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Abstract

This paper presents new complexity results for
propositional closed world reasoning (CWR)
from tractable knowledge bases (KBs). Both
(basic) CWR, generalized CWR, extended gen-
eralized CWR, careful CWR and extended
CWR (equivalent to circumscription) are con-
sidered. The focus is laid on tractable KBs
belonging to target classes for exact compila-
tion functions: Blake formulas, DNFs, disjunc-
tions of Horn formulas, and disjunctions of re-
namable Horn formulas. The complexity of in-
ference is identified for all the forms of CWR
listed above. For each of them, new tractable
fragments are exhibited. Our results suggest
knowledge compilation as a valuable approach
to deal with the complexity of CWR in some
situations.

1 Introduction
Closed world reasoning (CWR) is a widely used inference
technique in Artificial Intelligence, Database Theory and
Logic Programming. It relies on the idea that negative
information is often not represented in an explicit way; in
this situation, every piece of positive information which
cannot be deduced from a knowledge base (KB) is as-
sumed false.

In order to define CWR in a formal way, an approach
consists in characterizing the formulas which must be
assumed false in the KB: CWR is then viewed as deduc-
tion from the closure of the KB, i.e., the KB completed
with these assumptions. Several policies for characteriz-
ing such assumptions have been developed so far, giving
rise to several forms of CWR. Let us mention the (ba-
sic) closed world assumption (CWA) [Reiter, 1978], the
generalized closed world assumption (GCWA) [Minker,
1982], the extended generalized closed world assump-
tion (EGCWA) [Yahya and Henschen, 1985], the careful
closed world assumption (CCWA) [Gelfond and Przy-
musinska, 1986], and the extended closed world assump-
tion (ECWA) [Gelfond et al., 1989]. The most sophisti-
cated closed world assumption is ECWA; in the propo-
sitional case, Gelfond, Przymusinska and Przymusinski

[1989] show it is equivalent to circumscription, as defined
in [McCarthy, 1986].

The complexity of propositional CWR has already
been investigated by several researchers. Eiter and Got-
tlob [1993] show that CWR is hard in the general case:
typically at the second level of the polynomial hierar-
chy. Cadoli and Lenzerini [1994] focus on the complexity
of CWR from various fragments of propositional logic
for which clause deduction is tractable, especially the
Horn CNF class, the reverse Horn CNF class and the
Krom one. For such classes of formulas, the complexity
of CWR falls one level down in the polynomial hierarchy.

The aim of this paper is to complete the complexity
results pointed out in [Cadoli and Lenzerini, 1994] by
focusing on some other tractable fragments of proposi-
tional logic. Especially, four classes are considered:

• The Blake class is the set of formulas given in prime
implicates normal form,

• the DNF class is the set of formulas given in dis-
junctive normal form (DNF),

• the Horn cover class is the set of disjunctions of
Horn CNF formulas,

• the renamable Horn cover class is the set of disjunc-
tions of renamable Horn CNF formulas.

As a main contribution, the complexity of clause in-
ference is identified for each form of CWR and each
tractable class listed above. Several new tractable sub-
cases are exhibited for each form of CWR; some new
intractable subcases are presented as well.

Interestingly, our tractability results for CWR apply
to classes of formulas strictly more expressive than some
of the most expressive tractable fragments for CWR
pointed out up to now. In particular, some of the classes
we focus on include classes considered in [Cadoli and
Lenzerini, 1994] as strict subcases. Additionally, the
fragments we consider are target classes for exact knowl-
edge compilation functions. Thus, every propositional
formula can be turned (“compiled”) into a formula from
the Blake class (the target class for the compilation func-
tion given in [Reiter and de Kleer, 1987]), the DNF
class (the target class for the function given in [Schrag,
1996]), the Horn cover class and the renamable Horn



cover class (which are specific instances of the class of
tractable covers considered in [Boufkhad et al., 1997]).
Since CWR from such tractable formulas is shown com-
putationally easier than CWR from unconstrained for-
mulas, our study suggests a two step approach to com-
pute CWR: the KB is first compiled off-line, giving rise
to a formula from one of the target classes, then queries
are addressed on-line w.r.t. the compiled KB. While
such a pre-processing is known as not computationally
helpful in the general case, our results indicate that it
can prove valuable when CWR from the compiled KB
can be achieved in polynomial time, as long as the KB
does not often change and the size of its compiled form
remains “small enough”.

The rest of this paper is organized as follows. Some
formal preliminaries are given in Section 2. Basic defi-
nitions and complexity results about CWR are recalled
in Section 3. Section 4 presents the complexity of CWR
for each of the fragments we focus on. Section 5 con-
cludes the paper. Proofs are given in [Coste-Marquis
and Marquis, 1999] available from the authors.

