Enhancing Neighbourhood Substitutability Thanks to Singeton Arc Consistency

Dominique D’Almeida Lakhdar Sais
CRIL-CNRS, Université d’Artois
Rue Jean Souvraz SP18
F-62307 Lens Cedex France
{dalmeida,saig@cril.fr

Abstract the search. This mainly concerns pretreatment, constraint
propagation and variable and value ordering heuristice. Th
In this paper, a semantic generalization of neighbour- second kind of improvements usually known as look-back
hood substitutability is presented. Instead of the syitakt based enhancements try to avoid thrashing by analysing the
concept of supports, our generalization originally extdoi past of the search or conflicts. Conflict analysis might help
a new semantic measure based on Single Arc-Consistencyo achieve non chronological backtracking and to deduce
(SAC) checking. This generalization is then exploited im tw nogoods (set of inconsistent value assignments) that can be
different ways. Firstly, a new pretreatment of constraints exploited to avoid the exploration of the same portions of
networks is proposed. Secondly, as SAC is a basic operthe search space.

ation in backtrack search-based algoritth |MBAC, we However, managing such a set of nogoods m|ght be time
show that our generalization can be easily applied dynami- consuming and hard to integrate@SP search algorithms.
cally. The experimental results of our approach show inter- |n |ook-ahead based strategies, it is possible to consider
esting improvements on some classe§3#t instances and constraints propagation techniques, which allow, for exam
demonstrate the feasibility of the dynamic integrationwof o ple, to eliminate local inconsistent values. Also, there ex
generalized neighbourhood substitutability. ists some efficient treatments combining both look-back and
look-ahead strategies. For example, the variable ordering
heuristic dom/wdeg which computes the next variable to as-

1. Introduction sign according to the weight of constraints i.e. the number
of times it appears violated during search.
The Constraint Satisfaction Proble®@SP) is a general Other kinds of treatments also recognized as important

modelisation framework to solve combinatorial problems for tackling real world CSP instances, are those based on
appearing in avariety of app”cation domains. They involve the detection and eXpIOitation of different forms of prOb-
finding solution in aconstraints network.e. findingval- ~ lem structures. Among them, we can cite symmetries [2, 9],
uesfor networkvariablessubject toconstraintson which ~ Or weaker forms of symmetry such as neighbourhood inter-
combinations are acceptable. This decision problem is NP-changeability or substitutability of values [1, 4, 6]. Thes
Complete, and it conducts a lot of researchers to design newast kind of symmetries are easier to detect (checking con-
algorithmic approaches to solve as efficiently as posdfilgie t ~ Straint supports) and to exploit (eliminating values frdve t
general case. domain of the variables), whereas the problem of detecting
The usual technique to solve CSPs is systematic back-deneral symmetries is equivalent to graph automorphism,
tracking. It repeatedly chooses a variable, attempts to asfor which no polynomial time algorithm is known. Usu-
sign it one of its values, and then goes to the next variable, o aly, these different kinds of symmetries, in their syntacti
backtracks in case of failure. This technique is at the lidsis al forms, are detected during the preprocessing phase and
almost all the CSP solving engines. But if we want to tackle €xploited either in a static or a dynamic way [5, 7].
highly combinatorial problems, we need to enhance this ba- In our framework, the proposed approach is based on a
sic search procedure with clever improvements. They con-semantic generalization of the neighbourhood substitutab
cern several important components of the constraint solv-ity (NS) and, in the same way, of the neighbourhood inter-
ing engines. Some of them usually qualified as look-aheadchangeability lI) of values. These generalizations are ob-
based improvements aim to choose the best decision or tdained by substituting the syntactical concept of supfdnrts
deduce further information in order to forecast the future o a semantic measure of the constraints propagation obtained

by a classical use of singleton arc-consistency. Our pro-

posed generalization provides two important benefitst,Firs
it extends the power GAC [3], one of the well-known and

We now define the notion dhstantiationforaCN P =
(X,C). The instantiatiorZx of the variables inX C X
is defined as a set of assignment = v|z € X,v €

used strong local consistency. The second benefit lies in thelom(z)}. Zx is calledfull instantiationif X = X andpar-

simplicity of its dynamic integration to CSP solvers. Indee
since singleton arc-consistency is a basic step oMA€-
like algorithms, it is possible to exploit our generalipati

tial instantiationotherwise. LetX C Y, Y C X andZy be
an instantiation, we defingy [X] (resp.Zy [X]) the tuple
[Tocdom(z) SUch thatr € X (resp.z € Y andz ¢ X). A

in a dynamic context after an assignment of a value to asolution foraCN P = (X, C) is an instantiatioff y satisfy-
variable. More precisely, each time a variable is assigned aing all of the constraintsi.&/c; € C,Zx[scp(c;)] € rel(c;).
value and arc consistency is maintained, some informationA CN P is saidconsistenor satisfiablg if it admits at least
on the current state of the constraints network are recordedone solution, anéhconsisten{or unsatisfiablg otherwise.
When another value is assigned to the same variable, our apThe Constraints Satisfaction ProblgfSP is the problem
proach is able to avoid the exploration of the same state. (NP-Completiof deciding if a givenrCN P admits or not a
The rest of the paper is organized as follows. After some solution. We talk about the resolution o€&P instance, de-

technical background and preliminary definitions, our gen-
eralization of the neighbourhood substitutability is tlen
scribed in section 3.1. Sections 3.2 and 3.3 present the stat

fined by aCN P, as the search of any solution or the proof
of its unsatisfiability.

