
Enhancing Neighbourhood Substitutability Thanks to Singleton Arc Consistency

Dominique D’Almeida Lakhdar Saı̈s
CRIL-CNRS, Université d’Artois

Rue Jean Souvraz SP18
F-62307 Lens Cedex France
{dalmeida,sais}@cril.fr

Abstract

In this paper, a semantic generalization of neighbour-
hood substitutability is presented. Instead of the syntactical
concept of supports, our generalization originally exploits
a new semantic measure based on Single Arc-Consistency
(SAC) checking. This generalization is then exploited in two
different ways. Firstly, a new pretreatment of constraints
networks is proposed. Secondly, as SAC is a basic oper-
ation in backtrack search-based algorithms likeMAC, we
show that our generalization can be easily applied dynami-
cally. The experimental results of our approach show inter-
esting improvements on some classes ofCSP instances and
demonstrate the feasibility of the dynamic integration of our
generalized neighbourhood substitutability.

1. Introduction

The Constraint Satisfaction Problem (CSP) is a general
modelisation framework to solve combinatorial problems
appearing in a variety of application domains. They involve
finding solution in aconstraints networki.e. finding val-
uesfor networkvariablessubject toconstraintson which
combinations are acceptable. This decision problem is NP-
Complete, and it conducts a lot of researchers to design new
algorithmic approaches to solve as efficiently as possible the
general case.

The usual technique to solve CSPs is systematic back-
tracking. It repeatedly chooses a variable, attempts to as-
sign it one of its values, and then goes to the next variable, or
backtracks in case of failure. This technique is at the basisof
almost all the CSP solving engines. But if we want to tackle
highly combinatorial problems, we need to enhance this ba-
sic search procedure with clever improvements. They con-
cern several important components of the constraint solv-
ing engines. Some of them usually qualified as look-ahead
based improvements aim to choose the best decision or to
deduce further information in order to forecast the future of

the search. This mainly concerns pretreatment, constraint
propagation and variable and value ordering heuristics. The
second kind of improvements usually known as look-back
based enhancements try to avoid thrashing by analysing the
past of the search or conflicts. Conflict analysis might help
to achieve non chronological backtracking and to deduce
nogoods (set of inconsistent value assignments) that can be
exploited to avoid the exploration of the same portions of
the search space.

However, managing such a set of nogoods might be time
consuming and hard to integrate inCSP search algorithms.
In look-ahead based strategies, it is possible to consider
constraints propagation techniques, which allow, for exam-
ple, to eliminate local inconsistent values. Also, there ex-
ists some efficient treatments combining both look-back and
look-ahead strategies. For example, the variable ordering
heuristic dom/wdeg which computes the next variable to as-
sign according to the weight of constraints i.e. the number
of times it appears violated during search.

Other kinds of treatments also recognized as important
for tackling real world CSP instances, are those based on
the detection and exploitation of different forms of prob-
lem structures. Among them, we can cite symmetries [2, 9],
or weaker forms of symmetry such as neighbourhood inter-
changeability or substitutability of values [1, 4, 6]. These
last kind of symmetries are easier to detect (checking con-
straint supports) and to exploit (eliminating values from the
domain of the variables), whereas the problem of detecting
general symmetries is equivalent to graph automorphism,
for which no polynomial time algorithm is known. Usu-
aly, these different kinds of symmetries, in their syntacti-
cal forms, are detected during the preprocessing phase and
exploited either in a static or a dynamic way [5, 7].

In our framework, the proposed approach is based on a
semantic generalization of the neighbourhood substitutabil-
ity (NS) and, in the same way, of the neighbourhood inter-
changeability (NI) of values. These generalizations are ob-
tained by substituting the syntactical concept of supportsby
a semantic measure of the constraints propagation obtained

by a classical use of singleton arc-consistency. Our pro-
posed generalization provides two important benefits. First,
it extends the power ofSAC [3], one of the well-known and
used strong local consistency. The second benefit lies in the
simplicity of its dynamic integration to CSP solvers. Indeed,
since singleton arc-consistency is a basic step of theMAC-
like algorithms, it is possible to exploit our generalization
in a dynamic context after an assignment of a value to a
variable. More precisely, each time a variable is assigned a
value and arc consistency is maintained, some information
on the current state of the constraints network are recorded.
When another value is assigned to the same variable, our ap-
proach is able to avoid the exploration of the same state.

The rest of the paper is organized as follows. After some
technical background and preliminary definitions, our gen-
eralization of the neighbourhood substitutability is thende-
scribed in section 3.1. Sections 3.2 and 3.3 present the static
and dynamic integration of our generalized neighbourhood
substitutability and interchangeability and their theoretical
complexity. Experimental results are provided (Section 4)
and discussed before concluding.

2. Preliminary definitions and technical back-
ground

A Constraints Network (CN)P is a pair(X , C) withX =
{x1, ..., xn} a set ofvariablesandC = {c1, ..., ce} a set of
contraintsbetween variables inX . To each variablexi of X
is associated a finite definition setdom(xi) = {v1, ..., vd},
calledxi domain. An assignment(resp.refutation) is a pair
(x, v) ∈ (X , dom(x)), denotedx = v (resp.x 6= v) i.e.
dom(x) = {v} (resp.v is removed fromdom(x)).

