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Abstract

In this paper we consider the consistency problem of
temporal or spatial qualitive constraint networks. A new
encoding making it possible to represent and solve this
problem in the framework of the propositional logic is pro-
posed. The definition of this encoding presupposes the ex-
istence of a particular order on the basic relations of the
qualitative calculus such as that of the conceptual lattice of
the interval algebra of Allen.

1 Introduction

Reasoning about temporal or spatial information is an
important task in many applications of various domains of
Artificial Intelligence. Many formalisms, called qualitative
calculi, have been developped these last years. A qualita-
tive calculus [1, 3, 8] uses particular elements (subsets of
a topological space, points of a line, intervals of a line,
rectangles of a plan, tuples of points . . . ) for representing
the spatial or temporal entities of the system and considers
relations between these elements. Each one of these rela-
tions corresponds to a particular temporal or spatial situa-
tion and does not consider metric aspects. Constraint net-
works called qualitative constraint networks ( ����� in short)
can be used to represent constraints concerning the rela-
tive positions of a set of temporal or spatial entities. Each
constraint of a ����� is defined by a set of basic relations
allowed for the relative position of the concerned entities.
Given a ����� , the main problem which we must consider
is the consistency problem. To solve efficiently this prob-
lem, search methods using the method of closure by weak
composition as method of local propagation of constraints
on the one hand, and a decomposition of the constraints in
relations of a class known as tractable on the other hand,
have been defined [4].

Other works have also been devoted to the representation
of the ����� in propositional logic encoding. The ����� con-
sistency problem becomes a satisfiability problem. We can
cite the encoding given by Nebel and Bürckert [5] allow-

ing to represent each constraint of the interval algebra as a
SAT clause. Roughly, this set of SAT clauses symbolize a
linear order corresponding to the interval bounds configu-
rations of the system. Other translations, more generic and
adaptative to the frameworks using any qualitative calculus
have been recently defined and studied [7]. One of these
encodings consists in the SAT representation of all the pos-
sible combinations of basic relations between each triplet of
variables. These possible combinations are provided by the
composition table. Another approach consists in the charac-
terization of all banned combinations. The main interest of
such encodings is the use of SAT solvers to solve efficiently
the ����� consistency problem.

We can notice that there do not exist in the litterature
SAT encodings using definition of tractable classes. We
propose, in this paper, an encoding that takes advantage
of the convex relations definition. More precisely, the pro-
posed SAT representation uses a lattice defined on basic re-
lations having similar features with the lattice Allen’s for-
malism. Using this new encoding, the ����� whose con-
straints are defined by the intervals of such a lattice are rep-
resented using a set of Horn clauses.

This article is organized as follows. After a short tech-
nical background about qualitative formalisms, we give the
definition of our encoding allowing to translate a ����� in
propositionnal logic in Section 	 . In Section 
 , we study
this encoding. Finally, we conclude with some perspectives
and future works.

2 Qualitative formalisms overview

In the sequel, we assume a given qualitative formalism
for the time and the space. This formalism is defined on a
finite set � of binary basic relations on the domain � . We
make the hypothesis that the basic relations are jointly ex-
haustive and pairwise disjoint. For an illustration, consider
the well-known Allen’s calculus [1]: the interval algebra
( �� ). �� is based on ��	 binary relations defined on a set of
intervals (see Figure 1). Each basic relation corresponds to
a configuration between the 
 bounds of two intervals.
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Figure 1. The basic relations of ��
We denote by  , the set ��� of all the sets built on � . For���  , two entities ����� � � satisfy � , denote by � � � ,

iff there exists a basic relation � ��� such as � ���!�#" � � .
Thereby, each element � in  may be represented as the
union of all the basic relations that compose it. We will use
the term of “relation” to name the union of basic relations.
The set  is equipped with the intersection ( $ ), the union
( % ) and the weak composition ( & ) operations. It is also fitted
up with the unary converse operation ( ')( ). The temporal
or spatial information on the configuration between a set
of entities may be represented using a constraints network
called qualitative constraints network ( ����� ). Formally, a�����+* is described as a pair �-,��/.0" where , is a finite set
of variables 132��5454�46�!137 ')( (with 8 a positive integer) and .
is a map that, for each pair � 1:9!��1<;<" of variables in , , assigns
a subset .+�=139��!1<;>" of basic relations, such as .+�=1:9��!1<;<"@?� ( .+�=139A��1<;<" �  ). Regarding the ����� , we will use the
following definitions:

Definition 1. Let * BC�-,��/.0" be a ����� , with ,DBE 1 2 ��454�46�!1 7 'F(HG . A partial solution of * on ,JIK?L, is a
map M from , I to � such as MN�=1:9O"P.+�=139��!1<;<"QMN� 1<;H" , for
all 139��!1<; � , I . A solution of * is a partial solution on, . * is consistent if and only if there exists a solution.* is & -closed (weak composition closed) if and only if for
all 1:RS�!139��!1<; � , , .+�=139��!1<;H"T?U.+�=139��!1:R:"�&V.+� 1:RS��1<;<" and.+�=139��!1<;<"XWBZY (note that we could do a restriction on the
triplets 1:RS�!139[��1<; � , with \^]`_ ). A sub- �����^* I of* is a �����a�b,��A. I " where . I �=139A��1<;<"+?U.+�=139A�!1<;<" for all1 9 �!1 ; � , . The notation * I ?c* will denote that * I is
a sub- ����� of * . A scenario of * is a sub- �����d�-,��/. I "
of * such as . I �=1 9 �!1 ; "TB E � G with � � � . A consistent
scenario of * is a scenario of * which admits a solution.* I Be�b,��A. I " and * are equivalent if and only if the two����� have the same solutions.

3 An encoding from fhgji to kml�n
In this section, we describe and we study an encoding to

represent a ����� in a set of propositionnal clauses. To de-

fine this encoding, we assume defined a partial order o on� satisfying some properties. First of all, �bpq�5o�" must be
a lattice. Hence for all �r�/sH��t � � we have: �!�<"u�vow� ,�b�x" if �yo t and tzo s then �yo s , �b	x" if �yo s
and s{o|� then �hB}s , �=
~" there exists two elements in �
matching with ���<� E ���As G and ����� E ���As G . Let two basic rela-
tions ���As � � , the interval � ���As/� will represent the relation in defined by

E t � ���:��o�t and tVo�s G . �)� will denote the
subset of  corresponding to the intervals of �!�N�5o�" . For-
mally, ����B E � ���AsA���~���As � � G . Later in this paper, we call
by simple ����� ( ������� ), all ������B{�b,��A.0" for which each
constraint .u9�; is defined by a relation � . '9�; �/.j�9�; � in ��� .
Regarding �[�N��o�" , we suppose that the following properties
for the operations of inverse and weak composition hold:� for all ���As � � , if �{o�s then sH'F(�o��r'F( ;� for all �r�/sH��t3��� � � , � ���AsA��&m� t>�A�3�)BQ�����<��� ��&�t5"��/�����~�-s~&��~"�� .
For many qualitative calculi [6, 5, 3, 2, 8], such lattice ex-
ists, and it is sometimes called qualitative or conceptual lat-
tice, whereas the relations of � � are called convex relations.
The conceptual lattice for the interval algebra is represented
in Figure 2 and a ������� defined on this lattice may also be
seen in the same figure. Note that the constraint .�9�; is not
represented when .�;�9 is already present and when the rela-
tion corresponds to the total relation (i.e. � ) or if indexes \
and _ are equals. Now, it is possible to define our encoding
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Figure 2. The conceptual lattice �!�N�5o�" for ��
and a consistent �������

�S�<� representing a ����� with a set of clauses. These clauses
represent properties linking the lattice �[�N�5o�" and the basic
relations which must be satisfied.