In the sequel, to solve@N, we consider the well-known

and dynamic integration of our generalized neighbourhood gepth-first tree-based search algorithms that maintains ar

substitutability and interchangeability and their théioad
complexity. Experimental results are provided (Section 4)
and discussed before concluding.

2. Preliminary definitions and technical back-
ground

A Constraints NetworkqN) P is a pair(X,C) with X =
{z1,...,z,} a set ofvariablesandC = {¢i, ..., c.} a set of
contraintsbetween variables iA’. To each variable; of X
is associated a finite definition séim(z;) = {v1, ..., va},
calledz; domain An assignmen(resp.refutatior) is a pair
(z,v) € (X,dom(z)), denotedr = v (resp.x # v) i.e.
dom(x) = {v} (resp.v is removed fromiom(z)).

Each constraint; is defined by a pair(s;, ;) such
that :s; C X is calledscopeof ¢; and refers to the vari-
ables involved inc;. We denote byscp(c;) the scopes;
and card(s;) = a; the arity of the constraint;. r; C
[[.c., dom(x) is called arelation and stands for a set of
tuplessatisfying the constraint,.

consistency at each node of the search tké&&(Q). This de-
cision/propagation based algorithm is complete that is to
say it necessarily provides an answer for the satisfiability
problem. In aCN, a valuev € dom(x) is arc-consistent
in a constraint; (x € scp(c;)) iff there exists a support for
x = vinc;. Avariable is arc-consistent in a constraint iff all
its values are arc-consistent. A variable is arc-condisffen
it is arc-consistent for its entire neighbour set of coristsa
A CN is arc-consistent iff all its variables are arc-consistent
Without exception due to the arity of the constraints, Arc-
Consistency is calle@eneralized Arc-Consisten¢gAC).

We defineg(P) the CN obtained after applying the con-
straints propagation algorithgmon theCN P. For instance,
¢ = GAC means that all the values non arc-consister in
are removed. Afterwards, we will denote tGH P obtained
after enforcing arc-consistency ByC(P). If there exists a
variable with an empty domain ia(?), we note such in-
consistency ofP by ¢ : ¢(P) = L. The subnetwork ob-
tained by assigning = v is denoted byP|,—,. TheSingle-
ton Arc-Consistencfiltering (SAC) is a strong local con-

Using the scope of the constraints, two distinct variables Sistency which guarantegg?|.—,) # L, for each pair

x andy areneighbouriff there exists a constraint, € C,
calledneighbour constrainbf « andy, such that{z, y} C
sep(c;). A set of variablesX C X (resp. constraint€’ C
C) is in theneighbourhoof a variabler (z ¢ X) if and
only if for all z; € X (resp.c; € C), z is a neighbour of;
(resp.c;).

variable-valu€z, v). We additionally denot@®*|,_, as the
networkP|,—, with the variabler and its neighbour con-
straints disconnected. Also, foiG\ P, we define a subnet-
work P’ of P as aCN with the same set of variables such
that for each variable of P’, its domain is included in the
domain of the variable in P. A partial instantiatiorf x is

Considering the relation of the constraints, we denote locally consistent ifip(P|z,) # L and is globally consis-

by rel(¢;) = r; the definition domain of;. Each tuple
t € rel(c) is defined as am; — tuple (v1,...,v,,;). FOr
agiven variable:; € sep(c;), t[z;] (resp.t[£;]) denotes the
value taken byt ; in ¢ (resp. the tuple without the value as-
sociated to the variable;). Lett € rel(c;) andz € sep(c;)
such that[z] = v, t[Z] is called a support of = v. The set
of supports for: = v in ¢; is denotedsupports(c;|o—s)-

tent if it can be extended to a solution®f A full and con-
sistent instantiation is solution

WhenMAC-like solving algorithm is used, one needs to
specify the kind of branching used to build the search tree.
Indeed, it is possible to consider different approaches lik
binary branching qual-branchingor dual) or non binary
branching dway-branchingpr dway). For dual-branching,

at each node in the search tree, a pair variable-value) For our purposes, let us derive a more convenient def-
is selected and two cases are then considered : the assignnition of neighbourhood substitutability from full subst
mentz = v and, if it did not lead to a solution, the refuta- tutability. This new definition is obtained by considering
tion = # v followed by a new choice for the pair variable- partial and consistent instantiation instead of solution.

