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Abstract

In this paper, we introduce and study a new paraconsistent inference
relation |=c in the setting of 3-valued paraconsistent logics. Using in-
consistency forgetting as a key mechanism for recovering consistency, it
guarantees that the deductive closure Cn|=c(Σ) of any belief base Σ is clas-
sically consistent and classically closed. This strong feature, not shared
by previous inference relations in the same setting, allows to interpret
an inconsistent belief base as a set of classical worlds (hence to reason
classically from them).

1 Introduction

Reasoning in a non-trivial way from inconsistent pieces of information (the para-
consistency issue) is a fundamental problem in artificial intelligence. Its impor-
tance is reflected by the number of approaches developed so far to address it:
paraconsistent logics, belief revision, belief merging, reasoning from preferred
consistent subsets, knowledge integration, argumentative logics, purification,
etc. (see [Besnard and Hunter, 1998; Hunter, 1998; Priest, 2002] for a survey).

The variety of existing approaches can be explained by the fact that paracon-
sistency can be achieved in various ways, depending on the exact nature of the
problem at hand (hence, the available information). Each of them has its own
pros and cons, and is more or less suited to different inconsistency handling
scenarios. For instance, when Σ represents the (conflicting) beliefs of several
agents, a merged base giving the beliefs of the group of agents can be designed
by logically weakening some local belief bases (associated to the agents) in or-
der to restore global consistency [Grant and Subrahmanian, 1995; Lin, 1996;
Revesz, 1997; Konieczny and Pino Pérez, 1998; Konieczny, 2000].

Compared with the other approaches listed above, paraconsistent logics (ta-
ken stricto sensu) offer a basic way to address the trivialization issue in presence
of inconsistency. Indeed, belief revision, belief merging, knowledge integration,
reasoning from preferred consistent subsets and purification need some extra-
logical information in order to be well-defined and avoid trivializing. Such extra-
logical information can be rather poor: A splitting between the belief base and
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the revision formula in the belief revision setting, a set (or multi-set) orga-
nization of the beliefs in a belief merging scenario. They can also be rather
sophisticated: Preference relations over beliefs, knowledge gathering actions for
purification. In both cases, they are required. In particular, unlike paraconsis-
tent logics, none of those approaches can address in a significant way the case
when the available information take the form of a single piece (hence encoded
as a unique formula in a logical language)1.

Several (non mutually exclusive) techniques can be used to define an infer-
ence relation that avoid trivialization from an inconsistent propositional formula
(see [Priest, 2002]). One of them consists in preventing classically inconsistent
belief bases from having no model, through the consideration of more general
notions of interpretations. Several multi-valued logics are related to this line
of research (among others, see [D’Ottaviano and da Costa, 1970; Belnap, 1977;
Frisch, 1987; Levesque, 1989; Priest, 1989; Priest, 1991; Besnard and Schaub,
1997; Besnard and Schaub, 1998; Arieli and Avron, 1998; Arieli and Avron, 1999;
Konieczny and Marquis, 2002; Marquis and Porquet, 2003; Coste-Marquis and
Marquis, 2005]).

In the following, the focus is laid on three-valued paraconsistent logics. The
additional (epistemic) truth value (called middle element) intuitively means
“proved both true and false” and allows to still reasoning meaningfully with
variables that are not embedded directly in a contradiction. While a number
of paraconsistent inference relations have been defined in this setting, none
of them ensures that deductive closures are always classically consistent and
classically closed. This is a strong drawback of such approaches since it prevents
from interpreting inconsistent belief bases as sets of classical worlds (i.e., 2-
interpretations), and consequently it questions the possibility to exploit further
the information encoded by an inconsistent belief base using standard inference
or decision-making techniques (since such techniques typically require classically
consistent information).

In this paper, we fill the gap by introducing and studying a new paraconsis-
tent inference relation |=c in the setting of three-valued paraconsistent logics.
This inference relation elaborates on a valuable paraconsistent inference rela-
tion |=≤ introduced by Priest [Priest, 1991]. Basically, the preferred 3-models
of a belief base Σ w.r.t. |=c are the 2-interpretations which are as close as
possible to the preferred 3-models of a belief base Σ w.r.t. |=≤. Determining
the latter models mainly amounts to forgetting the inconsistent “truth value”
in the former interpretations. Interestingly, |=c guarantees that the deductive
closure Cn|=c

(Σ) of any belief base Σ is classically consistent and classically
closed (what we call the classical closure property).

