
Relaxation of Qualitative Constraint Networks

Dominique D’Almeida, Jean-François Condotta,
Christophe Lecoutre, and Lakhdar Saïs

CRIL-CNRS, Université d’Artois, rue de l’Université, 62307 Lens, France
{dalmeida,condotta,lecoutre,sais}@cril.univ-artois.fr

Abstract. In this paper, we propose to study the interest of relaxing
qualitative constraints networks by using the formalism of discrete Con-
straint Satisfaction Problem (CSP). This allows us to avoid the intro-
duction of new definitions and properties in the domain of qualitative
reasoning. We first propose a general (but incomplete) approach to show
the unsatisfiability of qualitative networks, by using a relaxation on any
set of relations. Interestingly enough, for some qualitative calculi, the
proposed scheme can be extended to determine the satisfiability of any
qualitative network, leading to an original, simple and complete method.
However, as the efficiency of our approach depends on the chosen relax-
ation, total relations should be preferred due to their connections with
the hardness of constraint networks. We then present some preliminary
experimental results, with respect to unsatisfiability, which show some
promising improvements on some classes of random qualitative networks.

1 Introduction

The need for reasoning about time and space arises in many areas of Artificial
Intelligence, including computer vision, natural language understanding, geo-
graphic information systems (GIS), scheduling, planning, diagnosis and genetics.
Numerous formalisms for representing and reasoning about time and space in a
qualitative way have been proposed in the past two decades [1,28,22,3,27,19,4].

Those formalisms involve a finite set of basic relations denoting qualitative
relationships between temporal or spatial entities. Intersection, overlapping, con-
tainment, precedence are examples of such qualitative relationships. For instance,
in the field of qualitative reasoning about temporal data, there is a well-known
formalism called Allen’s calculus [1]. It is based on intervals of the rational line
for representing temporal entities and thirteen basic relations between such in-
tervals are used to represent the qualitative situations between temporal entities:
an interval can follow another one, meet another one, and so on.

Typically, Qualitative Constraint Networks (QCNs) are used to express infor-
mation on a spatial or temporal situation. Each constraint of a QCN represents
a set of acceptable qualitative configurations between some temporal or spatial
entities and is defined by a set of basic relations. The total relation, which is the
set of all basic relations, is the term used to describe a total uncertainty in the
configurations. The density of such relations in a qualitative networks can take
part to the difficulty to solve those problems.

I. Miguel and W. Ruml (Eds.): SARA 2007, LNAI 4612, pp. 93–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

94 D. D’Almeida et al.

The aim of this paper is to demonstrate that a relaxation of some relations
can lead, in some cases, to a significant computational speed up of the satis-
fiability checking task. To avoid the introduction of new particular definitions
(and properties) in qualitative reasoning, when relaxation is applied, a discrete
encoding preserving the chosen relations of qualitative constraint networks is
used. Using a relaxation on any set of relations, it is then possible to show the
unsatisfiability of some networks. Interestingly enough, for some qualitative cal-
culi, this basic relaxation scheme is extended to determine the satisfiability of
any qualitative constraint network leading to an original, simple and complete
method. Nevertheless, even if the approach can be used in the general case, we
focus our attention on relaxing total relations since these relations are intuitively
related to computational efficiency.

Relaxation based approaches are widely used in many domains ranging from
constraint satisfaction to linear programming and knowledge representation. For
example, in constraint satisfaction, relaxations are used to solve dynamic [20],
over-constrained [21] and distributed [31] constraint networks. Some other works
are based on concepts of abstract interpretation [14,23], theory of abstraction [16]
or theory approximation [8,29]. Whereas in [9], abstract interpretation [14,23] is
exploited to improve constraint solving in an object-oriented context, the concept
of Galois insertion (at the heart of abstract interpretation) has also been used
to deal with flexible constraints [5,6]. Generally speaking, many abstractions
(e.g. [15,10,30,11]) proposed in the literature can be seen as a kind of value or
variable clustering. The framework introduced in [24] allows to deal with general
clustering which means that an element (a value or a variable) can belong to
several clusters.

The paper is organized as follows. In the next section, some background on
qualitative and discrete formalisms is provided. Then we present the general
relaxation scheme that we propose. Before concluding, some experimental results
on some classes of random qualitative constraint networks are presented.

2 Technical Background

In this section, we provide the technical background useful for the reading of this
paper. First, we present the concept of qualitative calculus before introducing
qualitative constraint networks. Then, we introduce discrete constraint networks
and describe an encoding of qualitative constraint networks into discrete ones.