value. For dway-branching, at each step, a varialitese- Definition 2 Let P — (X,C) be aCN, (z,v), (z,0') be

lected and assigned to a valuen dom(x). If itis inconsis- two different pairs in(X, dom(z)) and X the set of vari-

tent,v is eliminated from the domain afand another value : : . : : :
. . . . ables includingr and its neighboursv is substitutable by
in dom(x) is chosen and then assigned. This process occurs,

until a refutation of all the value in the domain is proved. ;}ia:r;rtrc]jecgﬁls?gtt;?\l:m;)t?;rl]t?;tilgg n(ilj):rlly”;gtfzor[e]c’:l ih p;ar-
Each of those approaches has its assets, however the dual X x[z] = (v),

IS . . . L
shown to be theoretically stronger than dway [8]. f/e?;]sts ?ﬁ?gﬁ; ;p?j(]:onist[;?t instantiati@f such that
X = X = LX)

3. SAC-based generalization of neighbour- The definition 2 is stronger than definition 1. Indeed, if
hood substitutability for each partial and consistent instantiatibg such that
Ix[z] = (v), it exists a partial and consistent instantiation
3.1. A formal description T, such thafZ’ [x] = (v') andZ} [#] = Zx[Z], then we can

deduce inclusion in term of supports. Obviously, the con-

The substitutability and, the related notion of inter- Verse is not true. Intuitively, the notion of supports may be
changeability are the main keywords of our contribu- @ssociated to the notion of constraints propagation te-ntr
tion. These weak forms of symmetries have been sub-duce the following propositions :

jects of many research works. In [6], Freuder introduced Proposition 1 Let? = (X,C) be aCN, (z,v), (z,v') be

the two well-known forms of symmetryull andlocal sub- ¢ different pairs in(X', dom(z)), and¢ be a constraints
stitutability and interchangeability. o _ propagation operatom is substitutable by’ in the neigh-

For a CN P = (&,C) and two distinct pairs p6yrdhood of: if and only if theCN ¢(P*|,_,) is a sub-
(z,v), (x,v") € (X,dom(x)), v is fully substitutable Latwork Ofp(P* oo).

by v’ iff for each solutionZy such thatZy[z] = (v),
there exists a solutiofl, such thatZ/,[z] = (v/) and Proposition2 Let? = (X,C) be aCN, (z,v), (z,v) be
T4 [#] = Zx[i]. Itis easy to see that the full interchange- two pairs in(X', dom(z)) such that is substitutable by’
ability and the full substitutability are related. Indeéatp in the neighbourhood of, and¢ be a constraints propaga-
valuesv andv’ are fully interchangeable iff is fully sub- tion operator. If¢(P[,—./) = L theng(Pl,—,) = L.
stitutable byy” andv’ is fully substitutable by. So, two
fully interchangeable values are fully substitutable,dbe-
verse is not true. As we need to enumerate all the solu-
tions, checking for full interchangeability or substitiiléty

of two values is clearly intractable. However, a weak-

ening of thosg form_s gives_rise to a Ioca_l_ and tractable supports(c;|s—.). By iterating the constraints propagation
forms of substitutability and interchangeability of twdva 4| reaching a fix point, the SUpporBpports(c;|,—,) of

ues :neighbourhoodsubstitutability and interchangeabil- #(P|o—,) are included in the supportspports(c:lo—_o)

ity. _ o for all constraints;;. Hence theCN ¢(P*|,—,) is a subnet-
_Thes_g local fqrms are descr_lped by restricting both sub- ;4 of 5(P*| s,). On the other hand, we hawéP*|,_,)

stltutz_iblllty and_ mterphangeablllty be_tween two _/alués 0 4 subnetwork of$(P*|,—.), and ¢ an operator able to

a variablez on its neighbourhood variables. In this paper, check the local consistency of the network. Then, for each

we focus on the generalization of neighbourhood substi-) tia| and locally consistent instantiatig of ¢(P|,_,)

tutability. Neighbourhood interchangeability can be dedin (X the set of variables includingand its neighbours), there

in similar way. In our framework, exploiting our general- gyists 4 partial and locally consistent instantiatiBi of
ization of neighbourhood substitutability is sufficienetL $(Plo_w) such thatZl[#] = Zx|2]. Including the deci-

. . e . r=v - .
us reformulate and generalize the definition of neighbour-gion . — + andz = o' in each instantiation, we have

hood substitutability given in [6] for the binary constrin Ix|z] = (v) andT} 2] = (v') respectively. Therefore, is

The two propositions above are central in our contribu-
tion. The proof follows from the definition 2 dfiS. For
proposition 1, since is substitutable by’ in the neigh-
bourhood ofz, we have, as mentioned above by link-
ing the definitions 2 with 1, thatupports(c;|s—,) C

networks. substitutable by’ in the neighbourhood of using the def-
Definition1 LetP = (X,C) be aCN and (z,v), (z,v') inition 2.

two pairs in (X, dom(z)). v is substitutable by’ in the Besides, to prove the proposition 2, we can use propo-
neighbourhood of: if and only if, for each constraint; sition 1. Each solution for th€N ¢(P*|,—,) is also a so-

neighbour ofr, supports(ci|z—v») C supports(ci|z—=v)- lution for ¢(P*|,—=.). Therefore, if theCN ¢(P*|,—,/) is

inconsistent, therp(P*|,=,) is too. As the inconsistency
of ¢(P*|.—,) induces the inconsistency ¢{P|,—,), this
completes the proof.