The rest of this paper is organized as follows. In Section 2, we present some
background on three-valued paraconsistent logics; especially, we define the log-
ical framework into which our inference relation |=c takes place. In Section 3,

1Note that approaches based on consistent subsets take advantage of a specific “comma”
connective [Konieczny et al., 2005] which is not equivalent to conjunction in the general case;
every singleton consisting of an inconsistent formula like {a ∧ (¬a ∨ b) ∧ c ∧ ¬c} has ∅ as its
unique consistent subset.
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we present the classical closure property and show that three-valued paracon-
sistent inference relations from the literature do not satisfy it. On this ground,
we introduce our relation |=c; we show that it satisfies a number of expected
logical properties, including the strong paraconsistency condition (i.e., the de-
ductive closure of a belief base never trivializes), the preservation property (i.e.,
the deductive closure of a belief base coincides with its classical closure when
the belief base is classically consistent), as well as all the properties of system
P [Kraus et al., 1990] but reflexivity. We also investigate some computational
aspects of |=c, show that it is not harder than the underlying relation |=≤ from
a complexity point of view and explain how to turn any finite belief base Σ
into a consistent propositional formula cl(Σ) such that Cn|=c

(Σ) is equal to the
classical closure of cl(Σ) (thus, cl(Σ) can be viewed as a compilation of Σ as a
propositional formula, classically interpreted). Finally, Section 4 concludes the
paper.

2 Three-valued Paraconsistent Logics

When a belief base is classically inconsistent, every formula is a classical con-
sequence of it (“ex falso quodlibet sequitur”). In order to avoid such a triv-
ialization, one can take advantage of any logic in which an (epistemic) truth
value “both” (>) denotes that a formula can be proved at the same time “true”
(1) and “false” (0). This allows to highlight contradictory pieces of information,
but still reasoning “reasonably” about the remaining ones. Thus the third truth
value has to be understood as some encoding of the epistemic attitude “proved
both true and false”, and not as a standard truth value.

Now, there are a number of many-valued paraconsistent logics where such
an (epistemic) truth value “both” is considered. In the following, we consider
Kleene’s strong three-valued logic with middle element designated, restricted to
the so-called monotone fragment [Arieli and Avron, 1998], i.e., the morphology
of the language of the logic is reduced to the connectives ¬, ∨, ∧, only. When
restricted to this fragment, this logic is equivalent to a number of other logics
pointed out so far in the literature, including LP [Priest, 1989], J3 [D’Ottaviano
and da Costa, 1970], THREE [Arieli and Avron, 1998] and other logics by
Levesque [Levesque, 1989] and Frisch [Frisch, 1987].

Definition 1 (language). PROPPS is the propositional language generated from
a finite set PS of propositional symbols, the unary connective ¬ (negation) and
the binary connectives ∨ (disjunction), and ∧ (conjunction).

Clearly, this language coincides with a standard language for classical propo-
sitional logic.

We will write propositional symbols a, b, ... and formulas from PROPPS

will be denoted by lower case Greek letters α, β, ... Belief bases, that will be
denoted by upper case Greek letters Σ,... are (conjunctively-interpreted) sets of
formulas. In order to alleviate notations, we identify every singleton belief base

3



{α} with the formula α in it. V ar(Σ) denotes the set of propositional symbols
occurring in Σ.

A literal is a symbol x ∈ PS or a negated one ¬x. x and ¬x are said to be
complementary literals. A proper subset of PROPPS is composed by the CNF
formulas, i.e., the (finite) conjunctions of clauses, where a clause is a (finite)
disjunction of literals. Another proper subset of PROPPS is composed by the
DNF formulas, i.e., the (finite) disjunctions of terms, where a term is a (finite)
conjunction of literals.

In the following, we consider a number of inference relations ` over PROPPS :

Definition 2 (inference relation). – An inference relation ` is a subset of
2PROPPS × PROPPS .

– For every Σ in 2PROPPS , Cn`(Σ) denotes the deductive closure of a set of
formulas Σ w.r.t. the inference relation `, i.e., Cn`(Σ) = {α ∈ PROPPS |
Σ ` α}.

We will also need the following notions of interpretations:

Definition 3 (interpretations). – A 3-interpretation ω over PROPPS is a
total function from PS to {0, 1,>}.

– A 2-interpretation ω over PROPPS is a total function from PS to {0, 1}.

3 − Ω (resp. 2 − Ω) denotes the set of all 3-interpretations (resp. 2-inter-
pretations). 2-interpretations are the classical worlds. Clearly, they are also
3-interpretations. However, the converse does not hold (we have 2−Ω ⊂ 3−Ω).

In the logic under consideration, all the connectives are truth functional ones
and the semantics ω(α) of a formula α from PROPPS in a 3-interpretation ω is
defined in the obvious compositional way given the following truth tables.

α β ¬α α ∧ β α ∨ β

0 0 1 0 0
0 1 1 0 1
0 > 1 0 >
1 0 0 0 1
1 1 0 1 1
1 > 0 > 1
> 0 > 0 >
> 1 > > 1
> > > > >

Table 1: Truth tables.