Definition 2. Let * B �b,��A.0" be a ������� and 8�B  ,  
. Using the set of propositions

E . 9�; o|� with � �
� and \/�-_ � E<¡ �5454�4��!8a¢£� G:G % E �¤o¥. 9�; with � �
� and \/�-_ � EH¡ ��454545�!8h¢�� G:G , we define �S�<�5��*a" by the fol-
lowing set of clauses:� for each constraint .¦9�;§B � ��9�;x�/s�9�;6� with \/�-_ �E<¡ �5454�4��!8¦¢+� G , two unit clauses bounding the possible basic



relations are introduced:

� 9�; o�. 9�; and . 9�; ods 9�; � ¨~"
� We also introduce some clauses describing a property on
the infima and suprema of o for all ���As � � :

© � �qod. 9�; "Fª © �-s«o�. 9�; "Fª@����� E �r�/s G o�. 9�; �b¨x¨j�S"
© �b.u9�;Ko��S")ª © �b.u9�;0ods6")ª@.u9�;Jo¬���<� E �r�/s G � ¨�¨js5"� Some clauses describing the property of transitivity of o

are introduced for all ���As � � such as �Wo�s :

© � ��o�.u9�;H")ª © �b.u9�;Ko�s6"e�b¨x¨�¨�"
� Two clauses for the converse operation are introduced for
all � � � :

© � �®o�.u9�;H"Fª@.�;�9�o�� 'F( � © �-.u9�;Ko��~"�ª®� 'F( o�.�;�9U� ¨~,T"
� Finally, we introduced, for each triplet of constraints. 9¯R �/. RA; �A. 9�; , with \/��_:�/° � E<¡ ��454�4��!8±¢�� G and \�]�_ , two
clauses resulting from the weak composition property:

© � �®o�.u9¯R:"Fª © �bsVod.¦R�;H")ª²���<���b�j&¦s6"uo�.u9�;��b,³�S"
© �-. 9¯R o��~"�ª © �-. RA; o�s6")ª@. 9�; o������~�b�j&¦s6"L�-,Ks6"
Note that �S�<�5��*a" contains only Horn clauses. Conse-

quently, it is possible to answer to the satisfiability of * in
polynomial time. Moreover, we remark that the encodings
of two ������� build on an unique qualitative calculus and on
a same set of variables differ only for the set of clauses �b¨�" .

Consider the ������� represented in Figure 2. Its encod-
ing into SAT contains, for example, the clauses ´Hµ@oP. 2A2 ,. 2A2 o¶´Hµ , s�oz. 2 ( , . 2 ( o�· , ·H\¸o¶. ( 2 , . ( 2 o¶s/\ ,sjo¹. 2Aº , . 2/º o¹s/\ , sjo¬. º�2 , . º�2 o�s�\ for the clauses � ¨~" .
The set of clauses �b¨x¨~" will contain, for example, © �b»�\Jo. 2 ( "Hª © � �®o�. 2 ( "Hª�»²o�. 2 ( since »hB¹���x� E »�\/�A� G . In the
set �b¨x¨�¨�" and � ¨~,K" , we will obtain some clauses whereof© � �x\uo¹.¼2 ( "�ª © �b.¼2 ( od´Hµ3" and © �b»�oa. ( 2H"½ª@.�2 ( o¹»�\
respectively. Since ¾£&�»¸B E ·~�A¿x��� G BÀ� ·~�A�3� , the clauses© �=¾ÁoÂ.¼2 ( "¼ª © �b»ÀoÃ. ( º<"¦ªÄ·¹oÂ.¼2Aº and © �b.¼2 ( o¾@")ª © �b. ( º0od»)")ªh.¼2/º0o�� belong to the clauses �-,K" .

