) -> 132 {
self.score

}

fn get nom(&self) -> String {
self.nom

}

fn est vivant(&self) -> bool {
self.vies > 0

}

fn perdre vie(&mut self) {
self.vies -= 1;

}

fn gagner _des points(&mut self, score _en plus: i32) {
self.score += score_en plus;
}
}

fn main() {
let mut j = Joueur::new("toto");
let mut points = 1000;
while j.est vivant() {
j.gagner des points(points);
j.perdre vie();
points *= 2;

}

println! ("{} est mort, mais il a valeureusement gagné {} points", j.get nom(),
j.get score());

}

error[EO507]: cannot move out of “self.nom™ which is behind a shared reference
--> src/main.rs:18:5

I
18 | self.nom

| ANAAAAAN move occurs because “self.nom™ has type “String, which does not
implement the “Copy’ trait

help: consider cloning the value if the performance cost is acceptable

I
18 | self.nom.clone()
| ++++++++

Bon, OK, je fais ce qu’il dit, mais c’est relou : a chaque fois que j’appelle get nom(), je dois créer une
nouvelle chaine de caractéres sur le tas !

Est-ce que je ne pourrais pas simplement emprunter la valeur du nom, via une référence ? Promis, je
la rends apres.

Oui, on peut : ici on est siir que self.nom vivra aussi longtemps que self, donc il n’y aura pas de
probléeme de durée de vie.

fn get nom(&self) -> &str {
&self.nom

}

Ici, on ne fait pas de copie inutile. Pas d’allocation ni de désallocation couteuse. C’est mieux ! Mais
parfois on peut se heurter a des problémes de durée de vie.

8.2. Les types génériques
Je veux faire une fonction empty qui prend en parametre une référence vers un tableau et dit s’il est
vide ou non.

fn empty(tab: &[132]) -> bool {
tab.len() ==
}

Probléme : cette fonction ne peut étre utilisée que sur des &[i32]. J’aimerais aussi l'utiliser pour
vérifier si mon tableau de 64 est vide. Comment faire pour utiliser ma fonction sur n’importe quel
type T? On va utiliser un type générique.

fn empty<T>(tab: &[T]) -> bool {
tab.len() ==
}

fn main() {

println! ("{}", empty(&[1, 2, 31)); // type &[132]

printin! ("{}", empty(&["toto"1)); // type &[&str]

println! ("{}", empty(&[1)); // Oui c'est vide, mais c'est quoi le type de
T?
}

error[E0282]: type annotations needed
--> src/main.rs:16:20

Aann oo~ type must be known at this point

| cannot infer type of the type parameter T declared on the
function “empty”

I
help: consider specifying the generic argument

I
16 | println! ("{}", empty::<T>(&[1));

| +++++

I

16 | println! ("{}", empty(&[1));
I
I

On doit utiliser opérateur turbofish : :< pour d’obscures raisons de compilation : ici empty<T> serait
trop difficile & compiler, donc on doit écrire empty: : <T>.

fn main() {
println! ("{}", empty(&[1, 2, 31)); // type &[i32]
println! ("{}", empty(&["toto"1)); // type &[&str]
println! ("{}", empty::<i32>(&[1)); // Par exemple
let tab: &[char] = &[1; // Ca marche aussi
println!("{}", empty(tab));
let tab2: Vec<bool> = vec![];
println! ("{}", empty(&tab2));

}

Mais parfois, certaines fonctions génériques ne peuvent s’appliquer qu’a certains types. Par exemple,
on peut copier bit a bit des types simples (entiers, booléens, caractéres, tableaux bruts, enum simples,
etc.) mais pas les autres : ces types implémentent Copy.

fn head<T>(t: &[T]) -> Option<T> {
if empty(t) {
None
} else {
Some(t[0])
}
}

error[E0508]: cannot move out of type “[T] , a non-copy slice
--> src/main.rs:9:14

I
9 | Some(t[0])

| ANANN

I I

| cannot move out of here

| move occurs because “t[1% has type 'T°, which does not implement
the “Copy’ trait

help: if "T° implemented "Clone’, you could clone the value
--> src/main.rs:5:9

I
5 | fn head<T>(t: &[T]) -> Option<T> {
| ~ consider constraining this type parameter with “Clone®

9 | Some(t[0])
| ---- you could clone this value

Ici on a deux suggestions: soit utiliser un type Copy, soit utiliser un type Clone. Les types Clone sont
plus nombreux, mais ¢a implique de faire un .clone(), qui peut étre couteux.

fn head<T: Copy>(tab: &[T]) -> Option<T> {
if est vide(tab) {
None
} else {
Some(tab[0])
}
}

fn main() {
printin!("{:?}", head(&[1, 2, 31));
println!("{:?}", head(&["toto"1)); // type &[&str]
println! ("{:?}", head::<i32>(&[1)); // Par exemple
let tab: &[char] = &[1; // Ca marche aussi
println!("{:?}", head(tab));
let tab2: Vec<bool> = vec![];
printtn!("{:?}", head(&tab2));
let tab_tab: [Vec<bool>;2] = [vec![], vec![true, falsell;
println!("{:?}", head(&tab_tab));
}

error[E0277]: the trait bound "Vec<bool>: Copy is not satisfied
--> src/main.rs:22:25

I
22 | println!("{:?}", head(&tab tab));

| ---- AAannn the trait “Copy” is not implemented for
“Vec<bool>"

I |
| required by a bound introduced by this call

note: required by a bound in “head’
--> src/main.rs:5:12

I
5 | fn head<T: Copy>(t: &[T]) -> Option<T> {
| ~An required by this bound in “head®

Impossible d’appeler head (&tab_tab) car &tab_tab est de type &[Vec<bool>], or Vec<bool> n’est
pas Copy. Si on veut une fonction head qui marche avec tous les types clonables, il faut changer la
définition :

fn head<T: Clone>(t: &[T]) -> Option<T> {
if empty(t) {
None
} else {
Some(t[0].clone())
}
}

On fait un .clone(). Ce n’est pas gratuit, mais souvent c’est un cott acceptable pour simplifier
Pécriture des programmes.

