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Abstract. Many coherence-based approaches to inconsistency haence from a SBB in order to enlarge the set of instances which can
dling within propositional belief bases have been proposed so fabe solved in practice?
They consist in selecting one or several preferred consistent subbasedn this paper, we propose to ukrowledge compilatioas a way
of the given (usually inconsistent) stratified belief base (SBB), therto improve inference from a SBB when many queries are to be con-
using classical inference from some of the selected subbases. Unfasidered. The key idea of compilation is pre-processing the fixed part
tunately, deciding the corresponding inference relations is typicallyof the inference problem (the SBB under consideration). This SBB is
hard from the computational complexity point of view. In this paper, turned into a compiled one during an off-line compilation phase and
we show how some knowledge compilation techniques for classicahen the compiled SBB is used to answer on-line queries. Assuming
inference can be used to circumvent the intractability of such sophisthat the SBB does not often change and that answering queries from
ticated inference relations. For several families of compiled SBBshe compiled SBB is computationally easier than answering them
and several selection policies, the complexity of skeptical inferencérom the original SBB, the compilation time can be balanced over
is identified. Interestingly, some tractable restrictions are exhibited. a sufficient number of queries. Several knowledge compilation tech-
niques for improving classical inference have been proposed so far
) (see [6] for a survey). When compiled knowledge bases are consid-
1 Introduction ered and queries are CNF formulas, the complexity of classical in-
ference falls fromcoNP-complete down td®. While none of these
Dealing with inconsistency is required in many situations in whichtechniques can ensure that the objective of enhancing inference is
pieces of information come from different, possibly conflicting reached in the worst case (because the size of the compiled form can
sources, or when some exceptions to knowledge must be handlege exponentially larger than the size of the original knowledge base),
In order to prevent reasoning from trivialization, classical inferenceexperiments have shown such approaches valuable in many practical
cannot be directly used from an inconsistent formula. To cope withjt,ations.
this problem, we adhere to thherence-based approach to incon- | the following, we show how such compilation techniques for
sistency handlingPieces of information are representeddogposi-  classical inference from knowledge bases can be used to possibly
tional stratified belief base(SBB for short), i.e., finite sets of propo- improve sophisticated nonmonotonic inference from SBBs. Interest-
sitional formulas equipped with a total pre-order which representsngly, any equivalence-preserving knowledge compilation technique
the available preferences over the given beliefs. can be used and the given stratification of beliefs can change without
Following [20], coherence-based nonmonotonic entailment can beaquiring the SBB to be re-compiled from scratch. Clearly enough,
viewed as a two-step process: fir;t, the preferre_d consistent s_ubbasgﬁzh a compilation approach can prove helpful only if the complex-
of the given SBBB are characterized and then inference frBnis ity of inference from a compiled SBB is lower than the complexity of
defined as classical inference from some of the selected subbasgsference from the original SBB. That is why it is important to iden-
Clearly enough, there are many ways to extend the given total prejfy the complexity pattern. We achieve it, focusing on four different
order over formulas into a preference relation over sets of be|i9f3knowledge compilation functions found in the literature.
In this paper, four important subbases selection policies are consid-
ered [1], namely thgossibilisticpolicy, thelinear order policy, the L .
inclusion-preferenceolicy and thelexicographicpolicy. Additon- 2 Formal Preliminaries