2.1 Qualitative Calculus

A qualitative calculus involves a finite set B of binary1 relations, called ba-
sic relations, defined on a domain D. The elements of D represent temporal
or spatial entities. Each basic relation of B corresponds to a particular possi-
ble configuration between two temporal or spatial entities. The relations of B

1 In this paper, we focus on binary relations but this work can be extended to non-
binary ones.

Relaxation of Qualitative Constraint Networks 95

are jointly exhaustive and pairwise disjoint, which means that any pair of ele-
ments of D belongs to exactly one basic relation in B. Moreover, for each basic
relation B ∈ B there exists another basic relation of B, denoted by B∼, corre-
sponding to the transposition of B. In addition, we suppose that a particular
relation of B, denoted by Id, is the identity relation on D. The set A is defined
as the set of relations corresponding to all possible unions of the basic relations:
A = {

⋃
E : E ⊆ B}. It is customary to represent an element B1 ∪ . . .∪Bm (with

Bi ∈ B for each i such that 1 ≤ i ≤ m) of A by the set {B1, . . . , Bm} belonging
to 2B. Hence, we make no distinction between A and 2B in the rest of this paper.

As an example, consider the well-known temporal qualitative formalism called
Allen’s calculus [2]. It uses intervals of the rational line for representing tem-
poral entities. Hence, D is the set {(x−, x+) ∈ Q × Q : x− < x+}. The
set of basic relations consists of a set of thirteen binary relations B =
{eq, b, bi, m, mi, o, oi, s, si, d, di, f, fi} corresponding to all possible configura-
tions between two intervals. These basic relations are depicted in Figure 1. We
have Id = eq.

Relation

precedes

meets

overlaps

starts

during

finishes

equals

Meaning

b

m

o

s

d

f

eq

Inverse

bi

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

Y

Symbol

Fig. 1. The basic relations of Allen’s calculus

As a set of subsets, A is equipped with the usual set-theoretic operations
including intersection (∩) and union (∪). As a set of binary relations, it is also
equipped with the operation of converse (∼) and an operation of composition
(◦) sometimes called weak composition or qualitative composition. The converse
of a relation R in A is the union of the transpositions of the basic relations
contained in R. The composition A ◦ B of two basic relations A and B is the
relation R = {C ∈ B | ∃x, y, z ∈ D3, x A y, y B z and x C z}. The composition
R◦S of R, S ∈ A is the relation T =

⋃
A∈R,B∈S{A◦B}. Computing the results of

these various operations for relations of 2B can be done efficiently by using tables
giving the results of these operations for the basic relations of B. For instance,
consider the relations R = {eq, b, o, si} and S = {d, f, s} of Allen’s calculus, we
have R∼ = {eq, bi, oi, s}. The relation R ◦ S is {d, f, s, b, o, m, eq, si, oi}.

96 D. D’Almeida et al.

2.2 Qualitative Constraint Networks

A qualitative constraint network (QCN) is a pair composed of a set of variables
and a set of constraints. Each variable represents a spatial or temporal entity of
the problem that is represented, and each constraint consists of a set of accept-
able basic relations (the possible configurations) between two variables. More
formally, a QCN is defined in the following way:

Definition 1. A QCN N is a pair (V, Q) where V = {v1, . . . , vn} is a finite set
of n variables and Q is a map that assigns to each pair (vi, vj) of V × V a set
Q(vi, vj) ∈ 2B of basic relations. Q(vi, vj) will also be denoted by Qij. Q is such
that Qii ⊆ {Id} and Qij = Q∼

ji for all vi, vj ∈ V .

A solution of a QCN N is a map σ from V to D such that (σ(vi), σ(vj)) satisfies
Qij for all vi, vj ∈ V . N is consistent iff it admits a solution. A QCN N ′ =
(V ′, Q′) is a sub-QCN of N (denoted by N ′ ⊆ N) if and only if V = V ′ and
Q′

ij ⊆ Qij for all vi, vj ∈ V . A QCN N ′ = (V ′, Q′) is equivalent to N if and
only if V = V ′ and both networks have the same solutions. N is atomic iff each
constraint of N contains exactly one basic relation. A scenario of N is an atomic
sub-QCN of N . We will denote by scen(N) and sol(N) a scenario and a solution
of N , respectively.