2 Formal Preliminaries

PROPPS denotes the propositional language built up
from a denumerable set PS of symbols and the connec-
tives in the standard way. The size of a formula Σ from
PROPPS , noted |Σ|, is the number of signs (symbols and
connectives) used to write it. Every propositional sym-
bol of PS is also called a positive literal and a negated
one a negative literal. For every subset V of PS, LV

(resp. L+
V , L−V ) is the set of literals (resp. positive lit-

erals, negative literals) built up from the propositional
symbols of V . V ar(Σ) denotes the set of propositional
symbols occurring in Σ.

Formulas are interpreted in the classical way. Every
set of formulas is interpreted conjunctively. A formula
is Horn CNF (resp. reverse Horn CNF) iff it is a CNF
formula s.t. every clause in it contains at most one pos-
itive (resp. negative) literal. A Krom formula is a CNF
formula in which every clause contains at most two liter-
als. A renamable Horn CNF formula Σ is a CNF formula
which can be turned into a Horn CNF formula by sub-
stituting in a uniform way in Σ some literals of LV ar(Σ)

by their negation.
We assume that the reader is familiar with some basic

notions of computational complexity, especially the com-
plexity classes P, NP, and coNP, and the classes ∆p

k, Σp
k

and Πp
k of the polynomial hierarchy PH (see [Papadim-

itriou, 1994] for details). The class PX[O(logn)] contains
the decision problems which can be solved in polyno-
mial time with no more than O(log n) calls to an oracle
for deciding a problem Q ∈ X for “free” (i.e., within a
constant time), n representing the size of the problem
instance. Let us recall that a decision problem is said at
the kth level of PH iff it belongs to ∆p

k+1, and is either
Σp

k-hard or Πp
k-hard. It is strongly believed that PH does

not collapse (at any level), i.e., is a truly infinite hierar-
chy (for every integer k, PH 6= Σp

k).

3 Closed World Reasoning
All the forms of CWR pointed out so far can be charac-
terized through the notions of closure and free for nega-
tion formula. A clause γ is then considered as a (non
monotonic) consequence of a KB Σ interpreted under
some closed world assumption policy ∗CWA (where the
generic character ∗ can be replaced by G, EG, CC, E or
the empty string) iff it is a logical consequence of the clo-
sure of Σ w.r.t. the policy. Both the CCWA and ECWA
policies require V ar(Σ) to be partitioned into three sets,
P , Q, and Z. P contains the symbols preferred false, Z
contains the symbols the truth value of which can vary
when trying to falsify the symbols from P , and Q con-
tains the symbols the truth value of which cannot vary.

Definition 3.1 (closure of a KB)
Let ∗CWA be any closed world assumption policy among
(basic) CWA, GCWA, EGCWA, CCWA and ECWA.
Let Σ be a formula from PROPPS and 〈P,Q,Z〉 a par-
tition of V ar(Σ). The closure ∗CWA(Σ, 〈P,Q,Z〉)1 of
Σ given 〈P,Q,Z〉 w.r.t. ∗CWA is the formula
Σ∪ {¬α ; α is a ∗CWA-free for negation formula w.r.t.
Σ and 〈P,Q,Z〉}.

The ∗CWA-free for negation formulas w.r.t. Σ are the
negations of the formulas which are assumed false when
they are not deducible from Σ. They vary according to
the closed world assumption policy under consideration:

Definition 3.2 (*CWA-free for negation formula)
Let Σ and α be two formulas from PROPPS and let
〈P,Q,Z〉 be a partition of V ar(Σ).

• α is CWA-free for negation iff α is a positive literal
s.t. Σ 6|= α holds.

• α is GCWA-free for negation iff α is a positive lit-
eral and for each positive clause γ s.t. Σ 6|= γ holds,
Σ 6|= α ∨ γ holds.

• α is EGCWA-free for negation iff α is a conjunc-
tion of positive literals and for each positive clause
γ s.t. Σ 6|= γ holds, Σ 6|= α ∨ γ holds.

• α is CCWA-free for negation iff α is a literal from
L+

P and for each clause γ containing only literals
from L+

P ∪ LQ and s.t. Σ 6|= γ holds, Σ 6|= α ∨ γ
holds.

• α is ECWA-free for negation iff V ar(α) ∩ Z = ∅
and for each clause γ containing only literals from
L+

P ∪ LQ and s.t. Σ 6|= γ holds, Σ 6|= α ∨ γ holds.

