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Abstract. Many solvers have been designed for QBFs, the validity
problem for Quantified Boolean Formulas for the past few years. In this
paper, we describe a new branching heuristics whose purpose is to pro-
mote renamable Horn formulas. This heuristics is based on Hébrard’s
algorithm for the recognition of such formulas. We present some experi-
mental results obtained by our qbf solver Qbfl with the new branching
heuristics and show how its performances are improved.

1 Introduction

qbf, the validity problem for QBFs, has a growing importance in AI. This can be
explained by the fact that, as the canonical PSPACE-complete problem, many AI
problems can be polynomially reduced to qbf; furthermore, there is some em-
pirical evidence from various AI fields (including among others planning, non-
monotonic reasoning, paraconsistent inference) that a translation-based approach
can prove more “efficient” than domain-dependent algorithms dedicated to such
AI tasks (see [1, 2, 3, 4, 5]). Accordingly, many qbf solvers have been designed and
evaluated for the past few years (see mainly [6, 7, 8, 9, 10, 11, 12, 13, 14]).

Among the few approaches to increase the set of instances that are feasible
from the practical point of view are the restriction-based ones. The key idea
is to recognize instances for which specific algorithms can prove much more
efficient than general qbf solvers. Several tractable restrictions of QBF have
been identified so far. [15, 16] show that quantified Krom formulas (QKF) are
polynomially solvable. [17] proved that quantified Horn formulas (QHF) form
a tractable restriction of QBF . As an easy consequence, quantified renamable
Horn formulas (renQHFs for short), are polynomially solvable too.

The main objective of this paper is to present a new branching heuristics for
qbf solvers based on the DPLL procedure. This new heuristics aims at promoting
the generation of quantified renamable Horn formulas, for which efficient solvers
exist. The rest of this paper is organized as follows. Some formal preliminaries
are given in Section 2. The new heuristics is presented in Section 3. Experimental
results obtained by our qbf solver with this heuristics are reported in section 4.
Finally, Section 5 concludes the paper and gives some perspectives.
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2 Quantified Boolean Formulas

Let V ar(Σ) be the set of variables of the propositional formula Σ. A QBF
formula Σ is said to be prenex if and only if Σ = Qx1(. . . Qxn(φ) . . .) where
each occurrence of Q stands for either ∀ or ∃, and φ does not contain any
quantified occurrence of a variable. φ is said to be the matrix of Σ and the
sequence Qx1 . . . Qxn of quantifications is the prefix of Σ. A formula is said to
be closed if and only if it has no free variable. In this paper, we always consider
a QBF in prenex form with a CNF matrix. We focus in this paper on two
restrictions of QBFs: QHFs and renQHFs.

Definition 1 (Quantified Horn Formula). Clauses of a QHF contain at
most one positive literal.

Our branching heuristics oriented towards the generation of renQHFs is
based on Hébrard’s recognition of renamable Horn formulas [18]. Before pre-
senting it, we first need to recall some notions introduced by Hébrard. Let Σ
be a QBF and let L be a set of literals. L is consistent if it does not contain p
and ¬p for every propositional variable p. L is complete if p belongs to L or ¬p
belongs to L, for all p in V ar(Σ). A renaming R is a complete and consistent
set of literals. R is a Horn renaming for Σ if a QHF formula is obtained when
replacing in the matrix of Σ every occurrence of a literal by its complementary
literal if the negative literal belongs to R.

Definition 2 (⇒, ⇒∗ and Clos(l)).
Let l and t be two literals and Σ a CNF formula being the matrix of a QBF .

– l ⇒ t iff ∃ a clause C ∈ Σ s.t. l ∈ C, ¬t ∈ C and l �= ¬t.
– The reflexive transitive closure of ⇒ is denoted by ⇒∗.
– Clos(l) denotes the set {t |l ⇒∗ t}.

A set of literals L is said to be closed if Clos(l) ⊆ L, ∀l ∈ L.

Proposition 1. A renaming R is a Horn renaming if and only if it is closed,
i.e. ∀l ∈ R, Clos(l) ⊆ R(Proposition 1.1 from [18]).

A sketch of Hébrard’s variables renaming algorithm is presented in algorithm
1.1.

3 A New Branching Heuristics

The idea of our heuristics is to branch first on variables whose propagation leads
to a renamable Horn formula, or a formula that is “almost” renamable Horn.
We use Hébrard’s algorithm to detect renamable Horn formulas. This algorithm
computes a set of literals to be renamed in order to obtain a Horn formula. If
such a set exists, then we can use Klëıne-Büning polynomial time algorithm [17]
in order to solve the instance. Otherwise, we use the algorithm to measure how
far we are from a renQHF : the greater the measure is, the closer we are from a
renQHF . We call that measure the Contradiction’s distance.
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Algorithme 1.1: Hébrard’s Horn renaming algorithm (on the left) and measure of
the contradiction’s distance δ (on the right)

function RHClos
Input : a QBF Q

Output : ∅ if Q is not Horn renamable,
else a Horn renaming R for Q.