ally, several entailment principles can be defined [20, 3]; indeed, & o p,. s denotes the propositional language built up from a denu-
formula can be considered as a (nonmonotonic) consequenBe of araple seS of symbols, the boolean constamts:e and false,
whenever it is a logical consequence of (1) all preferred subbases o, the connectives in the standard Wyr (X) denotes the set of
B (skeptical inference), or (2) at least one preferred subbase of ,rositional variables occurring 1. The size of a formula from
(credulous inference), or finally (3) when it can be credulously in-prop,.o noted|Y], is the number of signs (symbols and connec-
ferred from B but its negation cannot be (argumentative inference)es) ysed to write it. For every subsétof PS, Ly is the set of
These three entailment principles have their own motivations and feggerals built up from the propositional symbols B A negative lit-
tures; among thenskeptical inferencés the most rational relation eral is a literal of the formmz, wherez € PS.
[9]. Consequently, the rest of the paper focuses on this relation. Formulas are interpreted in the classical way. Every finiteSset
_ A major drawback of inference from a SBB lays on its computa- of formylas is interpreted conjunctivelyard(%) denotes the cardi-
tional cost which makes it impractical for many instances. Thus a5 of . A Krom formula is a CNF formula in which every clause
important question is: how to circumvent the intractability of infer- -, iains at most two literals. A formula is Horn CNF iff it is a CNF
T CRIL ot 1UT de Lens Unversad Artor JoTUnvera SP 1662307 formula s.t. every clause in it contains at most one positive literal.
e eLens, univer rois, rue ae F'univers i i
d ; P e ' A renamable Horn CNF formula is a CNF formula which can be
Lens cedex, FRANCE, email: coste@cril.univ-artois.fr - Lo . .
2 CRIL, Universié d'Artois, rue de I'Universi¢, SP 16, 62307 Lens cedex, turned into a Horn CNF formula by substituting in a uniform way in
FRANCE, email: marquis@cril.univ-artois.fr ¥ some literals ofLy (s by their negation.




We assume that the reader is familiar with some basic notions of Sris consistentyi € 1..k ((Vj < i(card(St;) = card(S;))) =

computational complexity, especially the complexity clas3eNP,
andcoNP, and the classea?, X} andII} of the polynomial hierar-
chy PH (see [19] for details)AL[O(log n)] is the class of problems
which can be decided using only logarithmically many calls tdl&n
oracle. Let us recall that a decision problem is said atftielevel

of PH iff it belongs to A} ,, and is eithe®}-hard orTI} -hard. It is
strongly believed thaPH does not collapse (at any level), i.e., is a
truly infinite hierarchy (for every integer, PH # 7).

3

Let us first define what a SBB is:

Inference from Stratified Belief Bases

Definition 3.1 (stratified belief bases)A stratified belief base
(SBB)B is an ordered pairB = (A, <), whereA = {¢1,...,¢n}
is a finite set of formulas fronf? RO Pps and < is a total pre-order
overA. Every subse$ of A is asubbasef B.

It is equivalent to definé3 as a finite sequend@\q, ..., Ay) of
subbases of\, where each\; (i € 1 .. k) is the non-empty set
which contains all the minimal elements Af \ (U;;l1 AP wrt,
<. Clearly enough{A1, ..., Ax} is a partition ofA. Each subset
A; (i € 1..k)is called astratumof B, and: is the priority level
of each formula ofA;. Intuitively, the lowest the priority level of a
formula the highest its plausibility. Given a subbasef B, we note
S; (i € 1..k) the subset of defined byS; = S N A;.

In the following, we assume thak; is a consistent set contain-
ing all the certain beliefs (i.e., the pieceskafowledgg of A. This

assumption can be done without loss of generality since when no ceg |nput: A SBB B

tain beliefs are available, it is sufficient to atld.e to A as its unique
minimal element w.r.t<. Accordingly, a SBBB = (A1, ..., Ag)is
a “standard” consistent knowledge base whkes 1, a supernormal
default theory without prioritization whel = 2, and a supernormal
default theory with priorities in the general case [5].

There are several ways to use the information given by a SB

Loui’s analysis [20], inference from a SBB is considered as a two-

step process, consisting first in generating some preferred consistefft

card(S;) £ card(Sh))}.

All preferred subbases of B (w.r.t. any of the above policy)
are (by construction) consistent sets. Moreover, sik¢és assumed
consistent, we always haws; C S. Unlike Bro and B.o, every
elementS of Bzp (or Bze) always is a maximal (w.r.tC) consis-
tent subbase aB. To be more precise, we havg-s C Bzp C Bc,
whereBc = {S C As.t.SisconsistentA; C S, andve € A\ S,

S U {¢} is inconsistertt is the set of all maximal (w.r.tC) con-
sistent subbases @. It is worth noting that giverBc, both Bzp
andB_.¢ can be computed in polynomial time (just filter out the pre-
ferred elements w.r.t. the chosen selection policy). The elements of
Bzp correspond to the so-called preferred subtheories of [5].