Given a QCN N , the main issue to be addressed is the consistency problem: to
decide whether or not N admits (at least) a solution. Most of the algorithms used
for solving this problem are based on a method that we call the ◦-closure method,
also called weak composition closure and denoted WC. The ◦-closure method
is a constraint propagation method allowing to enforce the (0, 3)-consistency of
N , which means that all restrictions of N to 3-variables are consistent. The ◦-
closure method involves iteratively performing the following operation: Qij :=
Qij ∩ (Qik ◦ Qkj), for all vi, vj , vk of V , until a fix-point is reached. This method
yields a sub-QCN N ′ = (V, Q′) of N which is equivalent to it, and such that
Q′

ij ⊆ Q′
ik ◦ Q′

kj , for all vi, vj , vk of V . This last condition is expressed by saying
that the sub-network is ◦-closed (to simplify, we will assume that a ◦-closed QCN
does not contain the empty relation associated with a constraint).

2.3 Discrete Constraints Networks

Definition 2. A Discrete Constraint Network (DCN) P is a pair (X, C) where
X is a finite set of variables and C a finite set of constraints. Each variable
x ∈ X has an associated domain, denoted domP(x), which represents the set of
values allowed for x. Each constraint c ∈ C involves a subset of variables of X,
called scope and denoted scp(c), and has an associated relation denoted relP(c),
which represents the set of tuples allowed for the variables of its scope.

When possible, we will write dom(x) and rel(c) instead of domP (x) and relP(c).
If P and P ′ are two DCNs defined on the same sets of variables X and constraints
C, then we will write P
 P ′ (and we will say that P is a subnetwork of P ′)
iff ∀x ∈ X , domP (x) ⊆ domP′

(x). A solution to a discrete constraint network
is an assignment of values to all the variables such that all the constraints are

Relaxation of Qualitative Constraint Networks 97

satisfied. A constraint network is said to be satisfiable or consistent iff it admits
at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint network is satisfiable.
A CSP instance is then defined by a constraint network, and solving it involves
either finding one (or more) solution or determining its unsatisfiability.

To solve a CSP instance, one can apply inference or search methods. Usually,
domains of variables are reduced by removing inconsistent values, i.e. values that
can not occur in any solution. Indeed, it is possible to filter domains by consider-
ing some properties of constraint networks. Generalized Arc Consistency (GAC)
remains the central property of constraint networks and establishing GAC on
a given network P involves removing all values that are not generalized arc-
consistent. Remark that for binary constraint networks, GAC is simply referred
as AC (Arc Consistency).

Definition 3. Let P = (X, C) be a DCN. A pair (x, a), with x ∈ X and a ∈
dom(x), is generalized arc-consistent (GAC) iff ∀c ∈ C | x ∈ scp(c), there exists
a support of (x, a) in c, i.e. a tuple t ∈ rel(c) such that t[x] = a and t[y] ∈ dom(y)
∀y ∈ scp(c)2. P is GAC iff ∀x ∈ X, dom(x) �= ∅ and ∀a ∈ dom(x), (x, a) is
GAC.

We will denote by GAC(P) the constraint network obtained after enforcing GAC
on P . Inconsistency proved when applying GAC is denoted by GAC(P) = ⊥.

2.4 From Qualitative to Discrete Constraints Networks

In this paper, we propose to use an encoding to map a qualitative constraint
network N into a discrete one P . Each constraint of N is mapped to a variable
of P whose domain corresponds to the atomic relations of the constraint (and,
as a consequence, a subset of B), and each triple of constraints of N is mapped
to a ternary constraint of P such that the associated relation contains all valid
3-tuples satisfying the weak composition. More formally, we obtain:

Definition 4. Let N = (V, Q) be a QCN. TDCN(N) is the DCN P = (X, C)
defined as follows:

– for each pair of variables vi, vj ∈ V with 1 ≤ i ≤ j ≤ n, X contains a
variable xij such that dom(xij) = Qij ;

– for each triple of variables vi, vj , vk ∈ V with 1 ≤ i < k < j ≤ n, C
contains a ternary constraint cijk such that scp(cijk) = {xij , xik, xkj} and
rel(cijk) = {(a, b, c) ∈ B3 : a ∈ b ◦ c}.

The idea of mapping qualitative networks into discrete ones is quite natural, and
has been formalized in [26,12]. Interestingly, there are some relationships between
the two frameworks. For example, if a QCN N is consistent, then TDCN(N) is
consistent [12]. Unfortunately, the encoding is not complete for some qualitative
calculi (e.g. the cyclic interval algebra [18,4]): the qualitative network N can be
2 t[x] denotes the value assigned to x in t.