Each constraintci is defined by a pair(si, ri) such
that : si ⊆ X is calledscopeof ci and refers to the vari-
ables involved inci. We denote byscp(ci) the scopesi
and card(si) = ai the arity of the constraintci. ri ⊆
∏

x∈si
dom(x) is called arelation and stands for a set of

tuplessatisfying the constraintci.
Using the scope of the constraints, two distinct variables

x andy areneighbouriff there exists a constraintci ∈ C,
calledneighbour constraintof x andy, such that{x, y} ⊆
scp(ci). A set of variablesX ⊆ X (resp. constraintsC ⊆
C) is in theneighbourhoodof a variablex (x 6∈ X) if and
only if for all xi ∈ X (resp.ci ∈ C), x is a neighbour ofxi

(resp.ci).
Considering the relation of the constraints, we denote

by rel(ci) = ri the definition domain ofci. Each tuple
t ∈ rel(ci) is defined as anai − tuple (v1, . . . , vai

). For
a given variablexj ∈ scp(ci), t[xj] (resp.t[x̂j]) denotes the
value taken byxj in t (resp. the tuplet without the value as-
sociated to the variablexj). Let t ∈ rel(ci) andx ∈ scp(ci)
such thatt[x] = v, t[x̂] is called a support ofx = v. The set
of supports forx = v in ci is denotedsupports(ci|x=v).

We now define the notion ofinstantiationfor aCN P =
(X , C). The instantiationIX of the variables inX ⊆ X
is defined as a set of assignment{x = v|x ∈ X, v ∈
dom(x)}. IX is calledfull instantiationif X = X andpar-
tial instantiationotherwise. LetX ⊆ Y , Y ⊆ X andIY be
an instantiation, we defineIY [X] (resp.IY [X̂]) the tuple
∏

v∈dom(x) such thatx ∈ X (resp.x ∈ Y andx 6∈ X). A
solution for aCN P = (X , C) is an instantiationIX satisfy-
ing all of the constraints i.e.∀ci ∈ C, IX [scp(ci)] ∈ rel(ci).
A CN P is saidconsistent(or satisfiable) if it admits at least
one solution, andinconsistent(or unsatisfiable) otherwise.
The Constraints Satisfaction ProblemCSP is the problem
(NP-Complete) of deciding if a givenCN P admits or not a
solution. We talk about the resolution of aCSP instance, de-
fined by aCN P , as the search of any solution or the proof
of its unsatisfiability.

In the sequel, to solve aCN, we consider the well-known
depth-first tree-based search algorithms that maintains arc-
consistency at each node of the search tree (MAC). This de-
cision/propagation based algorithm is complete that is to
say it necessarily provides an answer for the satisfiability
problem. In aCN, a valuev ∈ dom(x) is arc-consistent
in a constraintci (x ∈ scp(ci)) iff there exists a support for
x = v in ci. A variable is arc-consistent in a constraint iff all
its values are arc-consistent. A variable is arc-consistent iff
it is arc-consistent for its entire neighbour set of constraints.
A CN is arc-consistent iff all its variables are arc-consistent.
Without exception due to the arity of the constraints, Arc-
Consistency is calledGeneralized Arc-Consistency(GAC).

We defineφ(P) theCN obtained after applying the con-
straints propagation algorithmφ on theCN P . For instance,
φ = GAC means that all the values non arc-consistent inP
are removed. Afterwards, we will denote theCNP obtained
after enforcing arc-consistency byAC(P). If there exists a
variable with an empty domain inφ(P), we note such in-
consistency ofP by φ : φ(P) = ⊥. The subnetwork ob-
tained by assigningx = v is denoted byP|x=v. TheSingle-
ton Arc-Consistencyfiltering (SAC) is a strong local con-
sistency which guaranteesφ(P|x=v) 6= ⊥, for each pair
variable-value(x, v). We additionally denoteP∗|x=v as the
networkP|x=v with the variablex and its neighbour con-
straints disconnected. Also, for aCN P , we define a subnet-
work P ′ of P as aCN with the same set of variables such
that for each variablex of P ′, its domain is included in the
domain of the variablex in P . A partial instantiationIX is
locally consistent iffφ(P|IX) 6= ⊥ and is globally consis-
tent if it can be extended to a solution ofP . A full and con-
sistent instantiation is asolution.

WhenMAC-like solving algorithm is used, one needs to
specify the kind of branching used to build the search tree.
Indeed, it is possible to consider different approaches like
binary branching (dual-branchingor dual) or non binary
branching (dway-branchingor dway). For dual-branching,

at each node in the search tree, a pair variable-value(x, v)
is selected and two cases are then considered : the assign-
mentx = v and, if it did not lead to a solution, the refuta-
tion x 6= v followed by a new choice for the pair variable-
value. For dway-branching, at each step, a variablex is se-
lected and assigned to a valuev in dom(x). If it is inconsis-
tent,v is eliminated from the domain ofx and another value
in dom(x) is chosen and then assigned. This process occurs
until a refutation of all the value in the domain is proved.
Each of those approaches has its assets, however the dual is
shown to be theoretically stronger than dway [8].