Comment pourrait-on faire pour des types qui ne seraient pas Clone ? Il faudrait utiliser des
références, mais 13, attention aux durées de vie.

fn head2<T>(t: &[T]) -> Option<&T> {
if empty(t) {
None
} else {
Some (&t[0])

fn main() {
let mut sl: String = String::new();
let mut s2: &str = &"";
{
let mut s3: &str = &"";
let tab = &["toto".to string()];
// On fait des .unwrap() parce qu'on est s{r qu'on aura des Some(T)

sl = head(tab).unwrap(); // On fait un .clone()
s2 = head2(tab).unwrap();
s3 = head2(tab).unwrap();

println!("{}", sl1);
println!("{}", s2);
printtn!("{}", s3);
}
println! ("{}", sl);
printin! ("{}", s2);
}

error[EQ716]: temporary value dropped while borrowed
--> src/main.rs:26:16

I
26 | let tab = &["toto".to string()];

| AANNNNNNNNNNNNNNNNNN creates a temporary value which is freed
while still in use

33

-- borrow later used here

|}

| - temporary value is freed at the end of this statement
34 | printtn!("{}", sl);
35 | printin!("{}", s2);

I

I

Eh oui : les références, c’est génial, c’est beaucoup plus léger qu’un .clone(), mais on a rapidement
des problémes de durée de vie. En rust, le compilateur nous aide a détecter ces erreurs, en C/C++ on
tombe sur une vulnérabilité difficile a détecter.

Moralité : a moins d’avoir besoin de performance & un endroit donné, le plus sage / simple la plupart
du temps, c’est de commencer en faisant un clone.

8.2.1. Types génériques
On a fait des fonctions génériques, créons maintenant un type générique avec des méthodes
associées.

Un dictionnaire, c’est un ensemble de paires clé/valeur. La clé est une chaine de caractéres, la valeur
est n’importe quel type clonable. Une paire, c’est donc un tuple de deux éléments, une chaine, et un
T clonable.

type Pair<T: Clone> = (String, T);

struct Dict<T: Clone> (Vec<Pair<T>>);
Ici j’ai défini Dict<T> comme étant un tuple qui contient un seul élément.

impl<T: Clone> Dict<T> {
fn new() -> Dict<T> {

Dict(vec![])
}

fn len(&self) -> usize {
self.0.len()
}
}

fn main() {
let d: Dict<String> = Dict::new();
println!("d.len()={}", d.len());

}

Jusqu’ici, tout fonctionnerait méme avec des type non Clone, évidemment. Continuons.

impl<T: Clone> Dict<T> {

fn get(&self, key: &str) -> Option<T> {
for p in &self.0 {
if p.0 == key {
return Some(p.l.clone());

}

None

}

fn set(&mut self, key: &str, value: T) {
for p in &mut self.0 {
if p.0 == key {
p.1 = value;
return;
}
}
self.0.push((key.to string(), value));
}
}

fn main() {
let mut d: Dict<String> = Dict::new();
d.set("toto", "titi".to string());
d.set("toto", "tata".to string());
println!("d.len()={}", d.len());
println!("{:?}", d.get("toto"));

}

Beaucoup de subtilités : parfois on doit faire .to_string(), parfois non. Heureusement, le
compilateur nous guide a chaque fois.

Maintenant, j’aimerais avoir un dictionnaire qui ne prend pas forcément des chaines comme clés,
mais n’importe quel type qui est comparable.

type Pair<K, T: Clone> = (K, T);
struct Dict<K, T: Clone> (Vec<Pair<K,T>>);

impl<K, T: Clone> Dict<K,T> {
fn new() -> Dict<K,T> {

Dict(vec![])
}

fn len(&self) -> usize {
self.0.len()
}

fn get(&self, key: K) -> Option<T> {
for p in &self.0 {
if p.0 == key {

return Some(p.l.clone());

}

None

}

fn set(&mut self, key: K, value: T) {
for p in &mut self.0 {
if p.0 == key {
p.1 = value;
return;
}
}
self.0.push((key, value));
}
}

fn main() {
let mut d: Dict<String, String> = Dict::new();
d.set("toto".to string(), "titi".to string());
d.set("toto".to string(), "tata".to string());
println!("d.len()={}", d.len());
println!("{:?}", d.get("toto".to string()));

}

error[E0369]: binary operation == cannot be applied to type "K'
--> src/main.rs:16:18
I
16 | if p.0 == key {
| .- M - K
I I
| K
I
help: consider restricting type parameter "K' with trait “PartialEq"
I
5 | impl<K: std::cmp::PartialkEq, T: Clone> Dict<K,T> {
| e o o o T

error[E0369]: binary operation == cannot be applied to type "K'
--> src/main.rs:25:18
I
25 | if p.0 == key {

| [O N K

I I
| K
I

help: consider restricting type parameter "K' with trait “PartialEq’

I
5 | impl<K: std::cmp::PartialEq, T: Clone> Dict<K,T> {
| ++++++H+

La clé doit étre comparable, on doit pouvoir faire un == dessus. Pour cela, il faut que le type
implément le trait PartialEq:

type Pair<K: PartialEq, T: Clone> = (K, T);
struct Dict<K: PartialEqg, T: Clone> (Vec<Pair<K,T>>);

impl<K: PartialEq, T: Clone> Dict<K,T> {

Et maintenant, on peut utiliser n’importe quel type PartialEq en tant que clé. Par exemple,
Vec<bool> est PartialEq, on peut donc l'utiliser.

fn main() {
let mut d: Dict<Vec<bool>, String> = Dict::new();
d.set(vec![true,false], "titi".to string());
d.set(vec![true,false], "tata".to string());
println!("d.len()={}", d.len());
println!("{:?}", d.get(vec![truel));

}

8.3. Les traits

C’est quoi ces histoires de traits ? En fait, un trait, c’est un ensemble de méthodes qu’'un type
s’engage a implémenter. C’est un peu I’équivalent des interfaces en java, mais en un peu plus
puissant.

Par exemple, imaginons que je veuille définir un moyen d’avoir une valeur par défaut pour mon
dictionnaire. La valeur par défaut, c’est simplement le dictionnaire vide. Je vais donc implémenter le
trait Default, et pour ce faire, je vais avoir besoin d’implémenter une méthode default().

impl<K: PartialEq, T: Clone> Default for Dict<K,T> {
fn default() -> Self {
Dict::new()
}
}

Ici, Self veut dire “le type actuel”. C’est une facon plus générique de dire “ma fonction renvoie une
valeur du type actuel”.