98 D. D’Almeida et al.

inconsistent whereas the discrete network TDCN(N) is consistent. Nevertheless,
we have the following weaker property: if TDCN(N) is consistent then N admits
a ◦-closed scenario. Besides, introducing the concept of so-called nice qualitative
calculus, i.e. a calculus for which a scenario is consistent if and only if it is ◦-
closed, we can establish that: a QCN N defined in a nice qualitative calculus
is consistent iff TDCN(N) is consistent. It is important to remark that many
qualitative calculi are nice, and in particular the well-known Allen’s calculus.

It is possible to obtain a qualitative network from a discrete network using
the following operator TQCN .

Definition 5. Let N = (V, Q) be a QCN and P = (X, C) be a DCN such that
P
 TDCN (N). TQCN(P) is the QCN (V, Q′) defined by Q′

ij = dom(xij) and
Q′

ji = (Q′
ij)

∼ for all 1 ≤ i ≤ j ≤ n.

This operator is useful to show the connections existing between qualitative and
discrete local consistencies. Indeed, we can prove [12] that if TDCN(N) is GAC
then N is ◦-closed. As a consequence, a way to obtain the ◦-closure of a QCN
is to transform it into a DCN (via TDCN), apply a GAC algorithm and get back
the result (via TQCN) under the form of a DCN. This is illustrated in Figure 2.

P = TDCN(N)

GAC

P ′N ′ = TQCN(P ′)

◦-closure

N

Fig. 2. Relationship between ◦-closure and GAC

The interest of encoding qualitative networks into discrete ones is two-fold.
First, we can benefit from some state-of-the-art generic CSP solvers that are
freely available. Second, the formalism classically used for qualitative algebra
is based on networks whose macro-structure corresponds to complete graphs.
Here, introducing relaxation in qualitative networks would require extending
current qualitative definitions and properties. The major part of QCN solvers
works with matrices as data structures to represent qualitative constraints. For
example, QAT (a qualitative algebra toolkit [13]) uses such a data structure.
With these solvers, the representation of a relaxed QCN is not a trivial task and
implies heavy changes concerning the methods used for reasoning.

3 Relaxing Qualitative Constraints Networks

There is a particular relation in any qualitative algebra: the total relation that
we will denote by ψ. This relation, which is such that ψ = B, represents the fact

Relaxation of Qualitative Constraint Networks 99

that we have no information about the configuration of any two variables. When
solving a QCN, ψ relations may represent an overhead for the resolution since
they must be taken into account while not participating (at least, initially) to
filter the search space. This is why we are going to propose to relax qualitative
constraint networks by simply discarding all ψ relations.

In order to make our approach quite general, we introduce relaxation and
restriction with respect to a subset of relations R ⊆ 2B (even if we will choose R =
ψ for our experimentation). From now on, we will consider given the qualitative
calculus as well as R (assumed to be closed for the converse operation). Then,
we present a general scheme, as well as an algorithm, that can be followed when
the qualitative calculus respects some conditions.

3.1 Theoretical Results

To perform our relaxation, we propose a generalization of the mapping operator
introduced in Definition 4. The relaxation involves only taking into account
variables (of the discrete network) whose domain does not belong to R. More
formally, the definition of the new operator, denoted by T−R

DCN , is given by:

Definition 6. Let N = (V, Q) be a QCN. The discrete relaxation T−R
DCN(N) of

N is the DCN P = (X, C) defined as follows:

– for each pair of variables vi, vj ∈ V with 1 ≤ i ≤ j ≤ n such as Qij /∈ R, X
contains a variable xij such that dom(xij) = Qij ;

– for each triple of variables vi, vj , vk ∈ V with 1 ≤ i < k < j ≤ n, C
contains a ternary constraint Cijk , such that scp(Cijk) = {xij , xik, xkj} and
rel(cijk) = {(a, b, c) ∈ B3 : a ∈ b ◦ c}, iff xij , xik and xkj belong to X.

It is immediate to see that T−R
DCN is equivalent to TDCN when R = ∅. Also,

T−R
DCN(N) is clearly a sub-network of TDCN(N).
The following proposition shows that it is possible to exploit discrete relax-

ations to prove the unsatisfiability of a qualitative network. The proof is imme-
diate since T−R

DCN(N) is a sub-network of TDCN(N) which is equivalent to N
with respect to satisfiability.

Proposition 1. Let N be a QCN. If T−R
DCN(N) is unsatisfiable then N is

unsatisfiable.