Our goal is to efficiently exploit the previous properties
in a pretreatment phase usiS4C or dynamically inMAC
based algorithms.

algorithm 1, only the lines from 7 to 10 are dedicated for
checking substitutable values, the other lines describe th
classicalSAC algorithm. This really shows the simplicity
of such integration. Therefore, the time and space complex-
ity for such supports inclusion computation directly deghen
on the constraints arity. If a constraiatinvolvesa vari-

Of course, before exploiting the substitutable values, we ables with maximal domain sizg the constraint may have,

have to satisfy the substitutability condition. To do tives,

just have to use the definition 1 and to check the inclusion

in the worst casej® supports.

between supports of the constraints after achieving a local Algorithm 1: sns

consistencyp. Observe that the use of supports after main-

taining a local consistengy to compute inclusion between

states is equivalent to checking inclusion between the sub- ;

networkse(P*| =) andé(P*|z=.). Also, since different
local consistency operators may give different resultden t

same network, the efficiency, in term of the number of de-
tected substitutable values, depends on the used opérator
In the sequel, we will use Arc-Consistency as a local

consistency operator, usually exploitecbiiC andMAC al-
gorithms.

3.2. Preprocessing with substitutability

Input: P = (X,C) :aCN
Output: SNS(P)

begin
repeat

3 foreachpair (z,v) € (X, dom(x)) do
4 if AC(P|z=v) =L then
5 | Remove(z,v)
6 else
7 StoreA,—,
8 foreach (z, v") provedSAC do
9 Ag—y C A,_,/ = Remove(z, v); Break
10 A,_, C Ay—, = Remove(z, v’)
11 until no pair (variable, value) is removable
12 end

Before analyzing the worst-case algorithmic complexity

As mentioned above, since arc consistency is used, oufpf SNS, let us remind that we considéN with n variables

proposed generalization is clearly adapte8A& based fil-
tering technique [3]. For &N P = (X,C) and a variable
x € X, avaluev € dom(x) is singleton arc-consistent
(SAQ) iff AC(P|z=v) # L. A variablez is SAC iff, for
all v € dom(z), v is SAC. To establishSAC each pair
(x,v) is verified, then it is clearly convenient for the in-

and domain size at mogt e constraints of maximal arity.

For the space complexity, let us first evaluates the space
needed by a state defined by a pair (variable,valugy).
Since the arity of constraintsisand each variable has- 1
neighbour variables. Then, thereds™! supports by con-
straint and thugr — 1)d" ! values for each constraint. In

tegration of our proposed generalization of neighbourhoodthe worst case, since each variable is involved inethen-

substitutability (see proposition 1).

straints, we deduce that thereeig — 1)d"~! values by state

The pretreatment resulting from the integration of our in the worst-case. To compare the states associated to each
approach, calle@NS for “SAC and Neighbouhood Substi- value of a given variable&§NS needs to storé states. Con-

tutability”, is defined by two steps.

sequently, the worst-case space complexity i®i@rd")

The first one, allows to find substitutable values. To this for storing all the states durir§\S pretreatment.

end, the supports of the neighbour constraints after per-

forming AC(P*|,=,), are stored in a structurstétg cor-

To compute the worst-case time complexitySiS, we
have to keep in mind that this algorithm is embedded in a

responding to the tuples of the constraints in neighbour-SAC algorithm. First, we can see that a loop (line 3) is ex-

hood ofx (denotedA,_,). Inclusion between such states

ecuted for each variable-value pair, € times. The iter-

can be achieved by checking inclusion between supportsation includes the arc-consistency filtering (1), the siera

Formally,A,—, € A,_. iff, Vc in neighbourhood oft,
Vt € Ay, (c), there exists a tuple € A,_,(c) such that
t[z] = t'[2].

of the states associated to each pair (2) and the comparison

with the existing states for the same variable (3). The worst

case time complexity oEAC is in O(erd") (1). To store a

The second step exploits proposition 1. In the case of state, we need to check it§r — 1)d"~! values (2). Each

SNS, if v is substitutable by’ in the neighbourhood af,
a solution including the assignment= v allows to deduce
a solution forz = v’. Consequently the valuecan be re-
moved fromz.