Previously, we have proposed an encoding from �������
into propositional logic. This encoding may easily be
generalised to the general ����� case. Indeed, since a
constraint defined by a relation .¦9�; �  , we can al-
ways split .u9�; in a set of ° relations

E .K(9�; , . . . , . R/Å�Æ9�; G ,
with °x9�; an integer smaller than

  �  
, such as .¦9�;�BÇJÈ=É (/Ê�Ë�Ë�Ë Ê R Å�Æ . È

9�; and . È
9�; is a relation in ��� for all Ì �E �:��454�4��A°x9�; G . Consequently, . È

9�; B � �S(9�; �As�(9�; �V%U45454�%
� � R/Å�Æ9�; �/s R/Å�Æ9�; � with �#(9�; �54�4546�A� R/Å�Æ9�; �/s5(9�; ��454�46�As R/Å�Æ9�; � � . The
description of such constraints will be performed using
a substitution of the two unit clauses introduced in �b¨�"

by a set of clauses corresponding to the formula � ��(9�; o
.u9�;³Í�.¼9�;QoÎs (9�; "�ª¹45454�ª��b� R/Å�Æ9�; oÎ.u9�;³Í�.u9�;QoÎs R/Å�Æ9�; " .
For example, assume that for the ����� in Figure 2, the
constraint .¼2Aº is not defined by the total relation but by
the relation

E ¾���·~�A¿x�A´<µ~�/»���� G . Since we have .u2/ºÂBE ¾���·~�/¿:�A´Hµ~�A»���� G B E ¾²�A· G % E ¿x��´Hµ~�A»��A� G BQ� ¾���·<�/%T� ¿x���:� ,
we can split this constraint like �=¾`o�.u2/ºxÍ¦.¼2Aºjo�·3"6ª«�b¿Jo. 2Aº Í¦. 2/º o��~" and so we obtain the clauses ¾Ïo�. 2/º ª¦¿Jo. 2Aº , ¾ÐoÑ. 2/º ª�. 2Aº oÎ� and . 2Aº o¶·Òª�¿coÎ. 2/º ,. 2Aº o�·�ªh. 2/º o�� .

Remark that, using the previous definition, all the clauses
are not Horn clauses. We can also remark that, in the case
of the Allen’s calculus, the number of relations of � � used
to the spliting is in average of 	#4�Ó:Ó [4]. In the general case,
the spliting of any relation of  into relations of � � is not
unique. In the sequel, we will discard this non-deterministic
case fixing an unique parsing for each relation �T�  .

4 Encoding k�ÔSÕ completeness

In this section, we prove that the satisfiability of the
obtained set of clauses from the encoding �S�<� applied to
a ����� allows to determine the consistency or not of this����� . Before that, let’s prove a property about the lattice�[�N��o�" that will be helpful in the sequel:

Proposition 1. Let ���/sH��t>�A� � � . If �o¬t and s³o�� then���<���b�j&¦s6"¼o¬���<���bt�&u��" and ���x�S� �0&¦s6"uo����x�S� t�&u�~" .
Proof. Consider the relations � ���/���x�~�[��"O� , � s>�A�����~�!��"�� ,� t3�A�����~�!��"�� et � �r�A�����S�[��"�� . Since �voÖt and s¤ow�
we have � t3�A�������!��"��Q?Ð� ���A���x�S�[��"O� and � �r�A�����~�!��"��Q?� s>�A�������!��"�� . Consequently, � t3�A�����~�!��"���&X� �r�A�����~�!��"��¬?� ���/���x�S�[��"O�F&T� sH�/���x�S�[��"O� . As � t>�A���x�S�[��"O�F&+� �r�A�����~�!��"��jB�����<��� tv&|��"6�A�����#�b�����~�!��"J&h���x�S�[��"�"�� and � ���/���x�S�[��"O�¦&� s>�A�������!��"��³B��������H� �q&0s6"6�A�����~�-�����~�!��"u&0���x�S�[��"�"�� , it fol-
lows that �����<� ��&Ns6"uo¬���<���bt½&��~" . Using a similar reasoning,
we can demonstrate that ���x�S� �0&¦s6"uo����x�S� t�&u�~" . ×
Now, let’s prove that an encoded weak composition closed������� is satisfiable:

Proposition 2. Let * B|�b,��A.0" be a ������� defined on�[�N��o�" . If * admits a & -closed scenario then �#�<�5��*a" is
satisfiable.