begin
R ← ∅ ;
foreach variable p in Var(Q) do

if p �∈ R and ¬p �∈ R then
if ∀q ∈ Clos(p)\R, ¬q �∈ Clos(p)\R then

# Clos(p)\R is consistent
R ← R ∪ (Clos(p)\R) ;

else if ∀q ∈ Clos(¬p)\R, ¬q �∈
Clos(¬p)\R then

# Clos(¬p)\R is consistent
R ← R ∪ (Clos(¬p)\R) ;

else return ∅ ;

end

function δ
Input : a QBF Q, a litral l

Output : the distance δ of l to a Horn renaming.

begin
Closl ← {l} ;
Distance ← 0 ;
Put(lQueue, l) ;
while not EmptyQueue(lQueue) do

m ← Get(lQueue) ;
LeadsTo ← {¬t|m ⇒ t} ;
foreach e ∈ LeadsTo do

if ¬e ∈ Closl then
return Distance + 1 ;

else if e ∈ Closl then
Closl ← Closl ∪ {e} ;
Put(lQueue, e) ;

Distance ← Distance + 1 ;

return Distance + 1 ;

end

Definition 3 (Contradiction’s distance). The distance from a contradiction
of Horn renamability δl for a literal l in a QBF Q is defined as follows:

δl =

⎧
⎨

⎩

0 if �v|l ⇒ v
1 if l ⇒ t and l ⇒ ¬t
1 + min(δv|l ⇒ v) otherwise.

The idea behind that distance is that the closer we are to a renamable Horn
formula, the greater the contradiction distance should be.

In order to compute that distance, we need to slightly modify Hébrard’s algo-
rithm: Hébrard’s algorithm performs DFS (Depth-First Search) while ours use
BFS (Breadth-First Search). This is mandatory to ensure that the value returned
by the algorithm is minimal. The right part of the algorithm 1.1 describes such
a computation. It’s in linear complexity (O(n+m), with n the number of literals
and m the number of clauses, considering that size of the clauses is bounded by
a constant).

This distance is often not sufficient to elect a single variable. As a conse-
quence, we refine it using the well-known two-sided Jeroslow-Wang heuristics
[19] with a setting widely used in complete solvers for random k-sat inherited
from POSIT [20]. We restrict the selection of the variables to the outermost
quantifier scope and we branch first on the literal having the greatest contradic-
tion distance.

Definition 4 (Heuristics ∆ of Horn Renamability). Let X1 be the outer-
most quantifier group. Our heuristic function ∆ is as follows:

– ∆x = 1024 × δx × δ¬x + δx + δ¬x ;
– the variable x is chosen if x ∈ X1 and, ∀y ∈ X1, (x �= y ⇒ ∆x ≤ ∆y) ;
– the literal x is finally chosen if δx > δ¬x, ¬x otherwise.
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4 Experimental Results

4.1 Methodology

The empirical results presented in this section have been obtained on PIV 3GHz
computers with 512MB of RAM. In order to compare Qbfl (version 1.7) with
other solvers, we chose to use QuBE-Rel1 (version 1.3) and Semprop2 (version
010604) for those experiments since those two solvers are two state-of-the-art qbf
solvers according to the recent QBF evaluations3 [21] that are freely available. In
the following tables, only the CPU time of instances solved is taken into account.
As a result, it is necessary to also check the number of benchmarks solved in
order to compare the behavior of the solvers.

4.2 “Polynomial” Benchmarks

Our first experiments are on sets of randomly generated QHF and renQHF
benchmarks4 The instances are generated as follows:

QHF for each clause, we randomly choose the size of the clause. Then, a literal
is chosen to be the positive one in the clause. We complete it by randomly
choosing negative literals;

renQHF we first chose the number of variables to be renamed then those vari-
ables are chosen before generating clauses using the same method as the one
used for generating QHFs but renaming the chosen literals.

We chose to use only two alternations of quantifiers, ∀X∃Y , such that |X| > α
with 2 < α < 2/3 × #V with #V the number of variables of the formula.

Those benchmarks are sorted by groups of 1000 (resp. 100) instances of QHFs
(resp. renQHFs). Each instance has 400 variables and we increase the usual
clauses over variables ratio from 3 to 6. The timeout is fixed at 60 seconds. Note
that this timeout is 3 orders of magnitude greater than the CPU time needed by
our dedicated solver for those benchmarks and that similar results were obtained
using a timeout of 300s.

Figure 1 reports empirical comparisons on renQHFs. The behavior of the
solvers is quite similar to the QHFcase. However, those benchmarks look more
difficult for Semprop which fails on 10% of them.

Note that Qbfl does not appear on the graph on the right hand side because
our solver solved all those benchmarks.