Let us note that every symbol not belonging to V ar(Σ)
is CWA, GCWA and EGCWA-free for negation. As to
CCWA and ECWA, every symbol from PS \V ar(Σ) is
assumed to belong to P .

In the rest of this paper, the following decision prob-
lems are considered:

Definition 3.3 (*CWA clause inference)
Let ∗CWA be any closed world assumption policy among

1The partition of V ar(Σ) is not significant for the CWA,
GCWA and EGCWA policies.



(basic) CWA, GCWA, EGCWA, CCWA and ECWA.
∗CWA clause inference is the following decision
problem:
• Input: A formula Σ and a clause γ from PROPPS,

a partition 〈P,Q,Z〉 of V ar(Σ) and a CWA policy
∗CWA.

• Query: Does ∗CWA(Σ, 〈P,Q,Z〉) |= γ hold?
∗CWA literal inference is the restriction of

the corresponding ∗CWA clause inference problem
where γ is restricted to be a literal.

The complexity of propositional CWR has been in-
vestigated by several researchers, especially Eiter and
Gottlob [1993] and Cadoli and Lenzerini [1994]. CWR
has been shown hard: all the forms of CWR except basic
CWA are at the second level of the polynomial hierar-
chy. Thus, CWR is computationally harder than deduc-
tion in the general case (clause deduction is “only”
coNP-complete), unless PH collapses.

In order to circumvent this complexity, several ap-
proaches can be considered. One of them is cen-
tered around the idea of exact knowledge compilation.
Knowledge compilation can be viewed as a form of pre-
processing (see [Cadoli and Donini, 1997] for a survey):
the original KB is turned into a compiled one during an
off-line compilation phase and this compiled KB is used
to answer the queries on-line. Assuming that the KB
does not often change and that answering queries from
the compiled KB is computationally easier than answer-
ing them from the original KB, the compilation time can
be balanced over a sufficient number of queries.

Existing researches about knowledge compilation can
be split into two categories. The first category gath-
ers theoretical works about compilability, which indi-
cates whether or not the objective can be expected to
be reached in the general case by focusing on the size
of the compiled form (see e.g., [Cadoli et al., 1997a;
Liberatore, 1998]). Indeed, if the size of the compiled
form is exponentially larger than the size of the original
KB, significant computational improvements are hard
to be expected. Some decision problems are compil-
able, while others are (probably) not compilable. Thus,
clause deduction (from a fixed KB) is (probably) not
compilable: the existence of an equivalence-preserving
compilation function COMP s.t. it is guaranteed that
for every propositional CNF formula Σ, clause deduc-
tion from COMP (Σ) is in P and |COMP (Σ)| is polyno-
mially bounded in |Σ| would make PH to collapse at the
second level (see [Kautz and Selman, 1992; Cadoli et al.,
1997a] for more details). The second category contains
works that are much more oriented towards the design
of compilation algorithms, and their empirical evalua-
tions (see e.g. [Reiter and de Kleer, 1987; Schrag, 1996;
Boufkhad et al., 1997; Boufkhad, 1998]).

The compilability of CWR has been analyzed in depth
in [Cadoli et al., 1996; 1997b]. The results are typically
negative. In a nutshell, inference under ECWA from
a fixed KB is shown (probably) not compilable. Con-
trastingly, it is shown that CWA clause inference

and CCWA clause inference from Horn CNF, re-
verse Horn CNF or Krom formulas are compilable (the
fixed part of the problem is the KB plus the partition in
the CCWA case).

From the practical side, Nerode, Ng and Subrah-
manian [1995] present an algorithm for compiling a
KB interpreted under circumscription into the set of
its minimal models. The algorithm is based on a
mixed integer linear programming. The circumscrip-
tion policy (i.e., the partition of the symbols) is fixed.
Several other approaches show how CWR can be re-
duced to deduction through the computation of the
closure of the KB (or the computation of any equiv-
alent formula), see e.g. [Raiman and de Kleer, 1992;
Castell et al., 1996]. All these approaches confirm the
(probable) non compilability of the most sophisticated
forms of CWR in the sense that in the worst case, the
compilation phase outputs a formula that is not polyno-
mially bounded in the size of the original KB.

4 Complexity Results

In the following, the complexity of CWR is investigated
for some KBs for which clause deduction is tractable
(tractable KBs for short):

Definition 4.1 (some tractable classes)
Let Σ be a formula from PROPPS.

• Σ is a Blake formula iff Σ is a CNF formula and
for every implicate γ of Σ, there exists a clause π
in Σ s.t. π |= γ holds.