Proof. Let Ø be a & -closed scenario of * . Let’s note ¿>9�;
the corresponding basic relation to the constraint between
the variables 1 9 and 1 ; in Ø for all \/��_ � EH¡ ��454545�!8�¢c� G
with 8B   ,  

. We will define an interpretation ¨ of �S�<�5��*a"
as, for each constraint . 9�; and each relation � � � : if��oÀ¿ 9�; then ¨�� �doÀ. 9�; "ÒBLÙ �HÚ ´ , ¨�� �doL. 9�; "+BZ»��~Ìb¿<´
otherwise ; if ¿ 9�; o � then ¨r�-. 9�; o �S"ÏB Ù �HÚ ´ ,¨r�-.u9�;co��~"�BÑ»��~Ìb¿<´ otherwise. As Ø is a scenario of* , we have �S9�;ao�¿<9�;aoÂs�9�; , with .u9�;�B|� �~9�;:�As�9�;6� . If



follows that ¨ satisfies the clauses � ¨~" . ¿H9�; � � and�[�N�5o�" is a lattice, it results that the clauses �b¨x¨~" and� ¨�¨x¨~" are satisfied. ¿ 9�; B ¿ ')(;�9 and we know that if�ÛoÐs then s ')( oÐ� ')( . Consequently, the clauses� ¨~,K" are satisfied using ¨ . Since Ø is & -closed, we have¿ 9�; � � ¿ 9¯R �/¿ 9¯R �r&J� ¿ R�; �/¿ R�; � for all \/�-_x�A° � EH¡ ��454545�!8¢a� G .
Thus, �������-¿ 9¯R &�¿ R�; "uo�¿ 9�; o����x�~�b¿ 9ÜR &�¿ R�; " . For all ���As � � ,
if �¹oL¿ 9¯R and sXoe¿ RA; then ���<��� �Ò&0s6"hoÃ�������-¿ 9ÜR &j¿ RA; "
(Prop. 1). It follows that ���<���b��&�s6"Âo ¿ 9�; . Also,
for all ���As � � , if ¿<9¯RÝo � and ¿HR�;Þo s then���x�S�b¿<9¯RX&±¿HR�;H"ZoC�����S� �^&±s6" (Prop. 1). Finally, we
have ¿<9�;�o`���x�S� ��&Ks6" and the clauses �b,T" are satisfied.
Therefore, we can conclude that ¨ is a model of �S�<�5��*a" . ×
From an interpretation satisfying �S�<�5��*a" , we can de-
fine a & -closed sub- ����� of * defined on �)� . That �������
is formally defined as follows:

Definition 3. Let *ÞBe�-,��/.0" be a ������� and ¨ a model
satisfying �S�<�5��*a" . ßAàxá3�~�-�S�<�5��*a"�" is the �������^�-,��/. I " de-
fined by .jI9�; BÃ� Ì 9�; � Ú 9�; � , with Ì 9�; BL����� E � � �Q�m¨�� ��o. 9�; "¼BaÙ �HÚ ´ G and Ú 9�; B{���<� E � � ����¨r�-. 9�; od�S"�BaÙ �<Ú ´ G ,
for all \A��_ � E<¡ �5454�4��   ,   ¢�� G .

This ������� ownes as well the following features:

Proposition 3. Let *�BP�-,��/.0" be a �r����� and ¨ a model
satisfying �S�<�5��*a" . We have: � �S"�ßAàxá3���-�S�<����*a"�"³?{â , �-s6"ß�à�á>���-�S�<�5��*a"�" is a & -closed ����� .