3. SAC-based generalization of neighbour-
hood substitutability

3.1. A formal description

The substitutability and, the related notion of inter-
changeability are the main keywords of our contribu-
tion. These weak forms of symmetries have been sub-
jects of many research works. In [6], Freuder introduced
the two well-known forms of symmetry:full andlocal sub-
stitutability and interchangeability.

For a CN P = (X , C) and two distinct pairs
(x, v), (x, v′) ∈ (X , dom(x)), v is fully substitutable
by v′ iff for each solutionIX such thatIX [x] = (v),
there exists a solutionI ′X such thatI ′X [x] = (v′) and
I ′X [x̂] = IX [x̂]. It is easy to see that the full interchange-
ability and the full substitutability are related. Indeed,two
valuesv andv′ are fully interchangeable iffv is fully sub-
stitutable byv′ andv′ is fully substitutable byv. So, two
fully interchangeable values are fully substitutable, thecon-
verse is not true. As we need to enumerate all the solu-
tions, checking for full interchangeability or substitutability
of two values is clearly intractable. However, a weak-
ening of those forms gives rise to a local and tractable
forms of substitutability and interchangeability of two val-
ues :neighbourhoodsubstitutability and interchangeabil-
ity.

These local forms are described by restricting both sub-
stitutability and interchangeability between two values of
a variablex on its neighbourhood variables. In this paper,
we focus on the generalization of neighbourhood substi-
tutability. Neighbourhood interchangeability can be defined
in similar way. In our framework, exploiting our general-
ization of neighbourhood substitutability is sufficient. Let
us reformulate and generalize the definition of neighbour-
hood substitutability given in [6] for the binary constraints
networks.

Definition 1 Let P = (X , C) be aCN and (x, v), (x, v′)
two pairs in (X , dom(x)). v is substitutable byv′ in the
neighbourhood ofx if and only if, for each constraintci
neighbour ofx, supports(ci|x=v) ⊆ supports(ci|x=v′).

For our purposes, let us derive a more convenient def-
inition of neighbourhood substitutability from full substi-
tutability. This new definition is obtained by considering
partial and consistent instantiation instead of solution.

Definition 2 Let P = (X , C) be aCN, (x, v), (x, v′) be
two different pairs in(X , dom(x)) andX the set of vari-
ables includingx and its neighbours.v is substitutable by
v′ in the neighbourhood ofx if and only if, for each par-
tial and consistent instantiationIX such thatIX [x] = (v),
it exists a partial and consistent instantiationI ′X such that
I ′X [x] = (v′) andI ′X [x̂] = IX [x̂].

The definition 2 is stronger than definition 1. Indeed, if
for each partial and consistent instantiationIX such that
IX [x] = (v), it exists a partial and consistent instantiation
I ′X such thatI ′X [x] = (v′) andI ′X [x̂] = IX [x̂], then we can
deduce inclusion in term of supports. Obviously, the con-
verse is not true. Intuitively, the notion of supports may be
associated to the notion of constraints propagation to intro-
duce the following propositions :

Proposition 1 Let P = (X , C) be aCN, (x, v), (x, v′) be
two different pairs in(X , dom(x)), andφ be a constraints
propagation operator.v is substitutable byv′ in the neigh-
bourdhood ofx if and only if theCN φ(P∗|x=v) is a sub-
network ofφ(P∗|x=v′).

Proposition 2 Let P = (X , C) be aCN, (x, v), (x, v′) be
two pairs in(X , dom(x)) such thatv is substitutable byv′

in the neighbourhood ofx, andφ be a constraints propaga-
tion operator. Ifφ(P|x=v′) = ⊥ thenφ(P|x=v) = ⊥.

The two propositions above are central in our contribu-
tion. The proof follows from the definition 2 ofNS. For
proposition 1, sincev is substitutable byv′ in the neigh-
bourhood ofx, we have, as mentioned above by link-
ing the definitions 2 with 1, thatsupports(ci|x=v) ⊆
supports(ci|x=v′). By iterating the constraints propagation
until reaching a fix point, the supportssupports(ci|x=v) of
φ(P|x=v) are included in the supportssupports(ci|x=v′)
for all constraintsci. Hence theCN φ(P∗|x=v) is a subnet-
work ofφ(P∗|x=v′). On the other hand, we haveφ(P∗|x=v)
a subnetwork ofφ(P∗|x=v′), and φ an operator able to
check the local consistency of the network. Then, for each
partial and locally consistent instantiationIX of φ(P|x=v)
(X the set of variables includingx and its neighbours), there
exists a partial and locally consistent instantiationI ′X of
φ(P|x=v′) such thatI ′X [x̂] = IX [x̂]. Including the deci-
sion x = v and x = v′ in each instantiation, we have
IX [x] = (v) andI ′X [x] = (v′) respectively. Therefore,v is
substitutable byv′ in the neighbourhood ofx using the def-
inition 2.