Figure 3 shows an illustration of discrete relaxations of a qualitative constraint
network (from Allen’s calculus). On the left, we have the discrete network that
corresponds to the direct mapping (according to Definition 4) of the QCN pre-
sented at the top of the figure: each constraint becomes a variable and each triple
of variables becomes a ternary constraint. On the right, we have the discrete net-
work that corresponds to the discrete relaxation based on the total relation. The
variable x2,3 has been discarded since it corresponds to the total relation Q2,3.
Consequently, ternary constraints that may involve x2,3 have been discarded
too. Trivially, both networks are unsatisfiable. Indeed, we have v1 before v4 and
v1 after v4. Hence, in the relaxed discrete network, dom(x1,4) is restricted to

100 D. D’Almeida et al.

x2,4

{b, a}
ψ

T−ψ
DCN

TDCN

{b}

{b}

{a}

{a}

v4

v3

x1,2

x3,4

v1

x3,4

x1,4

v2

x1,2

x2,3 x2,4

x1,4x1,3 x1,3

Fig. 3. Illustration of discrete encodings (with and without relaxation)

the before value (using the ternary constraint c1,2,4) and also to the after value
(using the ternary constraint c1,3,4).

Once a discrete network using T−R
DCN has been generated, it is possible to use

any CSP solver to find solutions, if any. As mentioned above, if no solution is
found, it means that the initial qualitative network is unsatisfiable. However,
for any found solution I (i.e. consistent instantiation), it may be interesting to
exploit it in the qualitative network. Of course, in the general case, each solution
does not correspond to a piece of a consistent scenario of the qualitative network,
but by considering each of them in turn, it is possible to render the approach
complete. Indeed, if no consistent scenario can be built from all solutions of the
discrete relaxation, the qualitative network is proved to be unsatisfiable.

To do this, we need to propose a generalization of the mapping operator
introduced in Definition 5.

Definition 7. Let N = (V, Q) be a QCN, R be a subset of 2B and P = (X, C)
be a DCN such that P
 T−R

DCN(N). The qualitative restriction T +R
QCN (P) of P

is the QCN N ′ = (V, Q′) defined by:

– ∀ 1 ≤ i ≤ n, Q′
ii = {Id};

– ∀ 1 ≤ i < k < j ≤ n, Q′
ij = dom(xij) and Q′

ji = (Q′
ij)

∼ if xij ∈ X, and
Q′

ij = Qij and Q′
ji = Qji, otherwise.

We can apply this operator to any solution found in P . Indeed, by considering
I as a DCN (the domain of each variable being reduced to a single value), we
can build the qualitative restriction of I and then obtain a qualitative network
N ′. It is interesting to note that in this case, the constraints of N ′ are basically
composed of relations of R as well as atomic relations. This can contribute to
facilitate our task (i.e. determining the satisfiability/unsatisfiability of N). In-
deed, there exists a class H ⊂ 2B of relations, called ORD-Horn relations [25],
such that, for some qualitative calculi, weak composition closure is complete with
respect to satisfiability. QCN only composed of ORD-Horn relations are called
ORD-Horn QCN. We have the following proposition.

Relaxation of Qualitative Constraint Networks 101

is inconsistent?

NO

is sat?
complete solverNO

YES

(solution)

YES

WC

N
SAT

T−R
DCN

P

N

UNSAT
N

N ′
T+R

QCN

I

Fig. 4. A general scheme to determine the satisfiability of a QCN N

Proposition 2. Let N be a QCN and I be a solution of T−R
DCN(N). If R is a

subset of ORD-Horn relations and T +R
QCN(I) is closed by weak composition, then

N is satisfiable.

The proof can be derived from the elements introduced above. This proposition
can be directly exploited by some qualitative calculi, e.g. the Allen’s one. Indeed,
for the Allen’s calculus, the set of ORD-Horn relations is closed with respect to
composition, intersection and converse. It implies that, applying a weak com-
position closure algorithm on an ORD-Horn network yields another ORD-Horn
network. In other words, for the Allen’s algebra, Propositions 1 and 2 provide
us with an original way to determine the satisfiability of a qualitative network
by using two simple mapping operators, a CSP solver and a weak composition
closure algorithm.

3.2 General Scheme

A general scheme about the exploitation of discrete networks to deal with the
relaxation of qualitative networks is given in Figure 4. This scheme holds if the
qualitative calculus is such that all atomic relations are ORD-Horn relations
and the weak composition closure is complete with respect to satisfiability. Re-
mark that the closure of the set of ORD-Horn relations for composition and
intersection may improve the applicability of this scheme.