A quoi ca sert ? Ca peut servir avec le type Option<T>, par exemple. Si T est Default, alors on peut
utiliser la méthode unwrap or default() :

fn main() {
let optl = Some(1l);
let opt2: Option<i32> = None;
printtn!("{}", optl.unwrap());
println! ("{}", opt2.unwrap());

1
thread 'main' (79) panicked at src/main.rs:38:25:
called “Option::unwrap()® on a “None® value

J’ai appelé unwrap () sur un None. C’est une catastrophe, le programme plante, j’aurais di gérer mon
code mieux et faire un pattern matching. Je suis un mauvais programmeur.

fn main() {
let optl = Some(l);
let opt2: Option<i32> = None;
println! ("{}", optl.unwrap or default());
println! ("{}", opt2.unwrap or default())

Ca marche ! Je lui ai dit de prendre la valeur par défaut en cas de None. Attention, ce n’est pas une
facon correcte de gérer toutes les Option : parfois, None et Some (0) n’ont pas la méme sémantique et
on ne peut pas les ignorer. On I’a vu avec les PGCD plus haut.

La fonction unwrap_or_default marche pour les types qui sont Default, mais pas pour les autres.

struct Joueur {
nom: String,
score: 132,
vies: 132,

fn main() {
let opt: Option<Joueur> = None;
println!("Le nom du joueur par défaut est {}", opt.unwrap or default().nom);

error[EQ277]: the trait bound “Joueur: Default® is not satisfied
--> src/main.rs:42:56
I
42 | println!("Le nom du joueur par défaut est {}",
opt.unwrap_or_default().nom);

| AAAAAAAAAAAAAAAAN the

trait "Default’ is not implemented for “Joueur’
I
note: required by a bound in “Option::<T>::unwrap or default’
--> /playground/.rustup/toolchains/stable-x86 64-unknown-linux-gnu/lib/rustlib/
src/rust/library/core/src/option.rs:1094:12

1092 | pub const fn unwrap or default(self) -> T
| e required by a bound in this associated
function
1093 | where
1094 | T: [const] Default,

| AANANAANNNNNNNN required by this bound in
"Option::<T>::unwrap or default’

Il faut donc que mon type Joueur implémente Default:

impl Default for Joueur {
fn default() -> Self {

Joueur {
nom: "<anonyme>".to string(),
score: 0,

vies: 3,

}

Pour certains traits trés communs, il existe une implémentation par défaut du trait. Si on veut
I'utiliser, on peut utiliser la directive de compilation #derive. On I'utilise souvent pour Copy, Clone,
Debug, Default et d’autres.

#[derive(Debug, Default)]
struct Joueur {

nom: String,

score: 132,

vies: 132,

fn main() {
let opt: Option<Joueur> = None;
println!("Le joueur par défaut est {:?}", opt.unwrap or default());

}

Le joueur par défaut est Joueur { nom: , score: 0, vies: 0 }

Magnifique ! Les traits et la généricité sont complexes a maitriser, mais ils ont I’avantage d’éviter de
dupliquer du code, et cela en toute sécurité (le compilateur veille !) et sans colit supplémentaire a
Pexécution : un type générique n’est pas plus lent ni ne consomme plus de mémoire qu'un type
standard. Par contre, la compilation est un peu plus lente.

A propos de choses complexes...

9. Les lifetimes

Notion inventée par rust, indispensable quand on manipule des références de maniére un peu
complexe.

Quand on a une référence, on doit garder en téte combien de temps elle vit : elle ne peut pas vivre
plus longtemps que la valeur référencée. Mais quand on jongle avec plusieurs références, qui
référencent des valeurs qui n’ont pas forcément toutes la méme durée de vie, comment ¢a se passe ?

fn la _plus longue (sl: &str, s2: &str) -> &str {
if sl.len() > s2.len() {
sl
} else {
s2

fn main() {
println!("{}", la_plus longue("toto", "titi"));
}

error[EQ106]: missing lifetime specifier
--> src/main.rs:1:43

1 | fn la_plus longue (sl: &str, s2: &str) -> &str {

A~

I
I
| ---- ---- expected named lifetime parameter
I

help: this function's return type contains a borrowed value, but the signature
does not say whether it is borrowed from “sl1° or “s2°
help: consider introducing a named lifetime parameter

I
1 | fn la plus longue<'a> (sl: &'a str, s2: &'a str) -> &'a str {
| ++++ ++ ++ ++

Ici, le compilateur est perdu : quelle est la durée de vie de chacune des références ? Est-ce qu’'il y en a
une qui vit plus longtemps que les autres ?

Il va falloir étiqueter les références avec des tags de lifetime. Par exemple, &'a str signifie “une
référence vers une chaine, qui vivra un temps identifié comme ‘a“. Oui, c’est vague, c’est normal, on
veut rester assez générique.

Ici, il va falloir que s1 et s2 vivent aussi longtemps 'une que lautre, et le résultat vivra aussi
longtemps que s1 et s2.

fn la _plus longue<'a> (sl: &'a str, s2: &'a str) -> &'a str {
if sl.len() > s2.len() {
sl
} else {
s2

fn main() {
println!("{}", la_plus_longue("toto", "titi"));
}

titi

Et si mes deux parametres ont des lifetime concrets différents ? Eh bien, 'a sera le plus petit des
deux.

fn main() {
let s1 = "tototo".to string();
let res;
{
let s2 = "titi".to string();
res = la plus longue(&sl, &s2);
}
println!("{}", res);
}

error[E0597]: “s2° does not live long enough
--> src/main.rs:14:35

13 | let s2 = "titi".to string();
-- binding “s2° declared here

I
14 | res = la plus longue(&sl, &s2);

| ~n~ borrowed value does not live long enough
15 | }

| *s2" dropped here while still borrowed
16 | println!("{}", res);

I

--- borrow later used here

Ici 'a est la durée de vie de s2, pas celle de s1, car s2 vit moins longtemps que s1. Ce qui veut dire
que le résultat ne pourra pas vivre plus longtemps que s2, quoi qu’il arrive. C’est pour ¢a que le
compilateur refuse notre code (alors que, techniquement, il est correct, mais le compilateur ne peut
pas le savoir).