Interestingly, associated witBAC, our approach can

of these states must be compared with the previous stored
states. The inclusion is checked in both directions, which
needs/ — 1 inclusion checks to each pair variable-value. In-
clusion of two states implies to see the whole states, that
is to sayerd” values for inclusion checks (3). To sum up,

eliminate both singleton arc inconsistent values and gen-we have a worst-case time complexity for the iteration of

eralized neighbourhood substitutable values. This glearl
shows that our preprocessing is stronger tBag. In the

ndx (erd”+e(r—1)d" ! +erd"), thusO(ernd"+1). How-
ever, since in a classic&AC algorithm, a value removal

modifies theCN, the process has to be repeated. As the net-"Algorithm 2 MACys
work hasnd values, the iteration have, in the worst-case, t0 ~ 05 = (x,0) - acn
be executedid times. The worst-case time complexity of Output: T if P is consistent,L otherwise

. .. 2 42 1 begin
OUI’SNS. preprgces;mg IS I@(ern d’) . 2 while there exists an unassigned variable
In spite of high time and space complexity due to the use 3 Choose(z, v) € (&, dom(x)) such thatz is not assigned
. . . . 4 Do GAC(P|z=v) and store the statd ; —,,

of an exponential number of supports, the efficiency of this 5 foreachstored stated ., do
approach in a practical case depends, obviously, on the im-6 L As=v CA,_, = P« L, break
plementation and used data-structures. Also, since the com 7 while P = L and3 an assigned variabldo

. . . e Backtrack to the previous decisiari = v’
plexity depends on the arity of the constraints, itis intere ¢ Removeu” from dom (x')
ing to investigates the particular case of binary constsain 10 Apply arc-consistency o

: ; . 1 if P = 1 then
In this Ia_St _Case’ the WOI’S’[-C_&SG space (respe(?t"’e'y tlme)}z | Delete states which are stored after the current level
complexity isO(nd?) (respectivelyO(n3d?)). It is impor- _ _ _ _
tant to note that such complexity is comparable to those of 13 'f[’ — L and there is no assigned variattieen

the classicabAC algorithm. L
15 return T

16 end

3.3. Dynamic search for substitutability
states follows from instantiations which involve them. For

The implementation of th8NS preprocessing above il- instance, can a state stored at the root of the search tree be
lustrates all the treatments that can be performed dynami-compared to a state produced at any node of the search tree?
cally to detecNS. The answer is given in the following proposition.

First of all, the dynamic side of our integration can be
related to the repeated modification of 6N and then of
the states associated to the neighbourhood of the variable

In the MAC-based algorithm, maintaining arc-consistency X C X\ {z}. v is substitutable by’ in the neighbour-

in the network is performed for all decisions. Using the hood ofz if and only if theCN ¢((P|z,)*|z=v) is @ subnet-
assignment and constraint propagation process, the dete(‘v-vOrk Of&(P*av) D) e=v

tion of the neighbourhood substitutable values for a vari-
able can easily be embedded, and computed at each node of Using proposition 1, the proof follows. If is substi-

Proposition3 Let P = (X,C) be aCN, (z,v), (z,v")
two pairs in (X, dom(z)), and ¢ a constraint propaga-
Yion operator. LefZx be a consistent instantiation such that

the search tree. tutable tov’ in the neighbourhood of, then ¢(P*|.—,)
Like in SNS approach, the supports in the neighbour- is a subnetwork ofs(P*|.—,/). For any instantiatior x
hood of a variable are stored after each assignmeatv such thatX C X \ {z}, ¢(P|zx a=v) IS @ subnetwork

which is followed by constraints propagation. The states as of ¢(P|,—,). Hence,o((P|z,)*|z=») IS @ subnetwork of
sociated to a given variable correspond to the states tescri ¢(P*|,—=,). On the other hand, ((P|z,)*|z=v) iS @ Sub-
ing the last assignment of a variable to a value (the currentnetwork of ¢(P*|,—.) then supports of((P|zy)*|e=v)
state) and its previously refuted values (past stateshdJsi are included in supports @f(P*|,—./), in particular in the
proposition 2, if the current stat®,_,, is included inapast neighbourhood of. Consequentlyy is substitutable ta’
stateA,—,, then the valuey is substitutable by’ in the in the neighbourdhood af iff ¢((P|z)*|.=v) iS @ subnet-
neighbourhood of:. However, asAC(P|,—.») = L then work of p(P*|z=v’).
AC(P|z=») = L. So,v has to be removed from the do-
main ofz, avoiding to explore redundant parts of the search However, this result only holds if the inclusion test be-
space. tween the state obtained after instantiation and the skate o
The lines from 4 to 6 of thé1ACys algorithm 2 show tained at the root of the search tree holds. Indeed, the re-
each step defined above, integrated to the classical dualmoval of v from the domain ofr at the root of the search
branchingMAC-based algorithm. tree is due to the global inconsistency Bf,—,. So, the
Obviously, this approach can be built in dway-branching neighbourhood substitutable values @¢%, v) are locally in-
scheme since the difference between dual and dway are inconsistent, with respect to a given partial instantiation.
dependent from our implementation. However, in spite of the other hand, the inconsistency resulting from a pariial i
the easy integration, the condition in line 12 of #MACys stantiation does not allow to infer, in the general case, the
algorithm underline an important fact in our dynamic ap- global inconsistency. Consequently, this does not allow to
proach. Indeed, the comparison between states have to bdeduce, again in the general case, the values removal at the
done under some conditions, related to the state of the net+oot of the search tree.
work before the last assignment. Without no focus on partic- In addition, this result can also be applied if we con-
ular case, a necessary condition to the comparison betweesider networksp(P|zy =) and ¢(P|z, =) produced