The aim of the scheme is to determine the satisfiability of a given qualitative
network N . Using the operator T−R

DCN (see Definition 6), we first obtain a discrete
network P . Then, we use a complete solver to search for a solution. If no solution
is found, then N is proved to be unsatisfiable (see Proposition 1). Otherwise,
a solution I is returned by the solver. Using the operator T +R

QCN (see Definition

102 D. D’Almeida et al.

7), we can then obtain a new qualitative network N ′. If this network can be
enforced to be ◦-closed, it means that the satisfiability of N has been proved
(see Proposition 2). If this is not the case, we just ask the complete solver to
search for the next solution.

Algorithm 1. checkSatisfiability
Data: QCN N
Result: the satisfiability of N
begin

P = T −ψ
DCN(N)

/* we assume that solve(P), called iteratively, returns the
solutions of P, one by one */

solution ← solve(P)
while solution �= null do

if GAC(solution ∩ TDCN(N)) �= ⊥ then
return SAT

solution ← solve(P)
return UNSAT

end

We will instantiate this general scheme by using the total relation as re-
laxation (i.e. by choosing R = ψ) and considering the Allen’s calculus whose
atomic and total relations belong to the set of ORD-Horn relations, which con-
sequently satisfies the previous requirements. More precisely, we will use the
function checkSatisfiability depicted by Algorithm 1. The main difference be-
tween this algorithm and the scheme presented above is the fact that, instead of
using the operator T +R

QCN and the ◦-closure operation, we use a GAC algorithm.
Indeed, if we consider the network obtained by restricting TDCN(N) with respect
to the last found solution, and if we apply GAC, then we obtain the same result
as the one obtained by applying the ◦-closure on T +R

QCN(solution) (see Figure 2).

4 Experiments

To study the practical interest of our proposed relaxation framework, some pre-
liminary experiments on unsatisfiability detection have been conducted using
total relations relaxation. Some qualitative constraint networks have been ran-
domly generated and converted to discrete constraint networks using the qualita-
tive algebra toolkit QAT [13].We have limited our attention to random networks
because of the absence of structured qualitative instances. Then, Abscon, a state-
of-the-art generic CSP solver (see http://www.cril.univ-artois.fr/CPAI06)
has been run on the obtained discrete instances. Note that the satisfiability
detection part of our general framework is currently under development.

In our experiments, as path consistency (which corresponds to weak compo-
sition) on qualitative constraint networks can lead to the elimination of some
total relations (replaced by implied ones), two different relaxation modes have

http://www.cril.univ-artois.fr/CPAI06

Relaxation of Qualitative Constraint Networks 103

been considered. For the first one, relaxation corresponds to the elimination of
all total relations: this will be called strong relaxation. For the second one, relax-
ation (elimination of total relations) is done after achieving weak composition:
this will be called weak relaxation. Of course, the strong relaxation can elimi-
nate more total relations than the weak one. Using these two relaxation modes,
an experimental comparison has been conducted against a direct resolution (no
relaxation).

To generate random QCN instances, we have used three parameters : the
number of variables (N), the density of non-total relations (D) and the average
number of basic relations for those constraints (L). The generated QCN instances
are composed of 50 variables built from the well-known Allen’s calculus (which
is composed of 13 basic relations). For each instance, the number of atomic
relations in each constraint has been fixed to L1 = 3.25 and L2 = 6.5 while the
density of non-total relations has been varied from 0.01 to 0.99 with a step of
0.01. For each parameter setting, 100 networks have been generated.

Comparison is done according to the percentage of detected unsatisfiable in-
stances and average cpu time (in ms) needed to solve such instances. The first
measure is used to show the precision of our relaxation framework i.e. the highest
this percentage is, the better our approximation is.

Figure 4 indicates that for L1 (figure on top) and L2 (figure on bottom), the
strong relaxation is far less efficient, in term of precision (i.e. detected unsat-
isfiable instances), than the weak one. Note that for L1, 100% of unsatisfiable
instances have been detected by the weak relaxation, and that for L2, the gap
between weak and strong relaxations is increasing. It then appears that applying
weak composition before relaxation improves the precision of our unsatisfiabil-
ity detection method. Note that these experiments are only presented around
the threshold which is the most interesting area. Of course, beyond the highest
density mentioned in Figure 4, the accuracy of both relaxation methods always
reaches 100%.