We can observe that the runtime used by Qbfl to solve those polynomial
formulas increases slowly and regularly. Those first experiments do not show
that our approach is useful: They only show that our solver can detect and solve
QHF and renQHF formulas quite efficiently and that those formulas are not
trivial for current state-of-the-art qbf solvers. We submitted to the 2005 QBF

1 http://www.star.dist.unige.it/˜qube.
2 http://www4.in.tum.de/˜letz/semprop.
3 Some results of the evaluations are available on http://www.qbflib.org/qbfeval.
4 Generators are available at http://www.cril.uni-artois.fr/˜letombe/qbfg.
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Fig. 1. Comparison between Semprop, QuBE and Qbfl on sets of 100 renamable Horn
random instances

Evaluation the benchmarks on which Semprop failed. It is more interesting to
see how our solver behave on last year QBF evaluation set of benchmarks.

4.3 QBF 2004 Evaluation Benchmarks

We focus first on formulas proposed by G. Pan, translated from modal logic K
from TANCS’98 [22]. Those 378 instances - 9 types of 21 benchmarks valid and
9 not valid - have been proposed for 2003 QBF solvers evaluation and most of
them were classified as hard5. Since 2003, solvers have improved and in the 2004
QBF evaluation classification, those benchmarks appear a bit easier.

Results obtained by Qbfl on those instances are sketched in Table 1. For
each type of instance, the ratio of instances solved over all instances are shown
in column “%solved” and the ratio of renamable Horn formulas reached over all
checks performed are shown in the column “%RH”. Those data are presented
for both Qbfl with Jeroslow-Wang’s and ∆ heuristics.

The main observation is that really much more (about twice) benchmarks are
solved by our solver using the heuristic ∆ compared with Jeroslow-Wang’s. The
result is impressive, especially for k grz n instances: 30 benchmarks are solved
with Jeroslow-Wang’s heuristic while up to 59 are solved with ∆. Unfortunately,
it is difficult to know if that good behavior is related to the renamable Horn
detection or if the change of heuristics is alone responsible of it. Indeed, we have
no way to compare the number of renamable Horn formulas found during the
search by the two heuristics: reducing the search space also reduces the number
of renamable Horn formulas found.

We tried ∆ on some other types of formulas. In the crowd of existing bench-
marks, we tried all instances proposed by A. Ayari (72), C. Castellini (169),
M. Mneimneh and K. A. Sakallah (202), J. Rintanen (67) and C. Scholl and
B. Becker (64)6. The main observation is that ∆ does not alter significantly the

5 Hard instances of this evaluation are those solved by one solver or even none.
6 All those benchmarks are available on http://www.qbflib.org.
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Table 1. Percents of benchmarks solved and renamable Horn instances reached

Instance Jeroslow-Wang Renamable Horn ∆
type %solved %RH %solved %RH

k branch n 4.76 25.26 9.52 9.29
k d4 n 4.76 13.25 4.76 5.63
k dum n 4.76 11.69 23.80 11.51
k grz n 0 - 61.90 11.94
k lin n 9.52 20.00 9.52 24.26
k path n 9.52 5.47 14.28 12.12
k ph n 23.80 2.66 23.80 11.73
k poly n 9.52 0 14.28 6.66
k t4p n 4.76 11.37 4.76 26.62
Total valid 7.93 11.21 18.51 13.30

Instance Jeroslow-Wang Renamable Horn ∆
type %solved %RH %solved %RH

k branch p 4.76 24.56 4.76 9.33
k d4 p 9.52 26.33 14.28 25.34
k dum p 4.76 11.71 14.28 11.40
k grz p 0 - 0 -
k lin p 9.52 11.88 19.04 8.65
k path p 14.28 7.43 19.04 7.64
k ph p 19.04 10.06 19.04 6.89
k poly p 4.76 12.91 9.52 11.04
k t4p p 0 - 4.76 26.02
Total false 7.40 14.98 11.64 13.28

Instance Jeroslow-Wang Renamable Horn ∆
type %solved %RH %solved %RH

Total valid 7.93 11.21 18.51 13.30

Total false 7.40 14.98 11.64 13.28

Total 7.67 13.09 15.07 13.29

behavior of Qbfl without it: Among the 283 instances solved using the Jeroslow-
Wang heuristics, only 14 instances were not solved using ∆. Taking into account
the Pan benchmarks, Qbfl equipped with ∆ perform better than without it.

5 Conclusion

Our work focuses on the practical use of tractable restrictions of QBF in solvers.
We proposed a heuristics based on Hébrard’s algorithm to detect Horn renam-
ability. We noticed that in practice current qbf solvers are not able to solve
in reasonable time some instances of QHF or renQHF . Quantor[23], which is
a solver somehow different from the other qbf solvers, performs also badly on
those benchmarks.

In contrast, we tried some classical sat solvers on the very same benchmarks
(without the prefix): They can solve them easily. An explanation is that the
extra complexity in the qbf case is due to the constraint on the prefix that
most solvers try to satisfy first. We are currently investigating the behavior of
Audemard and Säıs solver [14] on those benchmarks: Their solver considers last
that constraint. Unfortunately, first experimental results show that even this
solver can’t easily solve those instances.

We are waiting for the results of the 2005 QBF evaluation to gather additional
information that could help us to explain the behavior of the tested solvers.
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