• Σ is a DNF formula iff Σ is a (finite) disjunction
of terms.

• Σ is a Horn cover formula iff Σ is a (finite) disjunc-
tion of Horn CNF formulas.

• Σ is a renamable Horn cover formula iff Σ is a (fi-
nite) disjunction of renamable Horn CNF formulas.

Blake formulas [Blake, 1937] are CNF formulas given
by their prime implicates. Clearly enough, they are
tractable since for every clause γ, Σ |= γ holds iff there
exists π in Σ s.t. π |= γ holds and this test can be
easily achieved in time polynomial in |π| + |γ|. Indeed,
many algorithms for computing prime implicates have
been proposed so far (see [Marquis, 1999] for a survey).

DNF formulas are tractable since for every clause γ,
Σ |= γ holds iff for every term δ in Σ, δ |= γ holds and
this test can be easily achieved in time polynomial in
|δ| + |γ|. Several algorithms for turning a formula into
DNF can be found in the literature, e.g. [Schrag, 1996].

Horn (resp. renamable Horn) cover formulas are
tractable since for every clause γ, Σ |= γ holds iff for
every Φ in Σ, Φ |= γ holds and this test can be eas-
ily achieved in time polynomial in |Φ| + |γ| when Φ
is a Horn CNF formula [Dowling and Gallier, 1984]
(resp. a renamable Horn CNF formula [Lewis, 1978]).
Note that Horn CNF formulas and renamable Horn
CNF formulas can be recognized (and checked for sat-
isfiability) in polynomial time. Note also that every



term is a Horn CNF formula, every Horn CNF for-
mula and every satisfiable Krom formula is a renam-
able Horn CNF formula, and every term (resp. Horn
CNF formula, renamable Horn CNF formula) is a DNF
formula (resp. a Horn cover formula, a renamable
Horn cover formula). Hence every DNF formula is
a Horn cover formula and every Horn cover formula
is a renamable Horn cover formula. Algorithms for
computing Horn cover formulas and renamable Horn
cover formulas can be found in [Boufkhad et al., 1997;
Boufkhad, 1998].

The next proposition is the central result of this paper:

Proposition 4.1 (complexity of CWR)
The complexity of ∗CWA clause inference and
∗CWA literal inference from a Blake formula, a
DNF formula, a Horn cover formula and a renamable
Horn cover formula is reported in Tables 1 and 22.

Intuitively, the fact that CWR typically is at the sec-
ond level of PH can be explained by the presence of two
independent sources of complexity. One of them lies in
deduction and the other one in model minimization. As
Proposition 4.1 illustrates it, focusing on tractable KBs
enables ruling out one source of difficulty in the general
case, and both sources in some specific cases.

This work can be related to several studies in
which the complexity of non monotonic inference from
tractable fragments of propositional logic is analyzed,
for instance [Kautz and Selman, 1991; Cadoli and Lenz-
erini, 1994; Ben-Eliyahu and Dechter, 1996]. Cadoli and
Lenzerini [1994] investigate the complexity of CWR from
Horn CNF, reverse Horn CNF and Krom formulas. In-
terestingly, the tractable classes for CWR we consider
are strictly more expressive than some of the most ex-
pressive tractable classes pointed out up to now. Espe-
cially, they include some of the tractable classes given
in [Cadoli and Lenzerini, 1994] as subcases. Thus, every
Krom formula can be turned into its prime implicates
normal form in polynomial time (just because a set of
binary clauses has a polynomially bounded number of
resolvents). Additionally, every Horn CNF formula be-
longs to the Horn cover class. However, the converse
does not hold: the fragments studied here are strictly
more expressive that those given in [Cadoli and Lenz-
erini, 1994]. For instance, every monotonic CNF formula
(i.e., a CNF formula in which every symbol occurs only
positively or negatively) can be put into prime implicates
normal form in polynomial time but is not equivalent to
a Horn CNF or a Krom formula in the general case.

Another significant difference w.r.t. [Cadoli and Lenz-
erini, 1994] is that our study is directly related to exact
knowledge compilation in the sense that the fragments

2Some tractability results reported in the two tables can
be generalized to any tractable KB. To be more precise, CWA
clause inference and both CCWA clause inference and
ECWA clause inference under the restriction P = ∅ are in
P whenever Σ belongs to a class for which clause deduction
is tractable.

of propositional logic we consider are target classes for
exact compilation functions. Thus, every propositional
formula can be turned into a Blake formula, a DNF for-
mula, a Horn cover formula and a renamable Horn cover
formula without modifying the set of its models. This
contrasts with the fragments considered in [Cadoli and
Lenzerini, 1994] since some formulas cannot be repre-
sented either as a Horn CNF, a reverse Horn CNF or a
Krom formula while preserving logical equivalence.