Given a selection policy, several entailment principles can be
considered, especially credulous inference, argumentative inference,
skeptical inference. Among them, we specifically focus on skeptical
reasoning which is the most rational one [9].

Definition 3.3 (skeptical inference) Let B = (A4,...,Ay) be a
SBB, P a policy for the generation of preferred subbases, d@nd
formula fromP RO Pps. ¥ is askeptical consequencé B w.r.t. P,
notedBrY U, iff VS € Bp, S = V.

Unfortunately, whatever the selection policy amdigl©, &€
TP WE€1, skeptical inference is not tractable (under the standard
assumptions of complexity theory).

Definition 3.4 (FORMULA R7)

LethZ be any inference relation amorg-2©, h5€,
FORMULA 7 is the following decision problem:
(A1,...,A;) and a formula¥ from

v e

PROPps.
e Query: DoesBr% ¥ hold?

CLAUSE 7 (resp.LITERAL (7)) is the restriction oFORMULA
|~7 to the case wher@ is required to be a CNF formula (resp. a

E;erm).

corresponding to several epistemic attitudes. Following Pinkas an

The following complexity results can be found in the literafure
?see Theorem 8 from [17] (or Corollary 1 from [8]), Theorems 5.17
d 6.5 from [18], Theorem 15 from [16]).

subbases aB and then using classical inference from some of them.Proposition 3.1 (skeptical inference from SBBs)
Many policies (or generation mechanisms) for the selection of preThe complexity cfORMULA 7 from a SBB and of its restrictions to
ferred consistent subbases can be defined. In formal terms, a poligjause and literal inference fa? € {PO, LO,IP, LE} is reported

‘P is a mapping that associates to every SBB setBp consisting
of all the preferred consistent subbasedBaiv.r.t. P. In the follow-
ing, four policies are considered: tip@ssibilisticpolicy, thelinear
order policy, theinclusion-preferenceolicy, and theexicographic

policy.

Definition 3.2 (selection policies)

LetB = (Ay,...,Ay) be a SBB.

The setBpo of all the preferred subbases &f w.r.t. the possi-
bilistic policy is the singletor{Uf:—l1 A;}, wheres is the smallest
index (L < s < k) s.t.|J;_, Aiis inconsistent.

The setB.o of all the preferred subbases & w.r.t. the linear
order policy is the singletovﬁUf:1 A}, whereArs; (i € 1..k) s
defined byAr; = A if A; U U;;ll Av; is consistent]) otherwise.
The setBzp of all the preferred subbases Bfw.r.t. the inclusion-
preference policy i§.S C A s.t.S is consistent and'S’ C A s.t.
Sris consistentyi € 1..k (V5 < i(S1; = S;)) = Si & S1:)}.
The setB.¢ of all the preferred subbases &f w.r.t. the lexico-
graphic policy is{S C A s.t. S is consistent an&/S7 C A s.t.

3 By conventionUS:1 Aj=0.

in Table 1.

[ P ]| FORMULA/CLAUSE/LITERAL 7 |

PO AT[O(log n)]-complete
LO AT-complete
P 1T}, -complete
LE AP-complete

Table 1. Complexity of skeptical inference from SBBs (general case).

4 Knowledge Compilation

Knowledge compilatiorfsee [6] for a survey) gathers several tech-
niques which prove helpful in the objective of improving inference,
in particular clause deduction [23], but also diagnosis, planning, be-
lief revision, etc [14]. In the following, we focus on knowledge com-
pilation techniques for improving classical inference, i.e., for making
the following decision problem easier:

4 Actually, previous complexity results typically concern #fBRMULA M’
problem. Nevertheless, it is easy to modify the corresponding hardness
proofs to show that the complexity lower bounds are also valid for both
the correspondingLAUSE 7 andLITERAL 7 problems.



Definition 4.1 (FORMULA ) remaining beliefs are represented by literals:

FORMULA |= is the following decision problem:

o Input: Two formulast and ¥ from PRO Pps Definition 5.1 (compiled SBBS)A SBBB = (A4,...,A) is
e Query: DoesY = ¥ hold? compilediff A, is =-tractable anch=2 A; C Lps.