Besides, to prove the proposition 2, we can use propo-
sition 1. Each solution for theCN φ(P∗|x=v) is also a so-
lution for φ(P∗|x=v′). Therefore, if theCN φ(P∗|x=v′) is

inconsistent, thenφ(P∗|x=v) is too. As the inconsistency
of φ(P∗|x=v) induces the inconsistency ofφ(P|x=v), this
completes the proof.

Our goal is to efficiently exploit the previous properties
in a pretreatment phase usingSAC or dynamically inMAC

based algorithms.
Of course, before exploiting the substitutable values, we

have to satisfy the substitutability condition. To do that,we
just have to use the definition 1 and to check the inclusion
between supports of the constraints after achieving a local
consistencyφ. Observe that the use of supports after main-
taining a local consistencyφ to compute inclusion between
states is equivalent to checking inclusion between the sub-
networksφ(P∗|x=v) andφ(P∗|x=v′). Also, since different
local consistency operators may give different results on the
same network, the efficiency, in term of the number of de-
tected substitutable values, depends on the used operatorφ.

In the sequel, we will use Arc-Consistency as a local
consistency operator, usually exploited inSAC andMAC al-
gorithms.

3.2. Preprocessing with substitutability

As mentioned above, since arc consistency is used, our
proposed generalization is clearly adapted toSAC based fil-
tering technique [3]. For aCN P = (X , C) and a variable
x ∈ X , a valuev ∈ dom(x) is singleton arc-consistent
(SAC) iff AC(P|x=v) 6= ⊥. A variablex is SAC iff, for
all v ∈ dom(x), v is SAC. To establishSAC each pair
(x, v) is verified, then it is clearly convenient for the in-
tegration of our proposed generalization of neighbourhood
substitutability (see proposition 1).

The pretreatment resulting from the integration of our
approach, calledSNS for “SAC and Neighbouhood Substi-
tutability”, is defined by two steps.

The first one, allows to find substitutable values. To this
end, the supports of the neighbour constraints after per-
formingAC(P∗|x=v), are stored in a structure (state) cor-
responding to the tuples of the constraints in neighbour-
hood ofx (denoted∆x=v). Inclusion between such states
can be achieved by checking inclusion between supports.
Formally,∆x=v ⊆ ∆x=v′ iff, ∀c in neighbourhood ofx,
∀t ∈ ∆x=v(c), there exists a tuplet′ ∈ ∆x=v′(c) such that
t[x̂] = t′[x̂].

The second step exploits proposition 1. In the case of
SNS, if v is substitutable byv′ in the neighbourhood ofx,
a solution including the assignmentx = v allows to deduce
a solution forx = v′. Consequently the valuev can be re-
moved fromx.

Interestingly, associated withSAC, our approach can
eliminate both singleton arc inconsistent values and gen-
eralized neighbourhood substitutable values. This clearly
shows that our preprocessing is stronger thanSAC. In the

algorithm 1, only the lines from 7 to 10 are dedicated for
checking substitutable values, the other lines describe the
classicalSAC algorithm. This really shows the simplicity
of such integration. Therefore, the time and space complex-
ity for such supports inclusion computation directly depend
on the constraints arity. If a constraintc involvesa vari-
ables with maximal domain sized, the constraint may have,
in the worst case,da supports.

Algorithm 1 : SNS

Input : P = (X ,C) : aCN
Output : SNS(P)
begin1

repeat2
foreachpair (x, v) ∈ (X , dom(x)) do3

if AC(P|x=v) =⊥ then4
Remove(x, v)5

else6
Store∆x=v7
foreach(x, v′) provedSAC do8

∆x=v ⊆ ∆
x=v′ ⇒ Remove(x, v); Break9

∆
x=v′ ⊂ ∆x=v ⇒ Remove(x, v′)10

until no pair (variable, value) is removable11
end12

Before analyzing the worst-case algorithmic complexity
of SNS, let us remind that we considerCN with n variables
and domain size at mostd, e constraints of maximal arityr.

For the space complexity, let us first evaluates the space
needed by a state defined by a pair (variable,value)(x, v).
Since the arity of constraints isr and each variable hasr−1
neighbour variables. Then, there isdr−1 supports by con-
straint and thus(r − 1)dr−1 values for each constraint. In
the worst case, since each variable is involved in thee con-
straints, we deduce that there ise(r−1)dr−1 values by state
in the worst-case. To compare the states associated to each
value of a given variable,SNS needs to stored states. Con-
sequently, the worst-case space complexity is inO(erdr)
for storing all the states duringSNS pretreatment.