Accordingly, the tractability results given in Proposi-
tion 4.1 can be exploited to draw some new conclusions
about the usefulness of knowledge compilation for CWR.
From the theoretical side, the compilability results for
CWR given in [Cadoli et al., 1996] can be completed
at the light of our results. Indeed, every polynomially
solvable problem is compilable, even if its fixed part
is empty since the compilation phase can be achieved
in polynomial time. More interestingly, from the prac-
tical side, the connection with knowledge compilation
suggests a two step process for computing CWR: the
KB is first made tractable through knowledge compila-
tion, then CWR is achieved from the compiled KB. The
first step is performed off-line and done once at all (un-
less the KB is modified). Using such an approach, the
closed world assumption policy adopted can vary with
the queries that are considered; for instance, the set of
symbols to be minimized can change with time, with-
out requiring the KB to be re-compiled each time such a
modification occurs. This flexibility is particularly inter-
esting when the KB, representing “hard”constraints, is
shared by several agents, and different agents may have
different preferences, encoded as a CWA policy. Each
time an agent asks the KB, the corresponding prefer-
ences can be taken into account without requiring any
re-compilation of the KB.

At the light of the complexity results given in Propo-
sition 4.1, our claim is that some approaches to knowl-
edge compilation can prove helpful in practice for some
forms of CWR, provided that the compiled KB remains
“small enough”. For instance, compiling a KB into a
Horn cover formula so as to interpret it under EGCWA
reduces the complexity of inference from Πp

2-complete
to P. Thus, if the compilation phase does not result in
an exponential blow up in the size of the KB, the time
needed for inference from the compiled KB can be much
lower than the corresponding time from the original KB;
subsequently, the compilation time can be balanced. Let
us stress that our claim concerns some specific cases only,
not the general one: since CWR is (probably) not compi-
lable [Cadoli et al., 1996; 1997b], knowledge compilation
cannot be expected as valuable for improving CWR in
the general case. Nevertheless, it is worth noting that,
while compilability results for CWR are mainly negative,
they do not prevent from exhibiting some instances for
which knowledge compilation proves helpful. Accord-
ingly, many experiments with various compilation func-
tions show the practical utility of such an approach for
improving clause deduction (see e.g., [Schrag, 1996;
Boufkhad et al., 1997]), though the problem is known as



Tractable KB *CWA clause inference literal inference

Blake CWA in P in P
Blake GCWA in P in P
Blake EGCWA coNP-complete in P
Blake CCWA in P in P
Blake ECWA coNP-complete coNP-complete
DNF CWA in P in P
DNF GCWA in P in P
DNF EGCWA in P in P
DNF CCWA coNP-hard and in PNP[O(logn)] coNP-hard and in PNP[O(logn)]

DNF ECWA coNP-complete coNP-complete
Horn cover CWA in P in P
Horn cover GCWA in P in P
Horn cover EGCWA in P in P
Horn cover CCWA coNP-hard and in PNP[O(logn)] coNP-hard and in PNP[O(logn)]

Horn cover ECWA coNP-complete coNP-complete
renamable Horn cover CWA in P in P
renamable Horn cover GCWA coNP-hard and in PNP[O(logn)] coNP-hard and in PNP[O(logn)]

renamable Horn cover EGCWA coNP-complete coNP-complete
renamable Horn cover CCWA coNP-hard and in PNP[O(logn)] coNP-hard and in PNP[O(logn)]

renamable Horn cover ECWA coNP-complete coNP-complete

Table 1: The complexity of CWR from some tractable KBs.

(probably) not compilable. Our results show that, in the
many situations in which some compilation techniques
are computationally profitable for clause deduction,
they can be profitable as well for some forms of CWR,
with only a polynomial extra cost.

5 Conclusion
In this paper, the complexity of CWR has been investi-
gated for some tractable fragments of propositional logic.
Several new tractable cases have been identified, and
some new intractability results have been provided as
well. Interestingly, the tractable fragments we have fo-
cused on are target classes for some compilation func-
tions; such a connection with exact knowledge compila-
tion can prove valuable from a computational point of
view in the situations in which the size of the compiled
KB remains “small enough”.

Due to close connections between CWR and abduction
and between CWR and some simple forms of default
reasoning, complexity results for these additional forms
of non monotonic inference from tractable KBs can be
derived from the results presented in this paper. This is
an issue for further research.
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