by two instantiation€x andZy with Y C X. Indeed, if As the proposed approaches present high worst-case
we setP’ = ¢(P|z,), then proposition 3 for the networks complexity for n-ary constraints, we only present the exper
H(P'|zx\y 2=v) @Nd ¢(P’|z=,) holds. Similarly, this as- imentation on binary CSPs. The n-ary case is currently un-
sertion is true only i C X. The comparison between two der investigation. ThESP instances are taken from tBe?
states for the same variable is thereby reduced, in our frameinternational CSP competitiomifp://cpai.ucc.ie/08). The
work, to the comparison between the current state obtainedime limit is set to1200 seconds whereas the memory limit
from the current partial instantiation and the past states. is set to900Mb.

This comparative criterion has an important purpose in
the dual-branching case, since it allows to find substitetab 4.1. Static approach
values, even if the assignments are made at different lev-
els in the search tree. In the dway-branching case, the de-
tected substitutable values of a given variable are obdaine

Satisfiable instances - Constraints in extension

from the constraints subnetwork associated to the same par- Solver | #Solved | Time (s) | #Filtered | #ETminated values
ial i iati SACnac 296 20624 57 4373
tial instantiation. . SNSmac 296 21019 72 41909
In our framework, the worst-case complexity of algo- Unsatisfiable instances - Constraints in extension
rithms MACys in dual and dway_branching schemes are Solver | #Solved | Time (s) | #Filtered | #Eliminated values
: ; . SACwac 195 13824 68 6869
equwz_ilent. FII_’St of all, to remowévalues from the domain SNSwac 195 13807 78 8372
of a given variable, we need to store the states correspond- Satisfiable instances - Constraints in intension
ing to each of its values, i.é states. Since each state has si(c)tl;irc #oolved | Timels) | #hitered | #Eliminated values
e(r — 1)d"~* values, the worst-case space complexity is SNSwmac 254 18054 110 82432
O(ernd"), to compare each state during the whole search ~ —SNSwac | 253 | 17855 109 |~ 79618
Unsatisfiable instances - Constraints in intension
process. Solver #Solved | Time (s) | #Filtered | #Eliminated values
To study the worst-case time complexity, we have to de- SACwmac 202 8307 47 24382
fi hat the " t . b f th tial SNSmac 205 10857 51 41546
ine what the "worst-case” is, because of the exponentia SNy 03 5017 70 27690

size of the search tree. Our choice is to compute the worst-
case time complexity for substitutable values detection be
fore a variable refutation in the search tree. This casersccu
whend values have been removed and e#®hassigned
value implies to check the inclusion in the- 1 past states.
So, there is(’;) comparisons between states in the worst-

Table 1. Global results : SACpac VS SNSyac

First of all, Table 1 presents a global view on the re-
sults obtained by ouBNS preprocessing on all the bi-
nary CSP instances. Each comparative table gives the

case. Since each comparison neefis— 1)d"~! values its obtained h cat £ inst Satisfi
comparison, the worst-case time complexityigerd™1). resutis oblained on €ach calegory of Instances (atist-
able/Unsatisfiable, Constraints in extension/intensiam)

In case of binary constraints, the worst-case space (respec .
tively time) complexity is inD(end?) (respectivelyO (ed?)) terms of the number of solved instances (#Solved), of the

to find all substitutable values of a variable before its refu total solving t|m.e in seconds (Time), of the number of in-
tation. stances on which at least one value has been removed

(#Filtered) and of the number of eliminated values (#Elim-
. inated values).
4. Experiments Also, to get a finer comparison, we also give the results
of each solver on the same set of solved instances. Such re-
Before presenting the evaluation of our proposed static sults are illustrated using the name of the solver preceged b
and dynamic exploitation of the generalized neighbourhoodthe minus symbol. In table 1, we only shev6NSyac be-
substitutability, let us describe the used experimentad pr cause the set of common solved instances corresponds to
tocol. All the tests were made on a Xeon 3.2GHz (2 GB those solved b$ACuac.