It is easy to check that restricting the entries of the previous table to 0 and 1,
one recovers the standard semantics for the connectives ¬, ∨, ∧. Accordingly, a
belief base can be considered classically unless it becomes inconsistent (typically
via its expansion by a new, yet conflicting, piece of evidence).
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In classical logic, notions of model and consequence are defined as:

Definition 4 (|=2). Let ω be a 2-interpretation over PROPPS . Let α be a
formula from PROPPS , and let Σ be a set of formulas of PROPPS :

– ω is a 2-model of α iff ω(α) = 1.

– ω is a 2-model of Σ iff ω(α) = 1 for every α ∈ Σ. 2−mod(Σ) denotes the
set of 2-models of Σ.

– α is a 2-consequence of Σ, noted Σ |=2 α, iff every 2-model of Σ is a
2-model of α.

A belief base Σ is classsically consistent iff it has a 2-model iff Cn|=2(Σ) 6=
PROPPS . It is well-known that |=2 is not strongly paraconsistent:

Definition 5 (strong paraconsistency). An inference relation ` satisfies the
strong paraconsistency property iff for every Σ in 2PROPPS , Cn`(Σ) 6= PROPPS .

When dealing with more than two truth values, one has to make precise
the set of designated values, i.e., the set of values that a formula can take to
be considered as satisfied. Since we want to define a paraconsistent logic, we
choose D = {1,>}: intuitively, a formula is satisfied if it is “at least true” (but
it can also be false!). We are now ready to extend the previous notions of model
and consequence to the three-valued case:

Definition 6 (|=3). Let ω be a 3-interpretation over PROPPS . Let α be a
formula from PROPPS , and let Σ be a set of formulas of PROPPS :

– ω is a 3-model of α iff ω(α) ∈ D.

– ω is a 3-model of Σ iff ω(α) ∈ D for every α ∈ Σ. 3 − mod(Σ) denotes
the set of 3-models of Σ.

– α is a 3-consequence of Σ, noted Σ |=3 α, iff every 3-model of Σ is a
3-model of α.

Two formulas α and β are said to be strongly (3-)equivalent iff for every
3-interpretation ω, we have ω(α) = ω(β).

Unlike |=2, an interesting feature of the inference relation |=3 is that it is
strongly paraconsistent; indeed, every formula from PROPPS has a 3-model
(the 3-interpretation ω> such that ∀x ∈ PS , ω>(x) = >). Thus, while we have
a ∧ ¬a |=2 b, we do not have a ∧ ¬a |=3 b.

As evoked in the introduction, |= has several other interesting properties.
From the computational side, deciding it is “only” coNP-complete in the general
case [?], and is even in P in the CNF fragment [Levesque, 1989; ?]. From the
logical side, it satisfies all the (three-valued counterparts of) postulates from
system P and is even monotonic.

A problem is that |=3 is a very weak inference relation. Especially, it is well-
known that the disjunctive syllogism is not satisfied by |=3: a ∧ (¬a ∨ b) 6|=3 b.
Thus, |=3 does not satisfy the expected preservation property:
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Definition 7 (preservation). An inference relation ` satisfies the preserva-
tion property iff for every Σ in 2PROPPS , if Σ is classically consistent, then
Cn`(Σ) = Cn|=2(Σ).

In order to circumvent this difficulty, other three-valued paraconsistent in-
ference relations have been proposed. Some of them are based on the following
principle: focus on some preferred models of Σ in order to keep as much infor-
mation as possible. Thus, in LPm [Priest, 1991], Priest suggests to prefer those
3-models of a belief base Σ which are “as classical as possible”. Formally, let us
consider the partial preordering ≤ over the set of 3-interpretations defined by
ω ≤ ω′ if and only if {x ∈ PS | ω(x) = >} ⊆ {x ∈ PS | ω′(x) = >}; the “most
classical” 3-models of a belief base are the 3-models that are minimal w.r.t. ≤:

Definition 8 (|=≤). Let Σ be a set of formulas of PROPPS . Let α be a formula
from PROPPS . Σ |=≤ α iff ∀ω ∈ min(3−mod(Σ),≤), ω(α) ∈ D.

The resulting relation |=≤ is still strongly paraconsistent and it is strictly
less cautious than |=3, i.e., we have the inclusion |=3⊂|=≤. Unlike |=3, it is non-
monotonic; for instance, we have a∧ (¬a∨ b) |=≤ b but a∧ (¬a∨ b)∧¬a 6|=≤ b.
Furthermore, |=≤ satisfies the preservation property: the preferred 3-models
w.r.t. |=≤ of any classically consistent belief base Σ are exactly its 2-models.