To compute the worst-case time complexity ofSNS, we
have to keep in mind that this algorithm is embedded in a
SAC algorithm. First, we can see that a loop (line 3) is ex-
ecuted for each variable-value pair, i.end times. The iter-
ation includes the arc-consistency filtering (1), the storage
of the states associated to each pair (2) and the comparison
with the existing states for the same variable (3). The worst-
case time complexity ofGAC is in O(erdr) (1). To store a
state, we need to check itse(r − 1)dr−1 values (2). Each
of these states must be compared with the previous stored
states. The inclusion is checked in both directions, which
needsd−1 inclusion checks to each pair variable-value. In-
clusion of two states implies to see the whole states, that
is to sayerdr values for inclusion checks (3). To sum up,
we have a worst-case time complexity for the iteration of
nd×(erdr+e(r−1)dr−1+erdr), thusO(erndr+1). How-
ever, since in a classicalSAC algorithm, a value removal

modifies theCN, the process has to be repeated. As the net-
work hasnd values, the iteration have, in the worst-case, to
be executednd times. The worst-case time complexity of
ourSNS preprocessing is inO(ern2dr+2).

In spite of high time and space complexity due to the use
of an exponential number of supports, the efficiency of this
approach in a practical case depends, obviously, on the im-
plementation and used data-structures. Also, since the com-
plexity depends on the arity of the constraints, it is interest-
ing to investigates the particular case of binary constraints.
In this last case, the worst-case space (respectively time)
complexity isO(nd2) (respectivelyO(n3d4)). It is impor-
tant to note that such complexity is comparable to those of
the classicalSAC algorithm.

3.3. Dynamic search for substitutability

The implementation of theSNS preprocessing above il-
lustrates all the treatments that can be performed dynami-
cally to detectNS.

First of all, the dynamic side of our integration can be
related to the repeated modification of theCN and then of
the states associated to the neighbourhood of the variables.
In theMAC-based algorithm, maintaining arc-consistency
in the network is performed for all decisions. Using the
assignment and constraint propagation process, the detec-
tion of the neighbourhood substitutable values for a vari-
able can easily be embedded, and computed at each node of
the search tree.

Like in SNS approach, the supports in the neighbour-
hood of a variable are stored after each assignmentx = v

which is followed by constraints propagation. The states as-
sociated to a given variable correspond to the states describ-
ing the last assignment of a variable to a value (the current
state) and its previously refuted values (past states). Using
proposition 2, if the current state∆x=v is included in a past
state∆x=v′ , then the valuev is substitutable byv′ in the
neighbourhood ofx. However, asAC(P|x=v′) = ⊥ then
AC(P|x=v) = ⊥. So,v has to be removed from the do-
main ofx, avoiding to explore redundant parts of the search
space.

The lines from 4 to 6 of theMACNS algorithm 2 show
each step defined above, integrated to the classical dual-
branchingMAC-based algorithm.

Obviously, this approach can be built in dway-branching
scheme since the difference between dual and dway are in-
dependent from our implementation. However, in spite of
the easy integration, the condition in line 12 of theMACNS

algorithm underline an important fact in our dynamic ap-
proach. Indeed, the comparison between states have to be
done under some conditions, related to the state of the net-
work before the last assignment. Without no focus on partic-
ular case, a necessary condition to the comparison between

Algorithm 2 : MACNS

Input : P = (X ,C) : aCN
Output : ⊤ if P is consistent,⊥ otherwise
begin1

while there exists an unassigned variabledo2
Choose(x, v) ∈ (X , dom(x)) such thatx is not assigned3
Do GAC(P|x=v) and store the state∆x=v4
foreachstored state∆

x=v′ do5
∆x=v ⊆ ∆

x=v′ ⇒ P ← ⊥, break6

while P = ⊥ and∃ an assigned variabledo7
Backtrack to the previous decisionx′ = v′8
Removev′ from dom(x′)9
Apply arc-consistency onP10
if P = ⊥ then11

Delete states which are stored after the current level12

if P = ⊥ and there is no assigned variablethen13
return ⊥14

return ⊤15
end16

states follows from instantiations which involve them. For
instance, can a state stored at the root of the search tree be
compared to a state produced at any node of the search tree?
The answer is given in the following proposition.

Proposition 3 Let P = (X , C) be a CN, (x, v), (x, v′)
two pairs in (X , dom(x)), and φ a constraint propaga-
tion operator. LetIX be a consistent instantiation such that
X ⊆ X \ {x}. v is substitutable byv′ in the neighbour-
hood ofx if and only if theCN φ((P|IX)∗|x=v) is a subnet-
work ofφ(P∗|x=v′).

Using proposition 1, the proof follows. Ifv is substi-
tutable tov′ in the neighbourhood ofx, thenφ(P∗|x=v)
is a subnetwork ofφ(P∗|x=v′). For any instantiationIX
such thatX ⊆ X \ {x}, φ(P|IX ,x=v) is a subnetwork
of φ(P|x=v). Hence,φ((P|IX)

∗|x=v) is a subnetwork of
φ(P∗|x=v). On the other hand, ifφ((P|IX)∗|x=v) is a sub-
network ofφ(P∗|x=v′) then supports ofφ((P|IX)∗|x=v)
are included in supports ofφ(P∗|x=v′), in particular in the
neighbourhood ofx. Consequently,v is substitutable tov′

in the neighbourdhood ofx iff φ((P|IX)∗|x=v) is a subnet-
work of φ(P∗|x=v′).