It is interesting to see that in term of cpu time, the two relaxation modes
present totally different behaviours. This can be observed for both strong and
weak relaxations in Figures 6 and 7, respectively. One could imagine that strong
relaxation is faster than weak relaxation on detected unsatisfiable instances, but
here, we have to be aware that the average computation is not done on the
same basis. Indeed, we make our computation by only keeping the instances
that were detected unsatisfiable by, on the one hand (Figure 6), both the strong
relaxation and the direct resolution, and on the other hand (Figure 7), both the
weak relaxation and the direct resolution. Note that, as the density increases, the
two relaxations tend to be very close to the behaviour of the direct resolution.
Also, remark that in Figure 7 (on bottom), at a density set to 0.18, we obtain a
significant gain in term of cpu time when using the weak relaxation.

Finally, to make our experimental protocol more significant, we have con-
ducted another series of experiments on a sample of hard QCN instances
above the threshold. To this end, a number of atomic relations per constraint
(L3 = 9.75) and a non-total relations density (D = 0.65) have been chosen
such that the generated networks are difficult to solve. As we can observe in

104 D. D’Almeida et al.

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2

P
ro

po
rt

io
n

of
 d

et
ec

te
d

un
sa

tis
fia

bl
e

in
st

an
ce

s
(%

)

Density (L1=3.25)

No relaxation
Strong relaxation
Weak relaxation

 0

 20

 40

 60

 80

 100

 0.1 0.15 0.2 0.25 0.3 0.35

P
ro

po
rt

io
n

of
 d

et
ec

te
d

un
sa

tis
fia

bl
e

in
st

an
ce

s
(%

)

Density (L2=6.5)

No relaxation
Strong relaxation

Weak composition

Fig. 5. Proportion of instances detected as unsatisfiable

Table 1. Results on a sample of difficult instances

Method No relaxation Strong relaxation Weak relaxation
instances 65 65 65

Time Out (TO) 32 16 16
Sat 0 0 0

Unsat 33 49 49
Time Out / # instances 49,23% 24,62% 24,62%
Total Time (33 unsat) in s 14,572 3,765 4,016
Avg Time (33 unsat) in s 441.5 114.1 121.7

Ratio 0,00% 74,16% 72,43%

Table 1, our approach is very efficient for detecting the unsatisfiability of these
hard instances. Indeed, without relaxation, 49.23% of instances are not solved
within the allowed cpu time (1200s), whereas on the same networks only 24.62%

Relaxation of Qualitative Constraint Networks 105

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

Density (L1=3.25)

No relaxation
Strong relaxation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

Density (L2=6.5)

No relaxation
Strong relaxation

Fig. 6. Average cpu time to detect unsatisfiability (strong relaxation)

of instances are not detected to be unsatisfiable by our approach. Interestingly
enough, on such detected instances a huge gain (up to a four-fold improvement)
is obtained with respect to cpu time. On these hard instances, the weak and
strong relaxations present very close performances.

5 Future Works and Conclusions

In this paper, a general and complete relaxation framework for qualitative rea-
soning is proposed. It allows the user to consider any kind of relaxation and any
type of relations. Its originality comes from the fact that we exploit a mapping
towards discrete constraint networks. Considering total relations for relaxation,
promising preliminary results have been obtained with respect to unsatisfiability.

The generality and flexibility behind our approach offer some rooms for further
improvements. It can be strengthened by integrating results from constraint

106 D. D’Almeida et al.

 480

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

Density (L1=3.25)

No relaxation
Weak relaxation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.1 0.15 0.2 0.25 0.3 0.35

tim
e

(m
s)

Density (L2=6.5)

No relaxation
Weak relaxation

Fig. 7. Average cpu time to detect unsatisfiability (strong relaxation)

satisfaction and satisfiability problems. For example, the completeness can be
efficiently addressed by exploiting advanced methods in satisfiability problems
(e.g. randomisation and restarts [17]). We can also imagine the integration of
different forms of restriction in order to reintroduce some of the previous relaxed
relations. This could be done, for example, by using constraint weighting [7] to
select the best relations that might be added.