Other inference relations have been defined so far for refining the inference
relation |=≤ (especially in order to discriminate between the 3-consequences of
a belief base Σ which are subject to a contradiction – like a if Σ = a ∧ ¬a ∧ b –
and those which are contradiction-free – like b if Σ = a ∧ ¬a ∧ b). Here are the
main ones [Konieczny and Marquis, 2002]:

Definition 9 (refined inference relations). Let Σ be a set of formulas of PROPPS .
Let α be a formula from PROPPS .

– Σ |=≤
arg α iff Σ |=≤ α and Σ 6|=≤ ¬α.

– Σ |=≤
1 α iff ∀ω ∈ min(3−mod(Σ),≤), ω(α) = 1.

– Σ |=≤
t α iff ∀ω ∈ min(3 −mod(Σ),≤), ω(Σ) ≤t ω(α) where the so-called

“truth ordering” ≤t is such that 0 ≤t > ≤t 1.

Those three relations correspond respectively to three refinement principles:

– considering only argumentative consequences of the belief base.

– selecting those consequences of the belief base that are “conflict-free” (i.e.,
true but not false).

– selecting as consequences of the belief base formulas that are informally
“more true” than the belief base.

All those relations are non-monotonic, strongly paraconsistent and they sat-
isfy the preservation property. Furthermore they are strictly more cautious than
|=≤ (see [Konieczny and Marquis, 2002] for more details).
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3 Recovering Consistency by Forgetting Incon-
sistency

3.1 The inference relation |=c

Now, a major problem with the inference relations considered in the previous
section (except |=2 which is not paraconsistent) is that they do not satisfy the
classical closure property:

Definition 10 (classical closure). An inference relation ` satisfies the classical
closure property iff for every Σ in 2PROPPS , Cn`(Σ) is classically consistent
and is closed w.r.t. classical deduction, i.e., Cn|=2(Cn`(Σ)) = Cn`(Σ).

This is obvious for |=3, |=≤, and |=≤
t since those relations are “reflexive”

[Konieczny and Marquis, 2002], i.e., for every α in PROPPS , we have α is a
consequence of α w.r.t. the relation. Thus, take Σ = a ∧ ¬a; Σ has to belong
to its deductive closure w.r.t. any of those three relations, hence it cannot be
classically consistent. As to |=≤

arg, consider the classically inconsistent CNF
formula Σ = (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ ¬b). Each of the four clauses
in it is a consequence of Σ w.r.t. |=≤

arg: since their conjunction Σ is classically
inconsistent, it cannot be the case that Cn|=≤arg

(Σ) is classically consistent

and closed w.r.t. classical deduction. Finally, one can prove that Cn|=≤t
(Σ) is

always classically consistent but this set is not necessarily closed w.r.t. classical
deduction: take Σ = a ∧ ¬a; we have Σ 6|=≤

t a ∨ ¬a. Since a ∨ ¬a is a classical
tautology, the conclusion follows.

Using any of those inference relations thus prevents from interpreting in-
consistent belief bases as sets of classical worlds (i.e., 2-interpretations), and
consequently it questions the possibility to exploit further the information en-
coded by an inconsistent belief base using standard inference or decision-making
techniques (since such techniques typically require classically consistent infor-
mation). This motivates the introduction of our inference relation |=c.

Intuitively, the preferred 3-models of a belief base Σ w.r.t. |=c are the 2-
interpretations which are as close as possible to the preferred 3-models of a belief
base Σ w.r.t. |=≤. Determining the latter models mainly amounts to forgetting
the inconsistent “truth value” in the former interpretations. Formally, for any
belief base Σ, we define IncForg(Σ) as the set of 2-interpretations ω which are as
close as possible to a 3-interpretation ω′ ∈ min(3−mod(Σ),≤), in the sense that
∀x ∈ PS , if ω′(x) 6= >, then ω′(x) = ω(x). More formally, IncForg(Σ) = {ω ∈
2 − Ω | ∃ω′ ∈ min(3 −mod(Σ),≤) ∀x ∈ PS , if ω′(x) 6= >, then ω′(x) = ω(x)}.
Computing IngForg(Σ) amounts to projecting each preferred 3-models of Σ on
the variables classically interpreted in it (hence, forgetting inconsistency) and
interpreting the resulting partial interpretations in a classical way. We are now
ready to define |=c:

Definition 11 (|=c). Let Σ be a set of formulas of PROPPS . Let α be a formula
from PROPPS . Σ |=c α iff ∀ω ∈ IncForg(Σ), ω(α) = 1.
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Example 1. Let Σ = a ∧ (¬a ∨ b) ∧ c ∧ ¬c. Assuming that PS = {a, b, c},
min(3−mod(Σ),≤) has only one preferred 3-model ω such that ω(a) = ω(b) = 1
and ω(c) = >. Accordingly, IncForg(Σ) contains two elements ω′ and ω′′ such
that ω′(a) = ω′(b) = ω′′(a) = ω′′(b) = 1 and ω′(c) = 0 and ω′′(c) = 1. As a
consequence, we have Σ |=c a ∧ b, Σ 6|=c c, and Σ 6|=c ¬c. This contrasts with
|=≤ which is such that Σ |=≤ c ∧ ¬c.