CLAUSE = (resp.LITERAL [=) is the restriction o0FORMULA |=
to the case wher#& is required to be a CNF formula (resp. a term).
Existing researches about knowledge compilation can be split int
two cgtegpnes. .Th? f'.rSt category gathers Fheqreﬂcal works abogﬂefinition 5.2 (equivalence of SBBs)Let B = (Aq,...,Ax) and
compilability, which indicates whether the objective can be expected,,
. ; . Bl = (Arn,...,An) be two SBBs. L&t be a subset oPS and P
to be reached in the worst case by focusing on the size of the com:-

. - ; . a selection policyB and B/ are equivalenton V' w.r.t. P iff there
piled form (see e.g., [7, 14]). Indeed, if the size of the compiled form__ - -
is exponentially larger than the size of the original KBsignificant exists a bijectior from By t0 I/p s.L. for everys € Bp and every

computational improvements are hard to be expected. Accordingl}}(?rmmaly fom PROPy, $ |= Wiff 5(5) = 0.

some decision problems are compilable, while others are probably
not compilable (i.e., not compilable under the standard assumption@O
of the complexity theory). Thus,ITERAL [ is compilable while

bothFORMULA = andcLAUSE |: are (probably) not compilable Definition 5.3 (compiling SBBs) Let B = (A4, ...,Ax) be a
entod towrds the dstign of compition algoritns and heir emSE8 (WA = UL, A0 and etCOMP be any equivalence.
9 P 9 reserving compilation function (for clause deduction). Without loss

pirical evalu_anons. Thus, among others, [21, 1.3’ .15’ 22, 4, 12]2f generality, let us assume that every stratin(: € 1 .. k) of B is

present equivalence-preserving knowledge compilation methods f%tally ordered (w.rt. any order) and let us note , the j** formula

clause deduction. All these methods aim at computing a formul f A wrt. this or(.:ié} "

COM P(X) equivalent toX, and from whichcLAUSE |= belongs ThelSB-éC.*OMP(B). — (x &) wherex: = {new,

to P. Stated otherwise, compiling consists in turning it into a for- new. Yfori € 2 khéz‘a(‘:;miing el ! \L o anéj

mula belonging to a tractable class for clause deduction. heard(8:) C (RS A arA)
Abusing words, a formula oP RO Pps is said=-tractable when X1 Z,CQMP(Al U (Ui:Z{/\j:I “(newi; = ¢i;)})) is the

it belongs to such a tractable class of formulas. Consideing ~COmpilationof B w.rt. COMP.

tractable KBX is helpful for thecLAUSE = problem, since deter-

mining whether a clause is entailed by=atractable KBX can be . ; . .
achieved in polynomial time, while the problemdsNP-complete form of a new literal) to.each assumptlonszand in storlng the cor-
when X is unconstrained. In the rest of this paper, the following €SPondance assumption/name with the certain befiefisrecom-

tractable classes of formulas which are target classes for some eRiling them for clause deduction. As an important fact, our compi-
isting compilation functions are considered: lation approach does not question equivalence on the original lan-

Interestingly, for every SBB, there exists an equivalent compiled
(§BB with equivalence defined as:

Let us now show how any equivalence-preserving knowledge
mpilation function can be used to compile a SBB.

This transformation basically consists in giving a name (under the

guage.
e TheBlakeclass is the set of formulas given in prime implicates
normal form, Proposition 5.1 (equivalence preservation)Let B = (Aq,...,
o the DNF class is the set of formulas given in disjunctive normal A;) be a SBB (withA = Ule A;) and let COMP be any
form (DNF), equivalence-preserving compilation function (for clause deduction).
o the Horn coverclass is the set of disjunctions of Horn CNF for- COM P(B) is a compiled SBB equivalent # on Var(A) w.r.t.
mulas, P e {PO,LO,ITP,LE}.
e therenamable Horn coveclass is the set of disjunctions of re-
namable Horn CNF formulas. The motivation for our definition of compiled SBB3 relies on