Proof. � �S" Let us show that, for all \/�-_ � E<¡ �5454�4��!8�¢¹� G
with 8¸B   ,  

, �~9�;+o�Ìã9�;To Ú 9�;To¬s69�; with .u9�;KBä� �~9�;x�/s�9�;6� ,Ìã9�;vB ���x� E � � � �Q¨�� �åo .u9�;H"ÃB Ù �<Ú ´ G andÚ 9�;dBæ���<� E � � �¤�J¨��b.u9�;Qo¶�S"¸BÑÙ �HÚ ´ G . Using the
clauses � ¨~" , we know that ¨ satisfies � 9�; o . 9�; and. 9�; oPs 9�; . By definition of Ì 9�; and Ú 9�; , we have � 9�; oPÌ 9�;
and Ú 9�; oLs 9�; . Let’s show that Ì 9�; o Ú 9�; . ¨ satisfies the
clauses � ¨�¨�" , we can deduct that ¨ satisfies Ì 9�; oå. 9�;
and . 9�; o Ú 9�; . If Ì 9�; Wo Ú 9�; ¨ would not satisfy the
clauses �b¨x¨�¨~" , it results that Ì 9�; o Ú 9�; . �bs5" Let us show
that, for all \/�-_x�A° � E<¡ ��454�46�!8�¢£� G with \P]y_ , we
have � Ìã9�;x� Ú 9�;��¸?§� Ìã9ÜRS� Ú 9ÜR<��&@� Ì=R�;x� Ú R�;6� . We know that ¨
satisfies the literals Ì=9¯Ro}.u9¯R , Ì=R�;@oç.uRA; , .u9¯R²o Ú 9¯R and.uRA;�o Ú R�; . Since ¨ satisfies the clauses �-,K" , we affirm
that ���<��� Ìã9¯R�&uÌ=R�;<"�o�.u9�; and .u9�;Ko����x�S� Ú 9ÜR�& Ú R�;H" are two
satisfied variables. By definition of Ì=9�; and Ú 9�; , we deduce
that ���<��� Ìã9¯R0&VÌ=R�;H"ToèÌã9�; and Ú 9�;@oä�����~� Ú 9¯R0& Ú R�;<" . Since� Ìã9¯R~� Ú 9¯R<��&J� Ì=R�;:� Ú R�;���BÏ�����<��� Ìã9¯R«&VÌ=R�;<"6�A�����S� Ú 9ÜRj& Ú R�;<"O� , we
have � Ì 9�; � Ú 9�; ��?y� Ì 9¯R � Ú 9¯R �N&@� Ì R�; � Ú RA; � . ßAàxá3���b�#�<����*a"�" is
therefore a & -closed ����� . ×
From the propostions 2 and 3 we have:

Proposition 4. Let *ÁB`�b,��A.0" be a �r����� . If the weak
composition closure method is complete for the ������� then* is consistent iff �S�<�5��*a" is satisfiable.

Remember that the encoding �S�<� of a general ������*
is based on a splitting in relations of �F� for each of
its constraints: .¦9�;PBÞ� � (9�; �As (9�; �N%�4�454�%c� � R/Å�Æ9�; �/s R/Å�Æ9�; � with

� (9�; ��45454���� R Å�Æ9�; �/s (9�; �5454�45�/s R Å�Æ9�; � � and °x9�; an integer. From
this and the previous result, it is possible to extend the pre-
vious proposition to the general case of the ����� s:

Theorem 1. Let *æBä�b,��A.0" be a ����� . If the weak com-
position closure method is complete for the ������� then *
is consistent iff �S�<�5��*a" is satisfiable.

5 Conclusion and future works

In this paper, we defined an encoding allowing to trans-
form qualitative constraints networks into propositional
logic using a structure corresponding to a conceptual lattice
on the basic relations. In the specific case of the ������� s
we obtain a set of Horn clauses. We proved that the sat-
isfiability problem of the resulting set of clauses allows to
solve the consistency problem of ����� s. In order to prove
the effectivness of our approach many experimentations are
in process. This paper presents a new encoding which takes
into account the convex relations, one of our future works
is to define new encodings using other tractable relations as
the preconvex relations.
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