Clearly enough, |=c is a non-monotonic inference relation. For instance, we
have a |=c a but a ∧ ¬a 6|=c a.

3.2 Logical properties

We now investigate in more depth the logical properties satisfied by |=c. In-
terestingly, |=c compares favourably with the underlying inference relation |=≤

w.r.t. logical properties: first of all, like |=≤, |=c also is strongly paraconsistent
and satisfies the preservation property. Furthermore, it satisfies the classical
closure property:

Proposition 1. |=c is strongly paraconsistent and satisfies the preservation
property and the classical closure property.

Proof.

– Strong paraconsistency: Direct from the fact that min(3−mod(Σ),≤) is
not empty whatever the belief base Σ, since this is the case for 3−mod(Σ)
and ≤ is noetherian since PS is finite.

– Preservation: If Σ is classically consistent, then min(3 − mod(Σ),≤) =
2−mod(Σ). Consequently, IncForg(Σ) = 2−mod(Σ), conclusion follows.

– Classical closure: Since min(3−mod(Σ),≤) is not empty (see above), this
is also the case of IncForg(Σ). Hence |=c (Σ) is classically consistent.
Since IncForg(Σ) ⊆ 2 − Ω, we obviously have that Cn|=c

(Σ) is closed
w.r.t. classical deduction: Cn|=2(Cn|=c

(Σ)) = Cn|=c
(Σ).

Now, compared with |=≤
arg, |=≤

1 and |=≤
t , |=≤ exhibits quite a good logical

behaviour in the sense that it is a preferential inference relation [Konieczny and
Marquis, 2002]:

Definition 12 (system P). An inference relation ` is preferential iff it satisfies
the following properties (system P):
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(Ref) α ` α Reflexivity

(LLE) If α and β are strongly 3-equivalent
and α ` γ, then β ` γ Left Logical Equivalence

(RW) If α ` β and β |=3 γ, then α ` γ Right Weakening

(Or) If α ` γ and β ` γ, then α ∨ β ` γ Or

(Cut) If α ∧ β ` γ and α ` β, then α ` γ Cut

(CM) If α ` β and α ` γ, then α ∧ β ` γ Cautious Monotony

Following seminal works in non-monotonic logic [Gabbay, 1985; Makinson,
1994; Kraus et al., 1990; Lehmann and Magidor, 1992], this set of normative
properties that a non-monotonic inference relation should satisfy has been given
in [Kraus et al., 1990]. These properties have been primarily stated in the
framework of classical logic [Kraus et al., 1990], but they can be extended to
multi-valued settings in a straightforward way as above (such an extension has
also been considered in [Arieli and Avron, 1998]).

Thus, an important question is to determine whether going from |=≤ to
|=c leads to lose such valuable logical properties. Fortunately, most important
properties still hold but reflexivity:

Proposition 2. |=c satisfies all the properties of system P, except reflexivity.

Proof.

– Reflexivity: Take α = a ∧ ¬a. We have α 6|=c α.

– Left Logical Equivalence: Obvious from the fact that (strongly) equivalent
formulas have the same 3-models.

– Right Weakening: If β |=3 γ, then β |=2 γ due to the inclusion 2 −
mod(β) ⊆ 3 − mod(β). The fact that |=c satisfies the classical closure
property concludes the proof.

– Or: We have that 3 − mod(α ∨ β) = 3 − mod(α) ∪ 3 − mod(β). As a
consequence, min(3 − mod(α ∨ β),≤) ⊆ min(3 − mod(α),≤) ∪ min(3 −
mod(β),≤). Therefore, IncForg(α ∨ β) ⊆ IncForg(α) ∪ IncForg(β).
Since every ω ∈ IncForg(α) ∪ IncForg(β) is such that ω(γ) = 1 when
α ` γ and β ` γ, this must be the case for every ω ∈ IncForg(α ∨ β).

– Cut: We first prove the following lemma:

Lemma 1. Let ω and ω′ be two 3-interpretations such that ∀x ∈ PS, if
ω′(x) 6= >, then ω′(x) = ω(x). Then for any formula α of PROPPS , we
have that if ω′(α) = 1 (resp. ω′(α) = 0), then ω(α) = 1 (resp. ω(α) = 0).