RAM) cluster. We can first observe th&NSyac solves globally more
The first experiment presents a comparison of the staticinstances thaBACwac. It can be noted that in terms of CPU
implementation (preprocessing)$iS (respective\6AC), times,SNSwuac is better (respectively worse) th&ACyac

using aMAC algorithm with the classical dual-branching on the two categories of unsatisfiable (respectively satisfi
scheme, calle®NSyac (respectivelySACuac). The sec- able) CSP instances. The results also show $iN&yac
ond experiment gives the evaluation of our dynamic detec-is stronger tharbACyac in term of removed values. In-
tion and exploitation of the neighbourhood substitutapili deed,SAC (respectivelySNS) remove59771 (respectively
This evaluation compares thdAC algorithm using dual- 182041) values in the preprocessing phase.

branching scheme with and without dynamic use&Nf, The scatter plot given in figure 1 illustrates the compara-
calledMAC andMACys respectively. tive results oSNSyac andSACwuac on all the binary CSPs

SAC_MAG versus SNS_MAG to 250, and265 binary constraints. The major part of such

. oo Shcmaccrutme problems are easily solved by t8ACuac approach with-
1200 ' ' ' ' ' 1200 out eliminating values at the preprocessing phase46or-
A stances solved by the two solve?$, are trivially satisfied,
e . N i.e backtrack free. Some problems are easily satisfied and
a00 - . 1 a00 the number of nodes is strongly reduced. However, the pre-

processing time takes an important part of the solving time.
Note that the number of instances shown in the tablis
whereasl6 were mentioned previously. Indeed, on this par-

@

o

<]

T

+

+

yt

1

@

o

<]
SNS_MAC CPU time

400 - $ 4 a0 ticular instanc&NSwac eliminates;17 values and solves it
. t;f“ in 192 nodes and0s (8s for Ptime), whereaSACyac do
et S A 1 not eliminate any value, and answers its satisfiabilityt in

millions of nodes iG91s (2s for Ptime).

[R . p— . - o
? 200 g0 e0o B0 a000 1200 To complete our analysis for the static framework, the
Figure 1. SNSyac and SACyac: a comparison in term second class of problems for whi6iNSyac is efficient is
of CPU times the Taillard OpenShop instances (in particuartaillard-
n). These instances hawé variables, with maximal domain
300 in average, andn? constraints fom = 4, 5, 7, 10 in
instances. The x-axis (resp. y-axis) correspondNGyac our case43 instances are solved by the two solvers.18n
(resp.SNSmac). In this plot, the CPU timesr andty ob- instances the two solvers do not achieve any domain filter-

tained by the solvers on a particular instance represent ang. On these last instances the preprocessing time is about
(tz,ty) dot. The4 instances solved only byNSyac cor- 305s and303s, respectively foSNSpac andSACyac.

respond to the points @tr = 1200 seconds. On some Our preprocessing is able to eliminates both singleton
classes of instances our approach is clearly better. In fig-arc inconsistent values and generalized neighbourhoed sub
ure 1, we can distinguish the bad behaviour of our approachstitutable values. In spite of the fact that our preprocess-
on instances represented in the figure by the points aroundng is less efficient when the number of values filtered is
(0,200), and a good behaviour shown by the points below high, it clearly simplify the instance and reduce the time of

ty = tx. A more detailed analysis shows tH&#tiSyac is the solving phase, which allovéNSyac to solve more in-
very useful on two classes of instances : jobShop and Tail-stances thaBACpac.
lard OpenShop problems.

4.2. Dynamic approach

Results on jobShop instances
Solver #Solved | #Trivial #Filt. #Nodes | Ptime (s) | Time (s)
SACwmac 45 29 0 20789 93 175
SNSwmac 45 35 19293 | 8801 2208 2276
Results for Taillard-OS problems Satisfiable instances - Constraints in extension
Solver | #Solved | #Trivial | #Filt. | #Nodes | Ptime (s) | Time (s) Solver | #Solved | Time | #Filt. | #Eliminated values
SACwmac 25 3 10850 | 870351 590 1161 MAC 296 20845 | - -
SNSwmac 25 4 67105 | 151663 1775 1950 MACys 294 17972 | 28 129
MAC 294 18600 | - -
Table 2. Results for jobShop and Taillard-OS problems Unsatisfiable instances - Constraints in extension
Solver #Solved | Time | #Filtered | #Eliminated values
MAC 196 | 13771 - -
MACns 196 | 13716 36 66302
Satisfiable instances - Constraints in intension
i i Solver #Solved | Time | # Filtered | #Eliminated values
Table 2 presgnts a detailed comparison betMM AC e il L !
andSNSyac on jobShop and Taillard-OS CSP instances. In MACns 254 | 9465 58 22439
addition to the measures given in table 1, we also give the —MAC 251 1 9466 - -
- . . . —MACs 251 | 8706 55 18441
number of satisfiable instances proven without backtrarkin Unsatisfiable instances - Constraints in intension
or unsatisfiable instances without search process (#1)ivia Solver | #Solved | Time | #Filtered | #Eliminated values
: : MAC 202 | 8268 - -
Fhe number of filtered values (#Filt.), the nqmber of nodes_; MACrs 503 | sa3s 2 152014
in the search tree (#Nodes), the preprocessing and the entir —MACys 202 | 7789 28 104917
Table 3. Global results : MAC vs MACys

solving time in seconds, called Ptime and Time respectively
Clearly our approach detects more neighbourhood substi-
tutable values thaSAC.