However, this result only holds if the inclusion test be-
tween the state obtained after instantiation and the state ob-
tained at the root of the search tree holds. Indeed, the re-
moval ofv from the domain ofx at the root of the search
tree is due to the global inconsistency ofP|x=v. So, the
neighbourhood substitutable values of(x, v) are locally in-
consistent, with respect to a given partial instantiation.On
the other hand, the inconsistency resulting from a partial in-
stantiation does not allow to infer, in the general case, the
global inconsistency. Consequently, this does not allow to
deduce, again in the general case, the values removal at the
root of the search tree.

In addition, this result can also be applied if we con-
sider networksφ(P|IX ,x=v) and φ(P|IY ,x=v′) produced

by two instantiationsIX andIY with Y ⊆ X . Indeed, if
we setP ′ = φ(P|IY), then proposition 3 for the networks
φ(P ′|IX\Y ,x=v) andφ(P ′|x=v′) holds. Similarly, this as-
sertion is true only ifY ⊆ X . The comparison between two
states for the same variable is thereby reduced, in our frame-
work, to the comparison between the current state obtained
from the current partial instantiation and the past states.

This comparative criterion has an important purpose in
the dual-branching case, since it allows to find substitutable
values, even if the assignments are made at different lev-
els in the search tree. In the dway-branching case, the de-
tected substitutable values of a given variable are obtained
from the constraints subnetwork associated to the same par-
tial instantiation.

In our framework, the worst-case complexity of algo-
rithms MACNS in dual and dway-branching schemes are
equivalent. First of all, to removed values from the domain
of a given variable, we need to store the states correspond-
ing to each of its values, i.ed states. Since each state has
e(r − 1)dr−1 values, the worst-case space complexity is
O(erndr), to compare each state during the whole search
process.

To study the worst-case time complexity, we have to de-
fine what the ”worst-case” is, because of the exponential
size of the search tree. Our choice is to compute the worst-
case time complexity for substitutable values detection be-
fore a variable refutation in the search tree. This case occurs
whend values have been removed and eachith assigned
value implies to check the inclusion in thei− 1 past states.
So, there is

(

n
2

)

comparisons between states in the worst-
case. Since each comparison needse(r − 1)dr−1 values
comparison, the worst-case time complexity isO(erdr+1).
In case of binary constraints, the worst-case space (respec-
tively time) complexity is inO(end2) (respectivelyO(ed3))
to find all substitutable values of a variable before its refu-
tation.

4. Experiments

Before presenting the evaluation of our proposed static
and dynamic exploitation of the generalized neighbourhood
substitutability, let us describe the used experimental pro-
tocol. All the tests were made on a Xeon 3.2GHz (2 GB
RAM) cluster.

The first experiment presents a comparison of the static
implementation (preprocessing) ofSNS (respectivelySAC),
using aMAC algorithm with the classical dual-branching
scheme, calledSNSMAC (respectivelySACMAC). The sec-
ond experiment gives the evaluation of our dynamic detec-
tion and exploitation of the neighbourhood substitutability.
This evaluation compares theMAC algorithm using dual-
branching scheme with and without dynamic use ofSNS,
calledMAC andMACNS respectively.

As the proposed approaches present high worst-case
complexity for n-ary constraints, we only present the exper-
imentation on binary CSPs. The n-ary case is currently un-
der investigation. TheCSP instances are taken from the3rd

international CSP competition (http://cpai.ucc.ie/08/). The
time limit is set to1200 seconds whereas the memory limit
is set to900Mb.

4.1. Static approach

Satisfiable instances - Constraints in extension
Solver #Solved Time (s) #Filtered #Eliminated values

SACMAC 296 20624 57 4373
SNSMAC 296 21019 72 41909

Unsatisfiable instances - Constraints in extension
Solver #Solved Time (s) #Filtered #Eliminated values

SACMAC 195 13824 68 6869
SNSMAC 195 13807 78 8372

Satisfiable instances - Constraints in intension
Solver #Solved Time (s) #Filtered #Eliminated values

SACMAC 253 14867 57 16404
SNSMAC 254 18054 110 82432
−SNSMAC 253 17855 109 79618

Unsatisfiable instances - Constraints in intension
Solver #Solved Time (s) #Filtered #Eliminated values

SACMAC 202 8307 47 24382
SNSMAC 205 10857 51 41546
−SNSMAC 202 8017 49 37690

Table 1. Global results : SACMAC vs SNSMAC

First of all, Table 1 presents a global view on the re-
sults obtained by ourSNS preprocessing on all the bi-
nary CSP instances. Each comparative table gives the
results obtained on each category of instances (Satisfi-
able/Unsatisfiable, Constraints in extension/intension), in
terms of the number of solved instances (#Solved), of the
total solving time in seconds (Time), of the number of in-
stances on which at least one value has been removed
(#Filtered) and of the number of eliminated values (#Elim-
inated values).