The proof of this lemma is easy by structural induction on α. Now, by
reductio ad absurdum, assume that there exists ω ∈ IncForg(α) such
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that ω(γ) = 0. Then by definition of IncForg(α), there exists ω′ ∈
min(3 − mod(α),≤) such that ∀x ∈ PS , if ω′(x) 6= >, then ω′(x) =
ω(x). Since ω′ ∈ 3 − mod(α), we have that ω′(α) 6= 0. Since α |=c β,
we have that ω(β) = 1. As a consequence of the lemma, we get that
ω′(β) 6= 0. Hence, we have ω′(α ∧ β) 6= 0: ω′ ∈ 3 − mod(α ∧ β). Since
3 − mod(α ∧ β) ⊆ 3 − mod(α) and ω′ ∈ min(3 − mod(α),≤), we must
have ω′ ∈ min(3 − mod(α ∧ β),≤). Hence ω ∈ IncForg(α ∧ β). Since
α ∧ β |=c γ, we must have ω(γ) = 1, contradiction.

– Cautious Monotony: We first exploit the previous lemma to show that for
any formulas α and β of PROPPS , if α |=c β, then α |=≤ β. By reduction
ad absurdum, assume that there exists ω′ ∈ min(3−mod(α),≤) such that
ω′(β) = 0. From the lemma, for every 2-interpretation ω that ∀x ∈ PS ,
if ω′(x) 6= >, then ω′(x) = ω(x), we must have ω(β) = 0. Since ω′ ∈
min(3−mod(α),≤), for at least one 2-interpretation ω ∈ IncForg(α), we
must have ω(α) = 0. This contradicts the fact that α |=c β.

Now, in order to prove the Cautious Monotony property, it is enough to
show that whenever α |=c β, we have that min(3 − mod(α ∧ β),≤) =
min(3 − mod(α),≤). Let ω ∈ min(3 − mod(α),≤). Since α |=c β, we
have that α |=≤ β. Hence, ω is a 3-model of β. Since it is a 3-model
of α, it is a 3-model of α ∧ β. Since 3 − mod(α ∧ β) ⊆ 3 − mod(α), we
have that ω ∈ min(3 − mod(α ∧ β),≤). Hence the inclusion min(3 −
mod(α),≤) ⊆ min(3 − mod(α ∧ β),≤) holds. Conversely, assume that
there exists ω′ ∈ min(3 − mod(α ∧ β),≤) \ min(3 − mod(α),≤). Since
3−mod(α ∧ β) ⊆ 3−mod(α), there exists ω ∈ min(3−mod(α),≤) such
that ω < ω′ (i.e., ω ≤ ω′ and ω′ 6≤ ω). From the previous inclusion,
we must have that ω ∈ min(3 − mod(α ∧ β),≤). The fact that ω < ω′

contradicts that ω′ ∈ min(3−mod(α ∧ β),≤).

Observe that there would be no way to keep reflexivity while ensuring the
classical closure property. Indeed, we have the following easy proposition:

Proposition 3. No inference relation ` satisfies both reflexivity and the clas-
sical closure property.

Proof. Consider Σ = a ∧ ¬a. If Σ 6` Σ then it does not satisfy reflexivity.
Contrastingly, If Σ ` Σ then it does not satisfy the classical closure property
since Σ is classically inconsistent.

It is also interesting to note that |=c satisfies other properties which are not
shared by |=≤ [Konieczny and Marquis, 2002], especially “transitivity” (this is a
direct consequence of the fact that it satisfies both the classical closure property
and the preservation property):

Proposition 4. |=c satisfies transitivity, i.e. for any formulas α, β, γ from
PROPPS , if α |=c β and β |=c γ, then α |=c γ.
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Proof. If α |=c β then, by definition, IncForg(α) ⊆ 2−mod(β). Since min(3−
mod(α),≤) is never empty, we get that β is classically consistent.

As a consequence, since |=c satisfies the preservation property, we obtain that
IncForg(β) = 2−mod(β). Now, when β |=c γ, we also have that IncForg(β) ⊆
2−mod(γ), and transitivity of ⊂ concludes the proof.

Finally, it is important to determine whether the relaxation of |=≤ we realised
to ensure the classical closure property does not lead to a too weak inference
relation |=c. The following inclusions show that this is not the case:

Proposition 5. |=≤
1 ⊂ |=c ⊂ |=≤.