C’est important (et compliqué) quand on stocke des références dans des struct.

struct Joueur {
nom: &str,
score: 132,
vies: 132,

error[EQ106]: missing lifetime specifier
--> src/main.rs:2:10
I
2 | nom: &str,
| ~ expected named lifetime parameter
I
help: consider introducing a named lifetime parameter
I
1 ~ struct Joueur<'a> {
2 ~ nom: &'a str,
I

Eh oui : ici, on a besoin de savoir que la référence vivra... un certain temps, en tout cas au moins
aussi longtemps que le struct en lui-méme.

#[derive(Default,Debug,Clone)]
struct Joueur<'a> {

nom: &'a str,

score: 132,

vies: 132,

fn main() {
let mut j = Joueur::default();
for i in 0..10 {
j.score = i; // On fait des copies : aucun souci !

}
for in 0..10 {

let nom = "toto".to string();

j.nom = &nom; // Erreur : nom ne vit pas assez longtemps !
}

}

error[E0597]: “nom™ does not live long enough
--> src/main.rs:15:13

14 | let nom = "toto".to string();

| --- binding “nom® declared here

| j.nom = &nom; // Erreur : nom ne vit pas assez longtemps !
| ~m~” porrowed value does not live long enough

16 |}

I

- “nom” dropped here while still borrowed
Evidemment, il n’y aura aucun souci ici :

fn main() {
let mut j = Joueur::default();
for i in 0..10 {
j.score = i; // On fait des copies : aucun souci !
}
let nom = "toto".to string();
for in 0..10 {
j.nom = &nom; // nom est défini au-dessus, il vit aussi longtemps que j, aucun
souci.

}
}

9.1. Dictionnaire et refs

On refait notre type Dict mais avec des références cette fois. Ce sera plus efficace en temps CPU et
en mémoire, mais attention aux subtilités des durées de vie.

type Pair<T> (&str, &T);

error[EQ106]: missing lifetime specifier
--> src/lib.rs:1:17
I
1 | type Pair<T> = (&str, &T);
| ~ expected named lifetime parameter
I
help: consider introducing a named lifetime parameter
I
1 | type Pair<'a, T> = (&'a str, &T);
| +++ ++

error[EQ106]: missing lifetime specifier
--> src/lib.rs:1:23
I

1 | type Pair<T> = (&str, &T);
| ~ expected named lifetime parameter

help: consider introducing a named lifetime parameter

I
1 | type Pair<'a, T> = (&str, &'a T);
| +++ ++

On a des refs dans un struct. On doit donc dire quel est le lifetime de chaque référence et du type
en lui-méme.

type Pair<'a,T> (&'a str, &'a T);

Ca C’est bien, mais ¢a veut dire que la durée de vie des deux éléments est égale a la plus petite durée
de vie. Ca peut poser des problémes subtils :

type Pair<'a, T> = (&'a str, &'a T);

fn get key<'a, T>(p: Pair<'a, T>) -> &'a str {
p.o
}

fn main() {
let name: &str = &String::from("toto");
let key;
{
let age = 42;
let p = (name, &age);
key = get key(p);
// p sort du scope et est détruit, age sort du scope;
}
println!("{}", key); // key vit aussi longtemps que age.
}

error[E0597]: “age” does not live long enough
--> src/main.rs:12:24
I
11 | let age = 42;
| --- binding “age’ declared here
let p = (name, &age);
~n~n pborrowed value does not live long enough

12

15 }

I
| ‘age’ dropped here while still borrowed

16 | println!("{}", key); // key vit aussi longtemps que age,
| --- borrow later used here

Il n’y a pas de raison : en théorie, ce que référence key vit assez longtemps, mais on a dit au
compilateur que key avait la méme durée de vie que age, qui est sorti du scope.

type Pair<'a, 'b, T> = (&'a str, &'b T);
fn get key<'a, 'b, T>(p: Pair<'a, 'b, T>) -> &'a str {

p.0o
}

fn main() {
let name: &str = &String::from("toto");

let key;

{
let age = 42;
let p = (name, &age);
key = get_key(p);
// p sort du scope et est détruit, age sort du scope;
// mais key est encore vivant, il a un lifetime différent.
}
printtn!("{}", key);
}
toto

Eh oui, c’est méga-chaud a bien comprendre, c’est sans doute I'aspect le plus difficile de rust. Mais
c’est ce qui permet d’avoir a la fois :

- une sireté du typage
- pas de garbage collector ni aucun autre dispositif coliteux en temps CPU / en RAM,
- un dispositif permettant de ne pas devoir cloner a tout va.

Quand on développe, pour éviter optimisation prématurée, il est conseillé d’utiliser des .clone()
généreusement méme si ce n’est pas optimal, pour éviter les problémes de lifetime.

9.2. Le lifetime 'static

Il y a des valeurs qui existent tout au long de la vie du programme. Ce sont les littéraux qui sont
déclarés tels quels dans le programme.

Notamment, les chaines de caractéres litérales sont statiques.

fn main() {

let r;
{
r = &"titi"; // "titi" est 'static
}
printin! ("{}", r);
}
titi

fn main() {
let r: &str;
{
r=&("titi".to string());
}
println! ("{}", r);
}

error[E0716]: temporary value dropped while borrowed
--> src/main.rs:4:10
I
4 | r=&(("titi".to string());
| NANNNNNNNNNNNNANNNAN . temporary value is freed at the end of this
statement

| creates a temporary value which is freed while still in use

6 printtn! ("{}", r);

I
| - borrow later used here
I

Ca veut dire qu’on peut contraindre notre paire pour que la clé soit forcément une chaine statique.

type Pair<'a, T> = (&'static str, &'a T);

fn get key<'a, T> (p: Pair<'a, T>) -> &'static str {
p.key
}

fn main() {
let key;
{
let name = "toto"; // &'static str
let p = (name, 42);
key = p.get key();
}
printtn!("{}", key);
}

toto
type Pair<'a, T> = (&'static str, &'a T);

fn get key<'a, T> (p: Pair<'a, T>) -> &'a str {
p.key
}

fn main() {
let key;
{
let name = "toto"; // &'static str
let p = (name, 42);
key = p.get key();
}
println!("{}", key);
}

error[E0597]: “val® does not live long enough
--> src/main.rs:12:20

11 | let val = 42;
| --- binding “val® declared here
12 | let p = (name, &val);
| ~n~n pborrowed value does not live long enough
13 | key = get key(p);
14 | }
| - “val® dropped here while still borrowed
15 | printtn! ("{}", key);
I

--- borrow later used here

Dans le second cas ¢a ne marche pas car on a contraine le résultat de get_key a ne pas vivre plus
longtemps que le struct en lui-méme

10. Le type Box<T>

10.1. La liste chainée

Qu’est-ce qu’une liste chainée ? C’est une structure composée de noeuds. Un noeud, c’est soit rien,
soit une valeur et une référence vers une autre liste.