. the fact that making=-tractable every formula ofA is not suffi-

The Blake class (resp. the DNF class) is the target class of the comyant for improvingcLAUSE [~Z in the general case. Indeed, form-
pilation function described in [21] (resp. in [22]). The Hom cover jng preferred subbases @ requires to check the consistency of
class and the renamable Horn cover class are target classes for t@@njunctions of such formulas ané-tractable formulas do not mix
tractable covers compilation functions given in [4]. Of course, all\ye|| w.rt. conjunction as far as computational complexity is con-
these compilation functions’OM P are subject to the limitation  cerneq. For instance, determining whether a finite set of clauses con-
explained above: in the worst case, the size of the compiled formyining only Horn CNF clauses and Krom clauses is consistent is
COMP(E). is exponential in the size of. Nevertheless, there is NP-complete. More specifically, tractable classes of formulas are
some empirical evidence that some of these approaches can proygyically not closed under conjunction (especially, for all the four
computationally valuable for many instances of M&USE |= prob-  actable classes considered in this paper), and the existence of a
lem (see e.g., the experimental results given in [22, 4]). polytime algorithm that would turn the conjunction of two input for-

mulas of a given tractable class into one equivalent formula from that

5 Compiling Stratified Belief Bases class is hard to be expected. Contrastingly, because every assumption

from Usz A; is a literal, and whatever the compilation function

used to compile); is, the consistency of any subbase of a com-
piled SBB B which contains\; can be checked in polynomial time.

5 The existence of an equivalence-preserving compilation function/ P Thus, any equivalence-preserving compilation function can be used
s.t. itis guaranteed that for every propositional CNF formiij#oRMULA  for compiling a SBB. Since many of the existing compilation func-
rig?;@%ﬁ’ﬂ%‘i’;”g%%%‘/f nr]: a(li)P'S:'r,‘\l';%f‘udS\&gé‘g L]; ggé‘tzrprgi'%i'n g tions have no comparable computational behaviours (each of them
whether a formula is valid isoNP-complete) (resp. the polynomial hierar- Performs better than the others on some instances), such a flexibility
chy to collapse at the second level (see [23, 6] for more details)). is a major advantage.

In the following, we will only consider compiled SBBs, i.e., SBBs
in which the certain beliefs form g=-tractable formula and all the




6 Complexity of Inference from Compiled SBBs | COMP [ FORMULA WZE | CLAUSE/ LITERAL REZ |
The purpose of compiling a SBB is to enhance inference from it. This %'illf Aéécomnglelt? Ag'?ﬁrgplete
objective can be achieved only if (1) the size of the compiled SB Horn cover Czp_ég%pﬁefee AP-IcompIete

) . : . : 5

is not exponentially larger than the size of the original SBB, and—snamabie Horn cover AP-complete AP -complete

(2) inference from the compiled SBB is easier than inference frorm
the original SBB. Because every inference relation considered in thi
paper is supra-classical (just consider SBBs for which= A;),

the compilability limitations for botfFORMULA = andCLAUSE = Tractability is only achieved for compiled SBBs for whigh is a

also apply for these more sophisticated forms of inference: it is NObNF formula and queries are restricted to CNF formulas. Especially,
granted that the size of the compilation of a SBB remains polynomiaky| the hardness results presented in Tables 3 and 4 still holds in the
in the size of the original SBB, whatever the compilation function is. specific case in which the number of strata under consideration satis-
Let us stress that these limitations not only concern the compilatiofies ; > 2. Intractability results w.r.t. both-Z” and 4¢ still hold
technique proposed in this paper, but any conceivable preprocessifghenA, is a consistent Krom formula (such formulas are renamable
of SBBs. Because some of these functions have empirically provegiorn and can be turned in polynomial time into Blake normal form),
their computational value, we can nevertheless expect computationg} whenA, is a Horn CNF formula.

benefits for many instances. In this section, we show the extent to |nterestingly, imposing some restrictions on the literals used to
which (2) can be achieved, depending on the inference relation undefame assumptions enables us to derive tractable restrictions for both
consideration, the nature of the query (formula, clause, literal) an¢ ause ~ZP andcLAUSE &€ from a compiled SBB wherd; is

the compilation functiolO M P used. a Horn cover formula. Indeed, we have:
We have identified the following complexity results:

S'Table 4. Complexity of skeptical inference w.r£& from COM P(B).