Proof. Lemma 1 in the proof of Prop. 2 shows in particular that if ω′ ∈ min(3−
mod(Σ),≤) is such that ω′(α) = 1 then every 2-interpretation ω s.t. ∀x ∈ PS ,
if ω′(x) 6= > then ω′(x) = ω(x) satisfies also ω(α) = 1. Subsequently, we have
that if Σ |=≤

1 α then Σ |=c α.
The converse does not hold since e.g. a∧¬a 6|=≤

1 a∨¬a while a∧¬a |=c a∨¬a.
This shows that |=≤

1 ⊂|=c.
Let us now show that |=≤

1 ⊂|=c. By reduction ad absurdum: assume that
there exists ω′ ∈ min(3 − mod(Σ),≤) such that ω′(α) = 0. From Lemma 1,
every interpretation ω s.t. ∀x ∈ PS if ω′(x) 6= > then ω′(x) = ω(x) also
satisfies ω(α) = 0. This contradicts the assumption Σ |=c α. The fact that
a ∧ ¬a |=≤ a ∧ ¬a but a ∧ ¬a 6|=c a ∧ ¬a shows that the inclusion is strict (i.e.
|=c⊂|=≤) and concludes the proof.

Thus, all the “conflict-free” consequences α of a belief base Σ w.r.t. |=≤ are
preserved by |=c. Furthermore, |=c does not add consequences that would not
be derivable using |=≤

1 .

3.3 Computational aspects

In this section, we investigate some computational aspects of |=c. We assume the
reader familiar with some basic notions of complexity, especially the complexity
classes coNP and Πp

2 of the polynomial hierarchy PH (see [Papadimitriou, 1994]
for a survey).

We first consider the complexity of the inference problem for |=c:

Definition 13 (|=c-inference). |=c-inference is the following decision prob-
lem:

– Input: A finite set Σ of formulas from PROPPS and a formula α in
PROPPS .

– Question: Does Σ |=c α hold?

We have obtained the following result:

Proposition 6. |=c-inference is Πp
2-complete.
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Proof. Membership is easy; one considers the complementary problem: in order
to show that Σ |=c α holds, we guess a 2-interpretation ω and a 3-interpretation
ω′ over V ar(Σ)∪V ar(α); then we check that ω′ belongs to min(3−mod(Σ),≤)
(one call to an NP oracle since this problem is in coNP); finally, we check in
polynomial time that for every x ∈ V ar(Σ)∪V ar(α), we have that ω(x) = ω′(x)
whenever ω′(x) 6= >, and that ω(α) = 1.

Hardness holds even in the restricted case when Σ is a CNF formula and α
is a propositional symbol; we consider the problem of determining, given a CNF
formula Σ and a symbol a, whether every element ω of min(3−mod(Σ),≤) is
such that ω(a) 6= >. This problem has been shown Πp

2-hard in [Coste-Marquis
and Marquis, 2005]. The fact that every element ω of min(3 − mod(Σ),≤) is
such that ω(a) 6= > if and only if Σ∧(a∨b)∧(¬a∨b) |=c b where b ∈ PS \V ar(Σ),
completes the proof.

This proposition shows that |=c is not harder than the underlying relation
|=≤ from a computational complexity point of view; indeed, the inference prob-
lem for |=≤ also is Πp

2-complete [Coste-Marquis and Marquis, 2005].
We now show how to turn any finite belief base Σ (viewed as the conjunc-

tion of its elements) into a “classical” consistent propositional formula cl(Σ)
such that Cn|=c

(Σ) is equal to the classical closure of cl(Σ). The basic idea is
to turn first Σ into a DNF formula which is strongly equivalent. As in classical
propositional logic, such a DNF formula can be computed by applying itera-
tively to Σ the following equivalences, considered as rewrite rules (left-to-right
oriented):

– ¬(¬α) is strongly 3-equivalent to α.

– ¬(α ∨ β) is strongly 3-equivalent to (¬α) ∧ (¬β).

– ¬(α ∧ β) is strongly 3-equivalent to (¬α) ∨ (¬β).

– α ∧ (β ∨ γ) is strongly 3-equivalent to (α ∧ β) ∨ (α ∧ γ) (and similarly for
(β ∨ γ) ∧ α).

Of course, the obtained DNF formula can be of exponential size in the size of
Σ. It now remains to forget inconsistencies in this DNF formula after isolating
terms representing the preferred models (the minimization step); formally, for
every term α, let inc(α) be the set of “inconsistencies” occurring in α: inc(α) =
{x ∈ PS | x and ¬x occur in α}. cl(Σ) is the DNF formula obtained by
successively:

1. removing in the current DNF every term α such that inc(α) is not minimal
w.r.t. set-inclusion in the set {inc(α) | α a term in the current DNF}.

2. removing in every term of the resulting DNF formula every literal l when
the complementary literal also occurs in the term, then removing every
empty term (and finally adding a ∨ ¬a if the resulting DNF formula con-
tains no term).

12



We have that:

Proposition 7. Cn|=c
(Σ) = Cn|=2(cl(Σ)).

Proof. Let dnf(Σ) be the DNF formula obtained by applying the given rewrite
rules. Since these rules preserve strong 3-equivalence, we get that Σ has the
same 3-models as dnf(Σ), hence the same minimal 3-models.