Quand on dit “soit/soit”, il faut penser “enum” (type somme plus précisément).

enum List<T> {

Vide,

Noeud (T, List<T>),
}

error[E0072]: recursive type "List® has infinite size
--> src/main.rs:2:1

2 | enum List<T> {
| ARAAARAAAAAA
Vide,
Noeud(T, List<T>)
——————— recursive without indirection

3
4

4 Noeud (T, Box<List<T>>)

I
I
I
I
help: insert some indirection (e.g., a "Box’, "Rc’, or "&) to break the cycle
I
I
| ++++ +

Eh oui, quelle est la taille de I’alternative Noeud ? Si une liste contient une liste, on a une structure de
taille infinie.

11 faut donc utiliser une référence pour éviter la récursion. Le compilateur nous parle de Box et de Rc,
ce sont des types de références avancés dont on parlera plus tard. Spoiler pour ceux a qui ¢a parle :
ce sont les équivalent des types C++ unique ptr et shared ptr.

enum List<T> {
Vide,
Noeud (T, &List<T>)

error[EQ106]: missing lifetime specifier
--> src/main.rs:4:14

I

4 | Noeud (T, &List<T>)
| ~ expected named lifetime parameter
I

help: consider introducing a named lifetime parameter

I

~ enum List<'a, T> {

| Vide,

~ Noeud (T, &'a List<T>)

I

C’est mieux, mais on a besoin d’identifier les lifetime vu qu’on a une référence dans un enum.

enum List<'a,T> {
Vide,
Noeud(T, &'a List<'a, T>)

impl<'a,T> List<'a, T> {
fn new() -> Self {
List::Vide
}

fn len(&self) -> usize {
match &self {
List::Vide = 0,
List::Noeud(, suite) == 1 + suite.len(),

}

fn main() {
printtn! ("{}", List::<i32>::new().len());
}

Pas mal ! Maintenant, ajoutons des données a la liste.

#[derive(Debug, Clone)]
enum List<'a,T: Clone> {
Vide,
Noeud (T, &'a List<'a, T>)
}

impl<'a,T: Clone> List<'a, T> {
fn new() -> Self {
List::Vide
}

fn len(&self) -> usize {
match &self {
List::Vide = 0,
List::Noeud(, suite) == 1 + suite.len(),

}

fn tete(&self) -> Option<T> {
match &self {
List::Vide => None,
List::Noeud(val,) => Some(val.clone())

}

fn main() {
let 1: List<i32> = List::new();
printin! ("{}", l.len());
println! ("{:?}", l.tete());
let 12 = List::Noeud(42, &List::Vide);
printtn!("{}", 12.len());
println!("{:?}", 12.tete());
let 13 = List::Noeud(0, &12);
printtn!("{}", 13.len());
println!("{:?}", 13.tete());
printin!("{:?}", 13);

0

None

1

Some(42)

2

Some(0)

Noeud (0, Noeud(42, Vide))

Hey, c’est pas mal ! Mais j’aimerais bien une méthode push qui prend un élément, une liste, et
renvoie la nouvelle liste.

fn push(&self, val: T) -> Self {
List::Noeud(val, self)
}

error: lifetime may not live long enough
--> src/main.rs:27:9

7 | impl<'a,T: Clone> List<'a, T> {

| -- lifetime " 'a® defined here
26 | fn push(&self, val: T) -> Self {

| - let's call the lifetime of this reference "'1°
27 | List::Noeud(val, self)

| NANAAINANAAANANAANAAAN method was supposed to return data with lifetime
a’ but it is returning data with lifetime " '1°

M

Bon la on n’y comprend rien, mais le probléme, c’est qu’on utilise une référence vers self, or self
est une référence locale. Sa durée de vie est donc celle de la fonction.

C’est vraiment le bazar : comment faire pour que la liste posséde une référence vers self plutdt que
d’en emprunter une ?

Parce que c’est cela qu’on essaie de résoudre :
- une référence (pour éviter la taille infinie)
- une référence que 'on posséde (pour ne plus étre embétés par les lifetimes).

Pour cela, on va utiliser un Box<T>. Un Box, c’est une référence vers une valeur, que 'on possede (et
pas que 'on emprunte). Il ne peut y avoir qu’une seule Box qui référence une valeur donnée. La
valeur en question vit aussi longtemps que le Boxet est détruite au moment ou le Box sort du scope.

10.2. La mise en boite avec Box<T>

Quand on fait un Box<T>, on alloue sur le tas de quoi stocker un objet de type T. Le Box en lui-méme
est de taille fixe, tandis que le T peut étre de taille quelconque. Ca permet de stocker des structures
récursives comme une liste chainée, ou de faire du polymorphisme avec des traits (coucou la
programmation objet).

fn main() {

let b = Box::new(42); // On alloue sur le tas la valeur 42 et on récupere un
pointeur intelligent dessus

printtn!("{}", b);

println!("{}", *b); // Implicite

// drop(b);
}

Magnifique. Qu’est-ce que je peux faire avec ce machin, a part le créer avec new() et le déréférencer
avec *?

Je peux le préter a quelqu’un, comme n’importe quelle référence :

fn main() {
let a: &Box<i32>;

{
let b = Box::new(42);
printtn!("{}", b);
let c: &Box<i32> = &b;
printin!("{}", c); // OK : c vit aussi longtemps que b
a = &b;
// b est détruit :
// drop(b);
}

printin!("{}", a); // Pas OK, évidemment
}

Je peux aussi en transférer la propriété a quelqu’un d’autre :

fn main() {

let b: Box<i32> = Box::new(42);

let b2: Box<i32> = b; // Maintenant c'est b2 qui possede les données : b est
invalide

println!("{}", b); // Invalide !

// drop(b2);
}

Transférer la propriété est tres peu cotiteux.