First of all, the jobShop problems are satisfiable, and Table 3 shows thaMAC and MACys solve the same
contain50 variables with domain size ranging frot®0 number of instances. The scatter plot (figure 2) clearly

shows that ouMACys dynamic approach is always faster
i.e. the majority of points are below the diagonal.

MAC versus MAC_NS

MAC CPU time
400 600 1200
T T

800 1000
T T 1200

o
1200

-
+

1000 1000

®
]
]

@
o]
<]

MAC_NS CPU time

IN
o
o

200 200

[o]

" " " " o
200 400 600 800 1000 1200

Figure 2. Comparison of the CPU times for MAC and
MACps

in particular using the singleton arc-consistency filtgria
preprocessing embeded into $&C algorithm was defined

as a the static approach. Interestingly, since assignnénts
variables to values and maintaining arc-consistency are th
basics steps foMAC-based search algorithms, a dynamic
implementation was also proposed. Experimental results on
binary CSPs show the usefulness of our static and dynamic
approaches.

Even if the static approach does not show an overall effi-
ciency w.r.t. time performance, however on hard instances,
our approach achieves better results and solves more in-
stances. Also, our approaches outperform the classical one
with respect to the number of filtered values and to the
number of nodes in the search tree. The dynamic approach
shows interesting results in time, even if the number of
problems on which substitutable values have been found is
low. Finally, on some classes of problems, such as jobShop
and Taillard OpenShop théS value detection is clearly rel-
evant. On these classes, our approaches allow to solve in-
stances out of reach of the classical one.

There are many future directions for this work. Beyond
the study of the general case implementation (n-ary CSPSs)

The performance of our dynamic approach on jobshopsand improvements of the implemented approaches, we plan

instances presents some similarity with our previous analy
sis. With46 instances solved by the two solve28,are triv-
ially satisfiable. On thé7 other instances, only0 involve
theNS detection, and of them are easy to solve, with time
of 15s and17s respectively foMACys andMAC. Like in
static analysis, the hardest instance for whi¢AC solver
finds a solution in660s while MACys finds one inl sec-

ond. This clearly shows that on hard instances, we also ob-

tain important gain in term of CPU time. Also, for Taillard-
OS instanceg instances in “intension/satisfiable” category
are only solved byYIACys solver. Ont5 common solved in-
stances?5 are filtered by the substitutability detection and
23 are solved by the two solvedlAC in 1724s andMACys

in 1443s, which eliminate2611, reducing the number of
nodes in the search treedd6687 for MAC and460024 for
MACys). Note that the othet instances are only solved by
MACys finding 397 substitutable values and solved the two
instances irh56s. Again, the neighbourhood dynamic sub-
stitutability detection for Taillard instances is bettean the

classical approach. As a summary, the dynamic approach

MACys shows better results in CPU time than the basic
MAC solver.

5. Conclusion et future works

to investigate how other constraints propagation algorith
can be exploited to deal with these forms of symmetry.

References

[1] Amit Bellicha, Christian Capelle, Michel Habib, Tibor
Kokény, and Marie catherine Vilarem. Csp techniquesgisin
partial orders on domain values. Rroceedings of ECAI'94
WKks. on CSP Issues Raised by Practical Applicati@894.
Belaid Benhamou and Lakhdar Sais. Tractability tigtou
symmetries in propositional calculusJournal Automated
Reasoning12(1):89-102, 1994.

Christian Bessiere and Romuald Debruyne. Theoretinal-

ysis of singleton arc consistency and its extensidxsificial

Intelligence 172(1):29-41, 2008.

[4] Assef Chmeiss and Lakhdar Sais. About neighborhood sub
stitutability in csps. InProceedings of SymCon’200Bages
41-45, 2003.

[5] James Crawford, Matthew Ginsberg, Eugene Luks, and

Amitabha Roy. Symmetry-breaking predicates for search

problems. InProceedings of KR'9&ages 148-159, 1996.

Eugene C. Freuder. Eliminating interchangeable valnes

constraint satisfaction problems. Rroceedings of AAAI'91

pages 227-233, 1991.

lan P. Gent and Barbara Smith.

ing search in constraint programming.

ECAI'’200Q pages 599-603, 2000.

(2]

(3]

[6]

[7] Symmetry breaking dur-

Rroceedings of

In this paper, a semantic generalization of the neighbour-[8] Joey Hwang and David G. Mitchell. 2-way vs d-way branch-

hood substitutability, a weaker form of symmetry defined by
Freuder [6], is presented. This original generalizatioohis
tained by a substitution of the syntactical concept of sup-

ports with a semantic measure of constraints propagation,

ing for csp. Inin Proceedings of CP’0%ages 343-357, 2005.

[9] Jean-Francois Puget. On the satisfiability of symmoatrcon-
strained satisfaction problems. Rroceedings of ISMIS’93
pages 350-361, 1993.