Now, let us consider the following obvious lemma.

Lemma 2. Les α be a term. Then min(3 − mod(α),≤) = {ω ∈ 3 − Ω|∀x ∈
PS , if x ∈ inc(α) then ω(x) = > else if x occurs as a positive literal in α then
ω(x) = 1 else if ¬x occurs as a negative literal in α then ω(x) = 0}.

As a consequence of this lemma, if α, β are two terms such that inc(α) ⊂
inc(β), then for every ωβ ∈ min(3 − mod(β),≤) there exists ωα ∈ min(3 −
mod(α),≤) such that ωα ≤ ωβ . Since min(3−mod(α ∨ β),≤) = min(min(3−
mod(α),≤) ∪ min(3 − mod(β),≤),≤) we get that min(3 − mod(α ∨ β),≤) =
min(3 − mod(α),≤). Hence, by an obvious induction on the number of terms
in dnf(Σ), the formula dnf1(Sigma) obtained at the end of step 1 is such that
min(3−mod(dnf1(σ)),≤) = min(3−mod(dnf(Σ),≤)).

Finally step 2 amounts to forgetting inconsistency in the minimally incon-
sistent terms of dnf(α) : let ω be any 2-model of the resulting DNF for-
mula cl(Σ) (such an ω exists since by construction: if every term of dnf1(Σ)
is removed during step 2 the the classically consistent (and valid) formula
a ∧ ¬a is generated and otherwise the resulting formula contains at least one
classically consistent term). Then the construction ensures that there exists
ω′ ∈ min(3 − mod(dnf1(Σ)),≤) s.t. ∀x ∈ PS , ifω′ 6= > then ω′(x) = ω(x).
Hence the conclusion follows.

As a matter of illustration, consider again Example 1: let Σ = a ∧ (¬a ∨
b) ∧ c ∧ ¬c and PS = {a, b, c}. Σ is strongly 3-equivalent to the following DNF
formula (a ∧ ¬a ∧ c ∧ ¬c) ∨ (a ∧ b ∧ c ∧ ¬c). Now, forgetting inconsistency in Σ
leads to the DNF formula cl(Σ) = a ∧ b (the first term (a ∧ ¬a ∧ c ∧ ¬c) of the
previous DNF is removed during the minimization step). We can easily check
that Cn|=c

(Σ) = Cn|=2(cl(Σ)).
Since the computation of cl(Σ) can be achieved in time polynomial in the

size of Σ when Σ is a DNF and since cl(Σ) is a DNF formula, we easily get that:

Proposition 8.

– Under the restriction where Σ is a DNF formula, |=c-inference is coNP-
complete.

– Under the restriction where Σ is a DNF formula and α is a CNF formula,
|=c-inference is in P.

Proof.

13



– If Σ is already in DNF, then the algorithm given by the two steps 1 and
2 enables to compute cl(Σ) in time polynomial in |Σ|. From Proposition
7, for every α ∈ PROPPS , we have that Σ |=c α iff cl(Σ) |=2 α, hence the
membership to coNP. The hardness comes from the fact that a |=2 α iff α
is valid.

– Tractability when α is a CNF formula comes immediately from the fact
that cl(Σ) is a DNF formula : cl(Σ) |=2 α iff every non-valid clause of α
contains a literal from every term of cl(Σ).

Thus the formula cl(Σ) is a classically consistent formula which can be viewed
as a compilation of Σ (in the sense that any finite belief base Σ interpreted
w.r.t. |=c is equivalent to the corresponding formula cl(Σ) classically interpreted
and that the inference problem from cl(Σ) is computationally easier than the
inference problem from Σ, unless the polynomial hierarchy collapses at the first
level).

4 Conclusion

In this paper, we have introduced and studied a new paraconsistent inference
relation |=c in the setting of 3-valued paraconsistent logics. Using inconsistency
forgetting as a key mechanism for recovering consistency, it guarantees that
the deductive closure Cn|=c

(Σ) of any belief base Σ is classically consistent and
classically closed. This strong feature, not shared by previous inference relations
in the same setting, allows to interpret an inconsistent belief base as a set of
classical worlds (hence to reason classically from them).We have investigated
the logical properties and the computational complexity of |=c. Among other
things, we have shown that |=c satisfies many interesting properties which are
shared by the underlying inference relation |=≤, without any complexity shift
compared to it.

We have considered in this paper a basic language for three-valued paracon-
sistent logic (the monotone fragment). A first perspective for further research
is to extend the approach to more complex morphologies. It is also clear that
the inconsistency forgetting mechanism at work here could be applied to other
many-valued paraconsistent logics, especially four-valued ones. This is another
extension of this work that we plan to do.
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