Un Box<T> permet donc d’avoir la propriété d’objets qui sont sur le tas plut6t que sur la pile.

10.2.1. Retour a la liste chainée
Tout devient plus simple pour décrire notre liste chainée :

#[derive(Debug, Clone)]
enum List<T: Clone> {
Vide,
Noeud (T, Box<List<T>>)
}

impl<T: Clone> List<T> {
fn new() -> Self {
List::Vide
}

fn len(&self) -> usize {
match &self {
List::Vide = 0,
List::Noeud(, suite) == 1 + suite.len(),

}

fn tete(&self) -> Option<T> {
match &self {
List::Vide => None,
List::Noeud(val,) => Some(val.clone())

}

fn push(&self, val: T) -> Self {
List::Noeud(val, Box::new(self.clone()))
}
}

fn main() {
let 1: List<i32> = List::new();
println!("{}", l.len());
printtn!("{:?}", 1l.tete());
let 12 = List::Noeud(42, Box::new(List::Vide));
printin! ("{}", 12.len());
println! ("{:?}", 12.tete());
let 13 = List::Noeud(0, Box::new(12));
println!("{}", 13.len());
println!("{:?}", 13.tete());
printtn!("{:?}", 13);

}

0

None

1

Some(42)

2

Some(0)

Noeud (0, Noeud(42, Vide))

On n’est plus embété par les lifetimes, et un Box, c’est relativement léger, un peu plus lourd qu’une
référence brute. Ca implique quand méme une allocation sur le tas, on ne va donc pas les utiliser
partout.

En fait, on les utilise quand :

- on veut posséder les données (et pas seulement les emprunter),

— la taille des données n’est pas connue a la compilation,

- on veut stocker des objets trés volumineux (la taille de la pile est trés limitée),
- on veut faire du polymorphisme.

10.3. Complications...
Les Box<T> c’est cool, ¢ca permet de faire des listes simplement chainées et des arbres. Mais sorti de
13, c’est plus compliqué...

10.3.1. Les graphes acycliques dirigés

Ici, qui possede D ? Bou C?

10.3.2. Les tourniquets et autres graphes cycliques
Je souhaite représenter un tourniquet. Un tourniquet, c’est une liste chainée dans laquelle le dernier
élément pointe vers le premier.

Ici, qui posséde quoi ? Les élements se “possedent” récursivement.

Ou imaginons une liste doublement chainée : chaque élément pointe vers son suivant et son
précédent.

Ici c’est pareil : B est possédé a la fois par A et par C, qui eux-mémes possédent B.
Peut-on utiliser des Box dans ces cas-la ?

Non ! Dans un Box il n’y a ni partage, ni récursivité. Dans ces cas-13, on doit utiliser des Rc.

11. Le type Re<T>

C’est un compteur de références (Reference Counter). On en a déja parlé : c’est un garbage collector
minimaliste. Plusieurs variables peuvent référencer la méme donnée. Chaque fois que cette donnée
est référencée, un compteur est incrémenté. Chaque fois qu’une référence sort du scope, elle est
détruite, et le compteur est décrémenté. Quand le compteur arrive a 0, la valeur référencée est
détruite a son tour.

C’est tres utile quand les valeurs sont référencées de facon trés complexe et dynamique (exemple
typique : un graphe d’objets). Dans ce cas, il est difficile de savoir qui possede quoi, qui doit détruire
quoi, qui vit plus longtemps que quoi. C’est 1a qu’on va utiliser un Rc. C’est beaucoup plus lourd
qu’une référence normale ou méme une Box, mais c’est parfois incontournable.

Pour utiliser des Rc, on doit importer le module std: : rc;

use std::rc::Rc;

fn main() {
let x0;
{
let x1 = Rc::new(42); // Allocation sur le tas d'un entier
println! ("{}", Rc::strong count(&x1)); // 1
let x2 = Rc::clone(&x1);
printtn!("{}", Rc::strong count(&xl)); // 2

{

let x3 = Rc::clone(&x1);

let x4 = Rc::clone(&x3);

println!("{}", Rc::strong _count(&x1)); // 4

// x3 et x4 sortent du scope: strong count = 2
}

printtln!("{}", Rc::strong count(&xl)); // 2

x0 = Rc::clone(&x2);

println! ("{}", Rc::strong count(&x2)); // 3

// x1 (qui était le créateur !) et x2 sortent du scope: 1

}
println!("{}", Rc::strong count(&x0)); // 1
// X0 sort du scope, strong count = 0, la zone sur le tas est libérée.

}

On a rarement besoin d’utiliser strong_count, ici c’est pour voir comment cela fonctionne.

11.0.1. Retour au DAG
Reprenons le graphe suivant :

Nous pouvons le représenter avec des Rc : chaque noeud possede un label et une liste
(éventuellement vide) de noeuds fils. Un méme noeud fils peut étre référencé par plusieurs parents,
donc, on ne peut pas utiliser de Box.

use std::rc::Rc;

struct Node {
name: &'static str,
children: Vec<Rc<Node>>,

}

fn main() {
let d = Rc::new(Node {
name: "“D",
children: vec![],

1)
let e = Rc::new(Node {
name: "“E",
children: vec![],
1}
let b = Rc::new(Node {
name: "B",
children: vec![d.clone()],
b
let ¢ = Rc::new(Node {
name: “C",
children: vec![d.clone(), e.clone()],
1}
let a = Rc::new(Node {
name: "A",
children: vec![b.clone(), c.clone()],
1)

for node in [&a, &b, &c, &d, &e] {
println!("{}: {}", node.name, Rc::strong count(node));

-

moo w>
N WNN R

A la sortie de la fonction, tous les compteurs sont décrémentés étant donné que les variables sortent
du scope. Comme A passe a 0, alors il est détruit, cd qui fait que B et C passent a 0, etc.

Et pour faire un cycle ? C’est un peu plus compliqué. Car les cycles posent probleme aux compteurs
de référence.