References

1. Allen, J.F.: An interval-based representation of temporal knowledge. In: Proceed-
ings of IJCAI’81, pp. 221–226 (1981)

2. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

Relaxation of Qualitative Constraint Networks 107

3. Balbiani, P., Condotta, J.F., Fariñas del Cerro, L.: A model for reasoning about
bidimensional temporal relations. In: Proceedings of KR’98, pp. 124–130 (1998)

4. Balbiani, P., Osmani, A.: A model for reasoning about topologic relations between
cyclic intervals. In: Proceedings of KR’00, pp. 378–385 (2000)

5. Bistarelli, S., Codognet, P., Rossi, F.: An abstraction framework for soft constraints
and its relationship with constraint propagation. In: Choueiry, B.Y., Walsh, T.
(eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 71–86. Springer, Heidelberg (2000)

6. Bistarelli, S., Codognet, P., Rossi, F.: Abstracting soft constraints: framework,
properties, examples. Artificial Intelligence 139, 175–211 (2002)

7. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI’04, pp. 146–150 (2004)

8. Cadoli, M.: Tractable Reasoning in Aritificial Intelligence.LNCS, vol. 941, Springer,
Heidelberg (1995)

9. Caseau, Y.: Abstract interpretation of constraints on order-sorted domains. In:
Proceedings of ISLP’91, pp. 435–452 (1991)

10. Choueiry, B., Faltings, B., Weigel, R.: Abstraction by interchangeability in resource
allocation. In: Proceedings of IJCAI’95, pp. 1694–1710 (1995)

11. Choueiry, B., Noubir, G.: On the computation of local interchangeability in discrete
constraint satisfaction problems. In: Proceedings of AAAI’98, pp. 326–333 (1998)

12. Condotta, J.F., Dalmeida, D., Lecoutre, C., Sais, L.: From qualitative to discrete
constraint networks. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS
(LNAI), vol. 4314, pp. 54–64. Springer, Heidelberg (2007)

13. Condotta, J.F., Ligozat, G., Saade, M.: The QAT: A Qualitative Algebra Toolkit.
In: Proceedings of TIME’2006, pp. 69–77 (2006)

14. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Logic and Computa-
tion 2(4), 447–511 (1992)

15. Freuder, E., Sabin, D.: Interchangeability supports abstraction and reformulation
for constraint satisfaction. In: Proceedings of SARA’95 (1995)

16. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2-3),
323–390 (1992)

17. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfi-
ability and constraint satisfaction problems. Journal of Automated Reasoning 24,
67–100 (2000)

18. Hornsby, K., Egenhofer, M.J., Hayes, P.J.: Modeling cyclic change. In: Proceedings
of REIS’99, pp. 98–109 (2006)

19. Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using
ternary relation algebras. Artificial Intelligence 122(1–2), 137–187 (2000)

20. Jussien, N.: Relaxation de Contraintes pour les problémes dynamiques. PhD thesis,
Universitè de Rennes I (1997)

21. Jussien, N., Boizumault, P.: Implementing constraint relaxation over finite domains
using ATMS. In: Jampel, M., Maher, M.J., Freuder, E.C. (eds.) Over-Constrained
Systems. LNCS, vol. 1106, Springer, Heidelberg (1996)

22. Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and
Computing 1(9), 23–44 (1998)

23. Marriott, K.: Frameworks for abstract interpretation. Acta Informatica 30, 103–129
(1993)

24. Merchez, S., Lecoutre, C., Boussemart, F.: Abstraction de réseaux de contraintes.
Revue d’Intelligence Artificielle 20(1), 31–62 (2006)

25. Nebel, B., Bürckert, H.J.: Reasoning About Temporal Relations: A Maximal
Tractable Subclass of Allen’s Interval Algebra. Journal of the ACM 42(1), 43–66
(1995)

108 D. D’Almeida et al.

26. Pham, D.N., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning
as propositional satisfiablitly. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
117–131. Springer, Heidelberg (2005)

27. Pujari, A.K., Kumari, G.V., Sattar, A.: Indu: An interval and duration network.
In: Proceedings of the Australian Joint Conference on Artificial Intelligence, pp.
291–303 (1999)

28. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Proceedings of KR’92, pp. 165–176 (1992)

29. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal
of the ACM 43(2), 193–224 (1996)

30. Shrag, R., Miranker, D.: Abstraction and the csp phase transition boundary.
In: Proceedings of the 4th International Symposium on Artificial Intelligence and
Mathematics, pp.138–141, 1996.

31. Yokoo, M.: Constraint relaxation in distributed constraint satisfaction problems.
In: Proceedings of ICTAI’03, pp. 56–63 (1993)

	Introduction
	Technical Background
	Qualitative Calculus
	Qualitative Constraint Networks
	Discrete Constraints Networks
	From Qualitative to Discrete Constraints Networks

	Relaxing Qualitative Constraints Networks
	Theoretical Results
	General Scheme

	Experiments
	Future Works and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