Also, to get a finer comparison, we also give the results
of each solver on the same set of solved instances. Such re-
sults are illustrated using the name of the solver preceded by
the minus symbol. In table 1, we only show−SNSMAC be-
cause the set of common solved instances corresponds to
those solved bySACMAC.

We can first observe thatSNSMAC solves globally4 more
instances thanSACMAC. It can be noted that in terms of CPU
times,SNSMAC is better (respectively worse) thanSACMAC

on the two categories of unsatisfiable (respectively satisfi-
able) CSP instances. The results also show thatSNSMAC

is stronger thanSACMAC in term of removed values. In-
deed,SAC (respectivelySNS) remove59771 (respectively
182041) values in the preprocessing phase.

The scatter plot given in figure 1 illustrates the compara-
tive results ofSNSMAC andSACMAC on all the binary CSPs

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200
 0

 200

 400

 600

 800

 1000

 1200
 0 200 400 600 800 1000 1200

SN
S_

M
AC

 C
PU

 ti
m

e

SAC_MAC versus SNS_MAC

SAC_MAC CPU time

Figure 1. SNSMAC and SACMAC: a comparison in term

of CPU times

instances. The x-axis (resp. y-axis) corresponds toSACMAC

(resp.SNSMAC). In this plot, the CPU timestx andty ob-
tained by the solvers on a particular instance represent a
(tx, ty) dot. The4 instances solved only bySNSMAC cor-
respond to the points attx = 1200 seconds. On some
classes of instances our approach is clearly better. In fig-
ure 1, we can distinguish the bad behaviour of our approach
on instances represented in the figure by the points around
(0, 200), and a good behaviour shown by the points below
ty = tx. A more detailed analysis shows thatSNSMAC is
very useful on two classes of instances : jobShop and Tail-
lard OpenShop problems.

Results on jobShop instances
Solver #Solved #Trivial #Filt. #Nodes Ptime (s) Time (s)

SACMAC 45 29 0 20789 93 175
SNSMAC 45 35 19293 8801 2208 2276

Results for Taillard-OS problems
Solver #Solved #Trivial #Filt. #Nodes Ptime (s) Time (s)

SACMAC 25 3 10850 870351 590 1161
SNSMAC 25 4 67105 151663 1775 1950

Table 2. Results for jobShop and Taillard-OS problems

Table 2 presents a detailed comparison betweenSACMAC

andSNSMAC on jobShop and Taillard-OS CSP instances. In
addition to the measures given in table 1, we also give the
number of satisfiable instances proven without backtracking
or unsatisfiable instances without search process (#Trivial),
the number of filtered values (#Filt.), the number of nodes
in the search tree (#Nodes), the preprocessing and the entire
solving time in seconds, called Ptime and Time respectively.
Clearly our approach detects more neighbourhood substi-
tutable values thanSAC.

First of all, the jobShop problems are satisfiable, and
contain50 variables with domain size ranging from100

to 250, and265 binary constraints. The major part of such
problems are easily solved by theSACMAC approach with-
out eliminating values at the preprocessing phase. For46 in-
stances solved by the two solvers,29 are trivially satisfied,
i.e backtrack free. Some problems are easily satisfied and
the number of nodes is strongly reduced. However, the pre-
processing time takes an important part of the solving time.
Note that the number of instances shown in the table is45
whereas46 were mentioned previously. Indeed, on this par-
ticular instanceSNSMAC eliminates517 values and solves it
in 192 nodes and10s (8s for Ptime), whereasSACMAC do
not eliminate any value, and answers its satisfiability in4
millions of nodes in691s (2s for Ptime).

To complete our analysis for the static framework, the
second class of problems for whichSNSMAC is efficient is
the Taillard OpenShop instances (in particularos-taillard-
n). These instances haven2 variables, with maximal domain
300 in average, and4n2 constraints forn = 4, 5, 7, 10 in
our case.43 instances are solved by the two solvers. On18
instances the two solvers do not achieve any domain filter-
ing. On these last instances the preprocessing time is about
305s and303s, respectively forSNSMAC andSACMAC.

Our preprocessing is able to eliminates both singleton
arc inconsistent values and generalized neighbourhood sub-
stitutable values. In spite of the fact that our preprocess-
ing is less efficient when the number of values filtered is
high, it clearly simplify the instance and reduce the time of
the solving phase, which allowsSNSMAC to solve more in-
stances thanSACMAC.