12. Lambdas, programmation fonctionnelle et itérateurs
L’outil de base en programmation fonctionnelle, ce sont les fonctions anonymes, c’est-a-dire les
litéraux de type fonction (fn).

fn main() {

let f = |n: i32| n * 2; // f double son parametre n

let a = 1;

let b = f(a);

let ¢ = f(b);

let mut d = f(c);

for _in 0..10 {

d = f(d);

}

println! ("{}", d);
}
8192

Ici, f est de type fn (i32) -> i32. On peut trés bien imaginer un tableau qui contient des fonctions
de ce type.

fn main() {
let id = |n: 132| n;
let double = |n: 132| n * 2;
let incr = [n: 132 n + 1;
let abs = |n: i32] if n <0 { -n } else { n };

let tab: [fn(i32) -> i32; 5] = [
id,
double,
incr,
abs,
|n: i32] n / 2

let mut a = 42;

for f in tab {
a = f(a);
println!("{}", a);

}

On parle de lambdas ou de closures. On n’est pas limité a la programmation fonctionnelle pure, on
peut avoir une lambda qui modifie ses parameétres, si ces derniers sont &mut évidemment.

let f = |x: &mut 132, y: i32| x +=vy;
let mut a = 0;
for i in i..10 {
f(&mut a, 1); // On voit bien dans 1'appel que f peut modifier a

}
println!("{}", a);

Les lambdas capturent leur environnement (c’est-a-dire les variables qui 'entourent), ce qui est
pratique mais a de grosses conséquences en matiére de typage.

let mut a = 0;
let mut incremente a = |x: 1i32]| a += X;
for i in 1..10 {

incremente a(i);

}

On peut avoir des lambdas qui n’ont pas de parametre :

let mut a = 0;
let mut incremente a = || a += a;
for i in 1..10 {

incremente a();

}

Beaucoup de choses sont faisables avec des lambdas, et le langage peut devenir trés complexe quand
on méle lambdas, mutabilité, lifetime, capture de 'environnement et autres. On n’entrera pas trop
dans les détails, mais on va voir a quoi cela sert concrétement.

12.1. Les itérateurs
Un itérateur, c’est quelque chose qui permet d’itérer sur des valeurs : I'itérateur fournit une nouvelle
valeur a la demande, jusqu’a ce qu’il soit vide.

L’itérateur le plus simple, c’est “toutes les valeurs entiéres entre a et b”, que I'on utilise tout le
temps :

let tab = [0, 1, 2, 4, 8];
let it = 0..tab.len(); // Ca c'est un itérateur
for i in it {
printtn!("{}", tab[i]);
}

On peut aussi récupérer un itérateur sur les collections (tableaux, vecteurs, mais aussi ensembles,
hashmaps, etc.) en appelant la méthode .iter() :

let tab = [0, 1, 2, 4, 81;

for val in tab.iter() { // tab.iter() est un itérateur
println!("{}", val);

}

Souvent, dans les boucles for, on peut omettre 'appel a .iter(), qui devient implicite :

let tab = [0, 1, 2, 4, 8];

for val in tab { // appel implicite de tab.iter()
printtn!("{}", val);

}

Un itérateur, c’est simplement quelque chose qui implémente le trait Iterator. Le trait Iterator a
une méthode intéressante :

fn next(&mut self) -> Option<T>;

C’est la fonction qui renvoie 1’élément suivant, ou None lorsque la fin est atteinte. On peut créer nos
propres itérateurs si on en a envie, sur nos propres types.

Quand on appelle .next (), on dit que 'on consomme I'itérateur.
Cela veut dire qu’un appel en apparence trivial comme :

let tab = [0, 1, 2, 4, 8];

for val in tab {
printin!("{}", val);

}

Se traduit en réalité par quelque chose comme :

let tab = [0, 1, 2, 4, 8];

let mut it = tab.iter();
while true { // On aurait aussi pu écrire "loop {"
let next = it.next();
match next {
None => {
break;
+

Some(val) => {
printin!("{}", val);
}
}
}

A part 'utiliser dans un for, que peut-on faire avec un itérateur ? Plein de choses, en réalité. Il y a
énormément de méthodes associées. On peut par exemple remplacer notre boucle for par un appel a
for _each() :

let tab = [0, 1, 2, 4, 8];
tab.iter().for each(|val| printin!("{}", val));

La méthode for_each prend une lambda en parametre. Elle appelle la méthode next () et, si elle
obtient Som(val), appelle la lambda sur val. Elle recommence, jusqu’a ce qu’elle tombe sur None.

A quoi ca sert ? C’est plus compact qu’une boucle for, si 'on a un traitement simple a faire sur
chaque élément, c’est souvent plus lisible.

On peut faire d’autres choses. Par exemple, calculer la somme des valeurs via la méthode sum :

let tab = [0, 1, 2, 4, 8];
let s: 132 = tab.iter().sum();
println!("{}", s);

Ici, j’ai dfi indiquer le type de s car sum() renvoie quelque chose qui implémente le trait Sum<T>.
Avec les itérateurs, on arrive a des niveaux de généricité (et de complexité d’écriture) tellement
élevés qu’il faut souvent expliciter ce que 'on attend.

Certaines méthodes produisent d’autres itérateurs. C’est le cas des méthodes bien aimées des adeptes
de la programmation fonctionnelle : map et filter

La méthode map permet d’appliquer une fonction données a tous les éléments d’un itérateur et de
renvoyer un nouvel itérateur avec les nouvelles valeurs :

let tab = [0, 1, 2, 4, 8];
let it = tab.iter().map(|x]| x + 1);
// it est un nouvel itérateur. Il est paresseux.
// Ses valeurs ne seront calculées que si 1'on appelle next()
for val in it {
println!("{}", val);
}

Oui, les itérateurs sont paresseux. Cela veut dire que les valeurs associées ne sont calculées que
lorsque c’est nécessaire. Cela permet notamment d’avoir des itérateurs infinis, ’équivalent des
générateurs de python.