Proposition 6.4 (tractable restrictions)

CLAUSE |~Z” and cLAUSE |~&¢ from a compiled SBEB = (A,
..., Ag) whereA; is a Horn cover formula anJUf:2 A; contains
only negative literals are i®.

Proposition 6.1 (skeptical inference from compiled SBBs)
The complexity afORMULA k% and of its restrictions to clause and
literal inference forP € {PO, LO, TP, LE} from a compiled SBB

is reported in Table 2. Due to space limitations, we cannot give all complexity prbofs

So let us just focus on tractability results. Actually, in all the tractable
cases listed abové3c can be computed in time polynomial ||
thanks to the following lemma:

Lemma6.1 Let B = (As,...,Ay) be a SBBwithh = 7, A,
We have:
o If Ay = {ou V...V a,} where eacho; i € 1 ..n)is a
formula from PROPps, thenBc = {A; U(SNA) | S €
n k

maxrc (Ui:1 ({ai}a Uj:z A]’)g).

Proposition 6.1 shows that compiling a SBB can actually makee If «is a term anch:2 Aj contains only literals, ok is a Horn
inference computatlon_ally ea_s,ler._ActuaIIy, co_mplllng makes all in-  =NE formula ancU’iQ A, contains only negative literals, then
ference relations considered in this paper easier, exeéft b e

Within Proposition 6.1, no assumption on the nature of the com- (1o} Uj—, &;)c is the singleton
piled SBB has been done. In order to possibly obtain tractability re- {{a} U {¢ € UfZQ Aj | alE ¢}
sults for inference w.r.t. th&P policy and theLE policy, restricted . . .
compiled SBBs must be considered. In the following, we focus on WhenB = (kAl’ < Bk) 1S StAy Isa DNF (resp. a I—.|orn. cover
compiled SBBs of the fornt’OM P(B) whereCOM P is a compi- formula) and J;_, A; contains only I[terals (resp. negative literals),
lation function which maps any propositional formula into a Blake, €VerY elemens of Bc can be turned into a DNF (resp. a Horn cover

DNF, Horn cover or renamable Horn cover formula. formula) in polynomial time. Moreover, filtering olzp (or Bze)
from B¢ can be done in polynomial time.

Since the transformation reported in Definition 5.3 does not re-
quire any constraint on the literals used to name beliefs, negative lit-
erals can be used. Accordingly, it is possible to compile any SBB so
as to make botlcL AUSE E” andcLAUSE (¢ tractable from the

[ P [ FormuLA I | cLAUSE/LITERAL BT ]
PO | coNP-complete inP
LO | coNP-complete inP
ZP | coNP-complete coNP-complete
LE AP-complete AP-complete

Table 2. Complexity of skeptical inference from compiled SBBs.

Proposition 6.2 (skeptical inference w.r.tZP from COM P(B))
The complexity oFORMULA |~&7 and of its restrictions to clause
and literal inference from compiled SBB%O M P(B) is reported

in Table 3. ' ANC : )
compiled form. Of course, this is already achieved by only requir-
- - ing A; to be a DNF formula. However, while every DNF formula
l comp | FormuLA g7 | CLAUSE/LITERAL ™ | js'a Homn cover formula, the converse typically does not hold and
Blake coNP-complete coNP-complete the Horn cover class can prove much more compact as a represen-
DNF coNP-complete inP tation formalism (some DNF formulas can be represented by Horn
Horn cover CONP-complete CONP-complete cover formulas the sizes of which are logarithmically lower but the
renamable Horn cover | coNP-complete coNP-complete 9 y

converse does not hdld

Let us ask Omer the emu for an illustration of Lemma 6.1 (Omer
is an emu, every emu is a bird, normally, emus do not fly, normally,
birds fly). Formally, letB = (A1, A2, Ag) with:

Table 3. Complexity of skeptical inference w.rf;P from COM P(B).