4.2. Dynamic approach

Satisfiable instances - Constraints in extension
Solver # Solved Time #Filt. #Eliminated values
MAC 296 20845 - -

MACNS 294 17972 28 129
MAC 294 18600 - -

Unsatisfiable instances - Constraints in extension
Solver #Solved Time #Filtered #Eliminated values
MAC 196 13771 - -

MACNS 196 13716 36 66302
Satisfiable instances - Constraints in intension

Solver #Solved Time # Filtered #Eliminated values
MAC 253 9391 - -
MACNS 254 9465 58 22439
−MAC 251 9466 - -
−MACNS 251 8706 55 18441

Unsatisfiable instances - Constraints in intension
Solver #Solved Time #Filtered #Eliminated values
MAC 202 8268 - -

MACNS 203 8435 29 152014
−MACNS 202 7789 28 104917

Table 3. Global results : MAC vs MACNS

Table 3 shows thatMAC andMACNS solve the same
number of instances. The scatter plot (figure 2) clearly

shows that ourMACNS dynamic approach is always faster
i.e. the majority of points are below the diagonal.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200
 0

 200

 400

 600

 800

 1000

 1200
 0 200 400 600 800 1000 1200

M
AC

_N
S

CP
U

tim
e

MAC versus MAC_NS

MAC CPU time

Figure 2. Comparison of the CPU times for MAC and

MACNS

The performance of our dynamic approach on jobshops
instances presents some similarity with our previous analy-
sis. With46 instances solved by the two solvers,29 are triv-
ially satisfiable. On the17 other instances, only10 involve
theNS detection, and9 of them are easy to solve, with time
of 15s and17s respectively forMACNS andMAC. Like in
static analysis, the hardest instance for whichMAC solver
finds a solution in660s while MACNS finds one in1 sec-
ond. This clearly shows that on hard instances, we also ob-
tain important gain in term of CPU time. Also, for Taillard-
OS instances,2 instances in “intension/satisfiable” category
are only solved byMACNS solver. On45 common solved in-
stances,25 are filtered by the substitutability detection and
23 are solved by the two solvers,MAC in 1724s andMACNS

in 1443s, which eliminates2611, reducing the number of
nodes in the search tree (1046687 for MAC and460024 for
MACNS). Note that the other2 instances are only solved by
MACNS finding397 substitutable values and solved the two
instances in556s. Again, the neighbourhood dynamic sub-
stitutability detection for Taillard instances is better than the
classical approach. As a summary, the dynamic approach
MACNS shows better results in CPU time than the basic
MAC solver.

5. Conclusion et future works

In this paper, a semantic generalization of the neighbour-
hood substitutability, a weaker form of symmetry defined by
Freuder [6], is presented. This original generalization isob-
tained by a substitution of the syntactical concept of sup-
ports with a semantic measure of constraints propagation,

in particular using the singleton arc-consistency filtering. A
preprocessing embeded into theSAC algorithm was defined
as a the static approach. Interestingly, since assignmentsof
variables to values and maintaining arc-consistency are the
basics steps forMAC-based search algorithms, a dynamic
implementation was also proposed. Experimental results on
binary CSPs show the usefulness of our static and dynamic
approaches.

Even if the static approach does not show an overall effi-
ciency w.r.t. time performance, however on hard instances,
our approach achieves better results and solves more in-
stances. Also, our approaches outperform the classical ones
with respect to the number of filtered values and to the
number of nodes in the search tree. The dynamic approach
shows interesting results in time, even if the number of
problems on which substitutable values have been found is
low. Finally, on some classes of problems, such as jobShop
and Taillard OpenShop theNS value detection is clearly rel-
evant. On these classes, our approaches allow to solve in-
stances out of reach of the classical one.

There are many future directions for this work. Beyond
the study of the general case implementation (n-ary CSPs)
and improvements of the implemented approaches, we plan
to investigate how other constraints propagation algorithms
can be exploited to deal with these forms of symmetry.

References

[1] Amit Bellicha, Christian Capelle, Michel Habib, Tibor
Kökény, and Marie catherine Vilarem. Csp techniques using
partial orders on domain values. InProceedings of ECAI’94
Wks. on CSP Issues Raised by Practical Applications, 1994.

[2] Belaı̈d Benhamou and Lakhdar Saı̈s. Tractability through
symmetries in propositional calculus.Journal Automated
Reasoning, 12(1):89–102, 1994.

[3] Christian Bessière and Romuald Debruyne. Theoreticalanal-
ysis of singleton arc consistency and its extensions.Artificial
Intelligence, 172(1):29–41, 2008.

[4] Assef Chmeiss and Lakhdar Saı̈s. About neighborhood sub-
stitutability in csps. InProceedings of SymCon’2003, pages
41–45, 2003.

[5] James Crawford, Matthew Ginsberg, Eugene Luks, and
Amitabha Roy. Symmetry-breaking predicates for search
problems. InProceedings of KR’96, pages 148–159, 1996.

[6] Eugene C. Freuder. Eliminating interchangeable valuesin
constraint satisfaction problems. InProceedings of AAAI’91,
pages 227–233, 1991.

[7] Ian P. Gent and Barbara Smith. Symmetry breaking dur-
ing search in constraint programming. InProceedings of
ECAI’2000, pages 599–603, 2000.

[8] Joey Hwang and David G. Mitchell. 2-way vs d-way branch-
ing for csp. InIn Proceedings of CP’05, pages 343–357, 2005.

[9] Jean-François Puget. On the satisfiability of symmetrical con-
strained satisfaction problems. InProceedings of ISMIS’93,
pages 350–361, 1993.