Evidemment, on peut aussi écrire :

let tab = [0, 1, 2, 4, 8];
for val in tab.iter().map(|x] x + 1) {

println!("{}", val);
}

Ou encore, puisqu’un for peut étre réécrit via for_each() :

let tab = [0, 1, 2, 4, 8];
tab.iter().map(|x| x + 1).for each(|val]| println!("{}", val));

On a chainé les appels de méthodes. Ce n’est pas tres lisible, en général on préfere faire comme suit :

let tab = [0, 1, 2, 4, 8];
tab.iter()
.map(|x] x + 1)
.for each(|val| println!("{}", val));

On avait aussi vu la méthode rev () plus haut. Elle retourne un nouvel itérateur avec les données
dans l’ordre inverse :

let tab = [0, 1, 2, 4, 8];
tab.iter()

.map(|x]| x + 1)

.rev()

.for each(|val| println!("{}", val));
Souvent, on veut convertir 'itérateur en collection (en vec par exemple) :

let tab = [0, 1, 2, 4, 81;
let tab2: Vec<i32> = tab.iter()
.map(|x|] x + 1)
.rev()
.collect(); // C'est cet appel qui transforme l'itérateur en Vec<i32>

Ajoutons maintenant un filtre : je ne veux que des valeurs plus grandes que 3.

let tab = [0, 1, 2, 4, 8];
let tab2: Vec<i32> = tab.iter()
.map(|x| x + 1)
filter (x| *x > 3)
.rev()
.collect(); // C'est cet appel qui transforme 1'itérateur en Vec<i32>

Attends, attends, c’est quoi cette déréférence 1a dans 'appel a filter ?

C’est (encore et toujours) une question de propriété. La fonction map transforme des données, elle va
donc les consommer pour en produire une nouvelle. On attend de la fonction filter, au contraire,
qu’elle observe les données, sans les modifier. On ajoute donc un niveau de référence
supplémentaire.

Les regles a ce niveau sont assez complexes, d’autant que parfois le déréférencement est implicite.
Autre exemple avec des chaines :

let tab = ["toto", "bob", "alice"];

let tab2: Vec<String> = tab.iter()
.filter(]s]| s.len() > 3)
.map(|s| s.to uppercase())
.collect();

println!("{:?}", tab2);

On peut faire des choses complexes. J’ai des joueurs, je veux afficher le nom en majuscules de ceux
qui sont encore en vie :

#[derive(Clone,Debug,Default)]
struct Joueur {

nom: String,

score: 132,

vies: 132,

impl Joueur {
fn new(nom: &str) -> Self {

Joueur {
nom: nom.to string(),
score: 0,
vies: 3,

}

fn incr score(&mut self, val: i32) -> &Self {
self.score += val;

self

}

fn perdre vie(&mut self) -> &Self {
self.vies -= 1;
self

fn est vivant(&self) -> bool {
self.vies > 0

}

fn main() {

let mut toto = Joueur::new("toto");

let mut titi = Joueur::new("titi");

let mut tutu = Joueur::new("tutu");

while titi.est vivant() {
titi.perdre vie();

}

let tab = vec![toto, titi, tutu];

tab.iter()
.filter(]j| j.est vivant())
.map(|j| j.nom.to uppercase())
.for _each(|nom| println!("{} est encore vivant !", nom));

}

Je veux maintenant donner 1000 points de plus a ceux qui sont encore vivants, puis leur retirer une
vie. Je veux juste faire ¢a. Notez qu’il y a un changement par rapport a avant : cette fois, I'itérateur
modifie les valeurs sur lesquelles on itere.

Désormais, tab doit étre mutable, mais aussi on doit obtenir un itérateur qui mute ses valeurs (un
itérateur... mutant ?) On utilise pour cela la méthode iter mut() :

fn main() {
let mut toto = Joueur::new("toto");
let mut titi = Joueur::new("titi");
let mut tutu = Joueur::new("tutu");
while titi.est vivant() {

titi.perdre vie();
}
toto.perdre vie();
toto.perdre vie();
let mut tab = vec![toto, titi, tutul;
tab.iter mut()
filter(]j| j.est vivant())
.map(|j| j.incr _score(1000))
.for each(]|j| printin!("{}", j.nom));
}

Ici, tab a été modifié, et les variables toto, titi et tutu ne peuvent désormais évidemment plus étre
utilisées : la propriété de leurs données a été transférée a tab.

	1. Pourquoi rust ?
	2. La mémoire
	2.1. La mémoire statique
	2.2. La pile (stack)
	2.2.1. Références invalides et durée de vie
	2.2.2. Avantages de la pile
	2.2.3. Inconvénients de la pile

	2.3. Le tas (heap)
	2.4. Le garbage collector
	2.4.1. Le compteur de références
	2.4.2. Les GC plus complexes
	2.4.3. Inconvénients des GC hors compteurs de références

	2.5. Le beurre et l'argent du beurre

	3. Mutabilité et concurrence
	3.1. Alias
	3.1.1. Cloner
	3.1.2. Structures non-mutables
	3.1.3. La solution ultime : la programmation fonctionnelle

	3.2. Parallélisme
	3.3. Le beurre, l'argent du beurre et le sourire de la crémière

	4. Rust
	4.1. Hello, world!
	4.2. Variables
	4.3. Types de données
	4.3.1. Les entiers
	4.3.2. Les flottants
	4.3.3. Les booléens
	4.3.4. Les caractères
	4.3.5. Aparté concernant les caractères et UTF-8
	4.3.5.1. UTF-32
	4.3.5.2. UTF-8

	4.3.6. Les tuples
	4.3.7. Les tableaux

	4.4. Les fonctions
	4.5. Les conditionnelles et les boucles

	5. Ownership (propriété)
	5.1. Les références
	5.2. Les règles d'emprunt

	6. Le tas et le type Vec<T>
	6.1. Sémantique de mouvement
	6.2. Les chaînes de caractères

	7. Les énumérations et les types somme
	7.1. Types énumérés de base
	7.1.1. if let

	7.2. Les types somme
	7.3. Le type Option<T>
	7.3.1. Décapsuler un Option<T> qui n'est pas vide

	7.4. Les erreurs
	7.4.1. expect()
	7.4.2. Autres choses que l'on peut faire avec des Result<T,U> (et aussi des Option<T>)
	7.4.3. panic!()

	8. Les structures de données
	8.1. Implémenter un type
	8.2. Les types génériques
	8.2.1. Types génériques

	8.3. Les traits

	9. Les lifetimes
	9.1. Dictionnaire et refs
	9.2. Le lifetime 'static

	10. Le type Box<T>
	10.1. La liste chaînée
	10.2. La mise en boîte avec Box<T>
	10.2.1. Retour à la liste chaînée

	10.3. Complications…
	10.3.1. Les graphes acycliques dirigés
	10.3.2. Les tourniquets et autres graphes cycliques

	11. Le type Rc<T>
	11.0.1. Retour au DAG

	12. Lambdas, programmation fonctionnelle et itérateurs
	12.1. Les itérateurs