Proposition 6.3 (skeptical inference w.r.t.LE from COM P(B))
The complexity oFORMULA |~&€ and of its restrictions to clause
and literal inference from compiled SBBSOM P(B) is reported
in Table 4.

6 Some of them are easy consequences of results reported in [10, 18, 11].
7 For instance, the size of the smallest DNF formula equivalent to the Horn
cover formula/\™" | (—w2i V a4 1) IS Q(2™).



Ay = {emu(Omer), (emu(Omer) = bird(Omer))},
Ay = {emu(Omer) = - fly(Omer)}, and
As = {bird(Omer) = fly(Omer)}.

tion of a DNF formula, Lemma 6.1 shows how such an algorithm
could be extended to deal with other selection policies basdslan
Let us finally mention [2] which presents a compilation approach

The stratification used here reflects the fact that most specifif®” SBB- This approach consists in turning the given SBB into an
beliefs are preferred (exceptional emus are rarer than exception§Auivalent one which has only one preferred subbase (not necessar-

birds). B can be turned into the following compiled SBB’ =
(A%, Ah, A%) using Horn cover compilation:

1 ={(fly(Omer) A emu(Omer) A
(emu(Omer) = bird(Omer)) A
(emu(Omer) = Emusfly(Omer))) V
(=fly(Omer) A emu(Omer) A
(emu(Omer) = bird(Omer)) A
(bird(Omer) = Birdsdon't fly(Omer))}

5 = {~Emusfly(Omer)},

5 = {~Birdsdon't fly(Omer)}.

Here,~Emus fly(Omer) and—Birdsdon't fly(Omer) are the
new literals used to name (uncertain) beliefs before compilation.
From this compiled SBBB(- can be derived in polynomial time as:

{ALU{=Birdsdon't fly(Omer)}, A1 U{=Emus fly(Omer)}}.

(1]

By construction, each of the two elementsﬁfé is a Horn CNF 2l
formula. Only the latter one is preferred w.ZtP (or LE), enabling

us to conclude the desired result (Omer doesn't fly). [3]

] [4]

7 Related Work and Conclusion -

In this paper, we have shown how knowledge compilation technique
can be used to compile SBBs in order to make skeptical inferenc
more efficient. Through a complexity analysis, we have demonstratedy)
that improvements can be expected (as long as the size of the com-
piled form remains “small enough”) for all the selection policies un-
der consideration, excepl€. Focusing on four compilation func- (8]
tions found in the literature, tractable fragments have also been ex-
hibited for bothZP andLE.

Our approach for compiling a SB® can be favourably com-  [9]
pared with the basic compilation approach that consists in comput-
ing Bp (reducing inference to deduction, hence making it “only” ;4
coNP-complete in the general case). Like ours, this approach cannot
be achieved in polynomial time in the general caBe (can easily
contain exponentially many elements whenc {ZP, £LE}). How-  [11]
ever, our transformation is much more flexible. On the one hand,
many knowledge compilation functions can be used within it (and
some of them may achieve the objective of keeping the size “small
enough”). On the other han&» cannot be computed incrementally [13]
in the general case since removed pieces of belief can reappear Ia[ﬂ]
on; indeed, starting fronB» only, it is not always possible to com-
pute the preferred subbases of a SBBxtended with a new formula.  [15
Our approach does not suffer from this drawback. In the same vein,
re-partitionning the SBB requires3» to be re-computed (which is [16]
very time-consuming in general). No re-compilation is mandatory ini[sl7]
our approach. Finally, it is obvious that, in the general case, there
no guarantee that every element®$ is =-tractable, while this is
ensured by our approach.

There are many works concerned with reasoning from an incorggl

(18]

sistent SBB, and our approach is related to many of them. Amon
the closer approaches is [10] which provides several complexity re-
sults for inference from SBBs (and we used some of them in ouf21]
hardness proofs). This paper also gives a BDD-based algorithm for
|~&€ inference; since a BDD is nothing but a compact represent

23
8 When designing a SBB, it is not always easy to put each piece of belief inté ]
the right stratum without making some adjustments. Hence, the capacity of
re-partionning a SBB “for free” is valuable.

ily =-tractable). This makes this approach complementary to ours.
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